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Objective: To compare the performance of three machine learning algorithms

with the tumor, node, and metastasis (TNM) staging system in survival prediction

and validate the individual adjuvant treatment recommendations plan based on

the optimal model.

Methods: In this study, we trained three machine learning madel and validated 3

machine learning survival models-deep learning neural network, random forest

and cox proportional hazard model- using the data of patients with stage-al3

NSCLC patients who received resection surgery from the National Cancer

Institute Surveillance, Epidemiology, and End Results (SEER) database from

2012 to 2017,the performance of survival predication from all machine

learning models were assessed using a concordance index (c-index) and the

averaged c-index is utilized for cross-validation. The optimal model was

externally validated in an independent cohort from Shaanxi Provincial People’s

Hospital. Then we compare the performance of the optimal model and TNM

staging system. Finally, we developed a Cloud-based recommendation system

for adjuvant therapy to visualize survival curve of each treatment plan and

deployed on the internet.

Results: A total of 4617 patients were included in this study. The deep learning

network performed more stably and accurately in predicting stage-iii NSCLC

resected patients survival than the random survival forest and Cox proportional

hazard model on the internal test dataset (C-index=0.834 vs. 0.678 vs. 0.640)

and better than TNM staging system (C-index=0.820 vs. 0.650) in the external

val idation. The individual patient who follow the reference from

recommendation system had superior survival compared to those who did

not. The predicted 5-year-survival curve for each adjuvant treatment plan

could be accessed in the recommender system via the browser.
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Conclusion: Deep learning model has several advantages over linear model and

random forest model in prognost ic predicat ion and treatment

recommendations. This novel analytical approach may provide accurate

predication on individual survival and treatment recommendations for resected

Stage-iii NSCLC patients.
KEYWORDS

non-small cell lung cancer (NSCLC), stage-III, machine learning, survival predication,
treatment recommendation, adjuvant therapy
1 Introduction

Stage-iii non-small cell lung cancer (NSCLC) accounts for about

1/4 to 1/3 of total lung cancer and is a very heterogeneous disease

with a discouraging clinical prognosis, the 5-year survival rate of

NSCLC is only 15%-40% (1). For operable stage-iii lung cancer

patients, surgery-based comprehensive treatment is recommended.

However, even after radical tumor resection, there is still a high risk

of recurrence and metastasis, so adjuvant therapy after surgery is

required to improve long-term survival probability. Postoperative

adjuvant therapy mainly includes adjuvant chemotherapy,

radiotherapy and targeted therapy. Among them, adjuvant

targeting is mainly aimed at the EGFR-amplified non-small cell

lung cancer patients. Targeted therapy can improve its prognosis,

but the proportion of this population is relatively low, only 9% of

the total non-small cell lung cancer patients (2). For the vast

majority of patients with EGFR-negative stage-iii lung cancer,

studies have shown that postoperative chemotherapy (POCT) can

improve the 5-year survival rate by 5% (3). Other researches

confirm that the value of postoperative radiotherapy for high-risk

subgroups (4–6), While the results of the meta-analysis in 1998

determines that postoperative adjuvant radiotherapy is not

recommended for patients with stage I-IIIB (N0-N1) (7). In

addition, the 2020 Lung ART study suggests that adjuvant

radiotherapy is not recommended for patients with N2 after lung

cancer surgery (8). Therefore, whether postoperative radiotherapy

has a beneficial effect on overall survival (OS) is controversial. In the

current clinical practice, the formulation and implementation of

adjuvant chemotherapy and radiotherapy treatment plans are

mainly based on the TNM staging system. Therefore, there are

two drawbacks. The first defect is that only three clinical indicators

of patients T, N, and M are considered to guide the clinical

treatment of patients while ignoring other important

characteristics of patients such as physiological characteristics

(age, gender) and Other important clinical characteristics

(surgical method, primary tumor location, tumor grade, number

of positive lymph nodes (LNs), number of LNs examined, and

adjuvant therapy methods). Secondly, the TNM staging system is

used for risk stratification of the population, and cannot work as a

tool to provide prognosis prediction for individual patients.

Therefore, it cannot meet the need to improve patient prognosis.

Today, with today’s increasingly perfect electronic medical record
02
system, deep learning has been widely used in the medical field to

predict the survival rate of cancer patients, which performs better

than the traditional cox regression method (9–17). In this

experiment, we trained a deep learning model based on a large

amount of clinical data and developed a patient-oriented assistant

utilizing this model. A recommendation system for radiotherapy

and chemotherapy can be accessed through the Internet to provide

patients with reference opinions for postoperative radiotherapy and

chemotherapy regimens Figure 1.
2 Method

2.1 Eligibility criteria and
patient information

Regarding the training cohort, We selected 4517 medical cases

from Database: Incidence - SEER Research Plus Data, 18 Registries,

Nov 2019 Sub (2000–2017) - Linked To County Attributes - Total

U.S., 1969-2018 Counties, National Cancer Institute,DCCPS,

Surveillance Research Program, released April 2021, based on the

November 2019 submission. We included Data records if they meet

the criterion (1), patients pathologically diagnosed between January

2012 and December 2017 with primary stage-teriii non-small cell

lung cancer (NSCLC) and (2) the existence of one malignant lesion.

On the contrary, We excluded clinical cases according to the

standard (1), patients whose regional lymph nodes performed

during the initial work-up or first course of therapy are unknown

or missing. Then we choose the features relevant to the OS (overall

survival) of the NSCLC, including demographic information (Age

and Sex) and NSCLC-cancer-related characteristics (TNM stage,

histology type, primary site, tumor size, regional node number

examined, regional node positive number and laterality of the

tumor), and treatment details(surgery of primary site, radiation,

and chemotherapy), The outcome is the patient survival time and

death indicator. As for the cohort for external validation of the

model, the inclusion criteria and exclusion criteria are consistent

with the training group, So we randomly collected 100 stage-iii non-

small cell lung cancer patients who underwent surgery (Lobectomy

WITH mediastinal lymph node dissection and Pneumonectomy)

from January 2012 to December 2017 in Shaanxi Provincial

People’s Hospital, China.
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2.2 Data preprocessing and
feature engineering

The training data and the testing data are stored in CSV files.

Both datasets contain two types of variables in the covariates,

numerical variable and categorical variable. In the dataset, we

have 3 numerical variable fields, including regional node positive

number, regional node number examined and tumor size as well as

other 10 categorical variable features. In order to avoid the

evaluation problems via using label encoding conversion to

categorical, we converse the 10 categorical features by utilizing

one hot encoding to identify the different categorical values in the

feature in a binary fashion. To illustrate, Regarding feature surgery

on the primary site, before conversion, this field contains two values

encoded for two surgery types (Lobectomy WITH mediastinal

lymph node dissection, Pneumonectomy WITH mediastinal

lymph node dissection). After transformation, the very field will

be replaced by two surgery types, the value of the two features could

only be 0 or 1 to identify the specific surgery type. In addition, as for

feature tumor size, in the training set the unit is millimeter while in

the testing dataset, the unit is centimeter. So we divide the value in

the training set by 10 to make the unit the same. Finally, we perform

normalization in order to accelerate the training process.
2.3 Machine learning survival model design

In this section, we created three machine learning models to

perform the survival analysis to select the optimal one.

We developed a deep learning model based on DeepSurv to

predict personal hazard rate according to the patient’s current

clinical condition. From the input to output, the patient’s baseline
Frontiers in Oncology 03
data is the input to the neural network, followed by the fully-

connected hidden layers of nodes as well as a drop layer after each

hidden layer. The output of the network is the hazard rate.

Regarding the activation function of each node, in order to

overcome the problem of vanishing gradients, we select ReLU to

add nonlinearity to the model which could help the model learn the

complex relationship between covariates and the hazard rate. As for

the loss function, we train the model to minimize the average

negative log partial likelihood with regularization:

(q) = −
1

NE=1
o

i : Ei=1
ĥq(xi) − log o

j∈R(Ti)

eĥ q (xj)

 !
+ l · jjqjj22 (1)

where q is the weight of every node in the network, 1
NE=1

is the

number of dead patients and l is the l2 regularization parameter,

ĥq(x) is the predicated hazard rate. we use Adam for the gradient

descent algorithm to update the parameter of the model for lots of

epochs, because Adam is more efficient when working with

problems involving high dimensional data and requiring less

memory for optimization process compared with SGD method

(18). We utilize random Search to optimize the hyper-parameters

because compared to Grid Search, Random Search could try more

cases for important hyper-parameters. In the experiment, we

perform this on the log space of the learning rate in [0.00001,

0.1], the dropout rate in [0.2-0.5], the number of hidden layers in [1,

7] and the number of nodes in each hidden layer in [5,90].

We also trained a random forest model, this model is reliable

because it forces each split to consider only a subset of the

predictors. In this study, Random Search is still used to tune the

number of the comprising trees in [100,300], the minimum number

of samples required to split an internal node in [2,50] as well as the

minimum number of samples required to be at a leaf node in [1,20].
FIGURE 1

Diagram of the training and recommendation procedure.
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Lastly, we trained the Penalized Cox Proportional hazard model

with the same loss function as the deep learning model. we tuned

the hyperparameter by using Random Search Method, specifically,

the penalizer in [0.001,1] and the learning rate in [0.001,1].
2.4 Model training and evaluation

The concordance index(C-index) is used to measure the

performance of the model. The C-index is the ratio of pairs of

patients ordered correctly to all pairs. Thus the higher C-index, the

better performance of the model. In the study, The 4517 SEER data

records were divided into two groups, 3534(80%) records were used

for training while 883(20%) records were treated as the validation

set. The five-fold cross-validation was performed to tune the hyper-

parameters of each model and select the best model for survival

prediction. Additionally, external validation was performed on the

selected optimal model and TNM staging system and compare

the generalizability of the two models. Eventually, we performed the

attribution analysis for the deep learning survival model by the

integrated gradients (19) method based on the testing dataset to

rank the clinical feature importance.
2.5 Cloud-based adjuvant therapy
recommender system deployment

The deep learning algorithm could recommend treatment for

patients according to their current clinical conditions (20). we could

load the model and set the input according to the patient’s

demographic feature(age and gender), Surgery Type(lobectomy

and pneumonectomy), Type(histology type and laterality) and the

stage information of NSCLC(TNM, the number of the examined

regional node, the number of the positive regional node and the

tumor size). As for Adjuvant therapy, we predict the hazard rate

under four adjuvant therapy treatments (with radiation and

chemotherapy, with radiation and without chemotherapy, without

radiation and with chemotherapy, and without radiation and

chemotherapy). Then we could get the four cumulative hazard

functions under each adjuvant therapy treatment and finally derive

the four 5-year survival functions after negating and exponentiating

the cumulative hazard function. In this application, we develop the

backend code to calculate the four 5-year adjuvant therapy survival

functions and implement the UI code to display the predicated

survival functions in the line race chart.
2.6 Computation software

The three models are trained with Python v 3.9, PyTorch v

1.11.0 is used to train the deep learning algorithm and PySurvival v

0.1.2 is utilized to train the random survival forest and penalized

cox proportional hazard model. The Front UI of the adjuvant

therapy recommender system is developed with Vue.js javascript

framework and a Material Design component framework called

Vuetify. The backend code of the web application is implemented
Frontiers in Oncology 04
by the Django REST framework. The recommender system is

deployed on Tencent Cloud, which could be accessed through a

web browser.
3 Results

3.1 Patient baseline characteristics

Based on the inclusion criteria, we include 4617 stage-iii NSCLC

patients who received Surgeries (Lobectomy and Pneumonectomy

with mediastinal lymph node dissection) in this study. The 4517

patients out of 4617 are extracted from the SEER database and used

as a training set while the other 100 patients are from China

Database for model testing. The baseline medical characteristics

of the two cohorts are shown in Table 1. From the AJCC TNM

staging system’s perspective, all patients in the training set and the

testing set are stage-iii NSCLC patients. In the SEER cohort, most

patients’ histology type is Adenocarcinoma, which takes 44.28%.

The next one is Squamous cell carcinoma, which takes 23.27%.

Regarding the Received surgeries, 85.51% of patients received

Lobectomy WITH mediastinal lymph node dissection while the

rest (14.48%) accepted Pneumonectomy WITH mediastinal lymph

node dissection for treatment. Concerning Adjuvant treatment,

74.12% of patients accepted chemotherapy and about 41.88%

received beam radiation. On the contrary, in the test cohort, most

patients received Lobectomy WITH mediastinal lymph node

dissection, the two leading histology types are Squamous cell

carcinoma and Adenocarcinoma, respectively 46% and 43% of the

population. As for Adjuvant treatment, 1/3 received beam radiation

and almost everyone received chemotherapy.
3.2 Training curve and model performance

After the process of random search, we finally settled down on

the hyperparameter of the deep learning model, the model consists

of 2 hidden layers, from input to output, including 60, 43 neurons in

each layer with a dropping out unit between each layer. we improve

neural network generalization by setting the learning rate to 0.001

and 0.5 as the dropout rate to avoid overfitting. Figure 2 shows the

training loss curves of the survival network. At the beginning of the

training process, the loss of the validation and training set decreases

continually. After 331 epochs of parameter optimization, the loss of

the validation set begins at 3.6936 and stops decreasing at 3.1753

while the training loss continues to decrease from 3.3844 started at

3.8446. Then we terminate the optimization to avoid overfitting and

save the model for test.

In the random survival forest, We set the number of the

estimating trees to 959, the minimum number of samples

required to split an internal node to 10 and the minimum

number of samples required to be at a leaf node to 15. In the

Penalized Cox Proportional hazard model, we configure the

penalizer to 0.005 and the learning rate to 0.01

Then we perform 5-fold cross-validation to select the optimal

model for survival prediction. Figure 3 displays the exact value and
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TABLE 1 Main Baseline Clinical Characteristics of Patients.

Characteristic Data set, No.
(%)

Age

85+ years 60 (1.35) 0

80-84 years 242 (5.47) 0

75-79 years 530
(11.99)

2 (2.00)

70-74 years 731
(16.54)

10
(10.00)

65-69 years 891
(20.17)

14
(14.00)

60-64 year 713
(16.14)

22
(22.00)

55-59 years 573
(12.97)

22
(22.00)

50-54 years 395 (8.94) 20
(20.00)

45-49 years 171 (3.87) 6 (6.00)

40-44 years 63 (1.42) 3 (3.00)

35-39 years 25 (0.56) 1 (1.00)

30-34 years 13 (0.31) 0

25-29 years 7 (0.57) 0

20-24 years 0 (0) 0

15-19 years 3 (0.07) 0

Histologic type

Neoplasm, malignant 6 (0.13) 0

Carcinoma, NOS 11 (0.24 0

Large cell carcinoma, NOS 45 (1.01) 1 (1.00)

Large cell neuroendocrine carcinoma 40 (0.90) 0

Large cell carcinoma with rhabdoid phenotype 1 (0.02) 0

Pleomorphic carcinoma 20 (0.45) 0

Giant cell carcinoma 6 (0.13) 0

Spindle cell carcinoma, NOS 4 (0.09) 0

Pseudosarcomatous carcinoma 13 (0.29) 0

Combined small cell carcinoma 16 (0.36) 0

Non-small cell carcinoma 114 (2.58) 0

Papillary carcinoma, NOS 3 (0.06) 0

Papillary squamous cell carcinoma 2 (0.04) 0

Squamous cell carcinoma, NOS 1028
(23.27)

46
(46.00)

Squamous cell carcinoma, keratinizing, NOS 76 (1.72) 1 (1.00)

Squamous cell carcinoma, large cell, nonkeratinizing,
NOS

26 (0.58) 0

(Continued
TABLE 1 Continued

Characteristic Data set, No.
(%)

Squamous cell carcinoma, spindle cell 2 (0.04) 0

Lymphoepithelial carcinoma 4 (0.09) 0

Basaloid squamous cell carcinoma 7 (0.15) 0

Squamous cell carcinoma, clear cell type 3 (0.07) 0

Basaloid carcinoma 4 (0.09) 0

Adenocarcinoma, NOS 1956
(44.28)

43
(43.00)

Adenoid cystic carcinoma 6 (0.13) 0

Solid carcinoma, NOS 20 (0.45) 0

Carcinoid tumor, NOS 66 (1.49) 0

Neuroendocrine carcinoma, NOS 31 (0.70) 0

Atypical carcinoid tumor 31 (0.70) 0

Bronchiolo-alveolar adenocarcinoma, NOS 57 (1.29) 0

Alveolar adenocarcinoma 1 (0.02) 0

Bronchiolo-alveolar carcinoma, non-mucinous 4 (0.09) 0

Adenocarcinoma with mixed subtypes 277 (6.27) 1 (1.00)

Papillary adenocarcinoma, NOS 78 (1.76) 1 (1.00)

Clear cell adenocarcinoma, NOS 11 (0.24) 0

Mixed cell adenocarcinoma 11 (0.24) 0

Papillary microcarcinoma 1 (0.02) 0

Mucoepidermoid carcinoma 2 (0.04) 0

Mucinous adenocarcinoma 97 (2.19) 2 (2.00)

Mucin-producing adenocarcinoma 19 (0.43) 0

Signet ring cell carcinoma 5 (0.11) 0

Ductal carcinoma, micropapillary 2 (0.04) 0

Acinar cell carcinoma 162 (3.66) 0

Adenosquamous carcinoma 129 (2.92) 4 (4.00)

Adenocarcinoma with neuroendocrine
differentiation

4 (0.09) 1 (1.00

Carcinosarcoma, NOS 4 (0.09) 0

Bronchiolo-alveolar carcinoma, mucinous 7 (0.16) 0

Bronchiolo-alveolar carcinoma, mixed mucinous
and non-mucinous

4 (0.09) 0

T stage

T1 0 2 (2.00)

T1NOS 2 (0.05) 0

T1a 371 (8.40) 1 (1.00)

T1b 390 (8.83) 0

T2NOS 25 (0.56) 0

(Continued)
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TABLE 1 Continued

Characteristic Data set, No.
(%)

T2a 1162
(26.31)

35
(35.00)

T2b 353 (7.99) 15
(15.00)

T3 1285
(29.09)

27
(27.00)

T3 828
(18.74)

20
(20.00)

TX 1 (0.02) 0

N stage

N0 404 (9.14) 5 (5.00)

N1 866
(19.61)

11
(11.00)

N2 3087
(69.88)

84
(84.00)

N3 60 (1.36) 0

M stage

M0 4417
(100.00)

100
(100.00)

Sex

Female 2141
(48.47)

24
(24.00)

Male 2276
(51.52)

76
(76.00)

Radiation

Beam radiation 1850
(41.88)

34 (34.00

Combination of beam with implants or isotopes 2 (0.05) 0

None 2412
(54.60)

66 (66.00

Radiation, NOS method or source not specified 14 (0.31) 0

Recommended, unknown if administered 88 (1.99) 0

Refused 49 (1.11) 0

Radioactive implants (includes brachytherapy) 2 (0.05) 0

Chemotherapy

Yes 3274
(74.12)

95
(95.00)

No/Unknown 1143
(25.87)

5 (5.00)

Surgery to primary site

Lobectomy WITH mediastinal lymph node
dissection

3777
(85.51)

81
(81.00)

Pneumonectomy WITH mediastinal lymph node
dissection

640
(14.48)

19
(19.00)

(Continued
TABLE 1 Continued

Characteristic Data set, No.
(%)

Laterality

Left - origin of primary 1923
(43.53)

43
(43.00)

Only one side - side unspecified 1 (0.02) 0

Paired site, but no information concerning laterality 1 (0.02) 0

Paired site, but no information concerning laterality 2492
(56.41)

57
(57.00)
FIGURE 2

Diagram of the traing loss and the validation loss in the optimization
procedure. The x-axis represents the number of epoch, and the y-axis
represents value of loss function. The orange line is the validation loss
function and the blue one represents the training loss function.
FIGURE 3

The concordance index of three models for 5 fold cross validation.
The x-axis represents the number of fold, and the y-axis represents
value of concordance index for each model.
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the line chart of each model in every fold validation, the deep

learning model shows a more stable and exceptional performance

on the concordance index compared to the other two models. The

mean of the concordance index of the deep learning algorithm is

0.843, which is much higher than the random forest (0.678) and cox

proportional hazard model (0.678) (Table 2). Based on the result of

cross-validation, deep learning is selected to compare the TNM

staging system on external validation. The performance of the deep

learning model is better (0.82 vs 0.65)

As for the feature importance for the network, from the Figure 4

we can observe four of the top important features: regional positive

nodes (0.6634), regional examied nodes (-0.7648), tumor size

(-0.5633) and Age(-0.4633). In terms of least important features,

we observe that the surgery on the primary site (0.0632) is voted to

be least significant based on attribution algorithm. The absolute

value for attribution scores of other features is greater than 0.1 and

less than 0.5.

Then we perform 5-fold cross-validation to select the optimal

model for survival prediction. Figure 3 displays the exact value and

the line chart of each model in every fold validation, the deep

learning model shows a more stable and exceptional performance

on the concordance index compared to the other two models. The

mean of the concordance index of the deep learning algorithm is

0.843, which is much higher than the random forest (0.678) and cox

proportional hazard model (0.678) (Table 2). Based on the result of

cross-validation, deep learning is selected to compare the TNM

staging system on external validation. The performance of the deep

learning model is better (0.82 vs 0.65)
3.3 The adjuvant therapy
recommender system

Since the deep learning model has better performance than the

TNM staging system, we could not only predict the survival

function of the current patient but also offer an adjuvant therapy

reference to the oncology doctor based on prediction over different

therapy treatment plans. Thus we deployed the recommender

system to the Internet, which could be accessed with a browser in

[http://1.15.80.136/nsclc/], input the current clinical status,

including Demographic, surgery type, cancer type and stage

information, of one patient, and click the submit button (Figure 5).
Frontiers in Oncology 07
Then the browser will redirect to the result page (Figure 6),

and we could see four 5-year predicted survival curves for each

treatment plan. Based on the plot, the predicted optimal treatment

plan is only receiving beam radiation for adjuvant treatment, whose

survival probability is highest in the next 60 months.

Thus, the specialist could get the reference for adjuvant

treatment plan decision-making. Code related to this application

can be found at https://github.com/snowflake-Zhao/nsclc.
4 Discussion

This study provides a model that is more accurate than the

TNM staging system to predict the prognosis of the stage-iii

received resection NSCLC cancer patients in 5 years.

Additionally, the deep learning survival model is more precise

and stable than the random survival forest and cox proportional

model to predict the hazard rate of the stage-III resectable NSCLC

cancer patients. This demonstrated our first goal that the deep

learning approach is more reliable than TNM in predicting the

hazard rate. Driven by the desire to resolve the controversy on

devising adjuvant treatment plans for stage-iii received resection

NSCLC cancer patients, we did solve this problem by developing a

recommender system based on the externally validated deep

learning model. To our best knowledge, this is the first

recommender system to provide adjuvant t reatment

plans reference for stage-iii NSCLC cancer patients who

received resection.

As reported, Adeoye J, et al. have trained DeepSurv and RSF

(random survival forest) models for predicting the malignant

transformation probability of oral leukoplakia and lichenoid

lesions with (N=716) patients (21). Their exceptional results

suggest a considerable improvement of accuracy for hazard

prediction using the deep learning model when it is compared

with the Cox proportional hazard model(C-index=0.95 vs 0.83),

and RSF’s performance is much better and more stable than that of

Cox proportional hazard model(C-index=0.91 vs 0.83) in this task.

Our outcome of the experiment is consistent with their conclusion.

In another study, Huang C, et al. developed software to select

adjuvant radiotherapy and chemotherapy treatment plan according

to the corresponding output hazard rate. Our software has two

major points different from their product (22). One is the output

page for oncology specialists. Their output is just one hazard rate,

which is difficult for specialists and patients to understand. On the

contrary, we plot the four adjuvant treatments predicted survival

curves in 60 months, which is more straightforward for patients and

doctors because people could understand their probability of

survival for each adjuvant treatment plan in the 5 years. The

other point is our software could be accessed directly through the

web browser either on mobile phones, iPad or personal computers

instead of installed on the personal computer for seeking

recommendation guidance, which is not convenient for doctors

to use.

In our study, the random survival forest did not perform

well as Lin J, et al’s (C-index= 0.678 vs 0.723) (23), I think this is

mainly because the two features in the dataset after one hot
TABLE 2 Performance of the survival models to predict hazard rate of
the stage-III NSCLC patient received resection surgery.

MODEL

Cross Validation External Validation

Concordance Index
Mean

Concordance
Index

Deep Learning 0.834 0.820

Random Forest 0.678

Cox
Proportional

0.640

TNM Staging 0.650
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encoding, the Histologic type and Radiation, generate lots of

sparse variables, including Radioactive implants, Signet ring

cell carcinoma and so on, which eventually cause harm to the

formation of different estimator trees. The result that the deep
Frontiers in Oncology 08
learning model’s C-index is higher than the Cox Proportional

hazard model(C-index= 0.834 vs 0.640) meets our expectations,

mainly because deep learning could formulate the complex

relationships between clinical baseline characteristics and the
FIGURE 4

The attribution score of all input features in the deep learning model. The x-axis represents the name of the input features, and the y-axis represents
value of attribution score for each feature.
FIGURE 5

The input page of the recommender system.
FIGURE 6

The output page of the recommender system.
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patient’s hazard rate, which is more accurate than the linear

relationship assumption of the Cox proportional hazard model.

Addi t iona l ly , the deep learning model has super ior

performance than the TNM staging system(C-index= 0.82 vs

0.65) is expected, because the neural network takes in more

clinical features related to the prognosis of the patients,

including Histologic type, age, sex, tumor size and many

others, than the TNM staging system and the most important

features of the network are regional postive nodes,regional

examied nodes, tumor size and the Age, which is slightly

different from the TNM stage system, even though the T stage

value comes from the tumor size, N stage value comes form the

regional nodes, we could tell the exact detailed number of the

tumor size and the regional positive nodes could help the model

to predict the prognoses more clearly than the general value.

Besides the trained model could perform personal prognosis

prediction while the TNM staging system could only predict the

cohort prognosis. Thus, the deep learning model could possibly

substitute the TNM staging system in the future if more medical

records could be utilized for training.

In the current medical practice, there is a lack of consensus

regarding the principles of adjuvant therapy for stage-iii NSCLC

patients. For instance, According to the latest version of NCCN

Guidelines for NSCLC(Version5.2022), one major controversy is

inconsistent results among different randomized controlled trials

of stage-III NSCLC (23–26). The one reason for the inconsistent

results among different randomized controlled trials is the RCT

lacks external validity (27), which means there might be neglected

features that are effective for the prognosis. Because the externally

validated deep learning model could include lots of features might

related to the prognosis and be sensitive to the different inputs, the

model could output the hazard risk of the different treatment

plans, then the optimal plan could be obtained by comparing the

output of different treatments. In our adjuvant recommendation

system, we could obtain the reliable and accurate hazard rate for

4 adjuvant treatment plans from the developed externally

validated model. To visualize the outcome, after mathematic

transformation, the predicated survival curves for 4 treatment

plans are displayed on the Web User Interface. Because of the

significant prognostic benefit of following the treatment

recommendation which clearly outweighs those who don’t, the

recommendation system is promising to serve as a dependable

tool for decision-making on the adjuvant treatment plan for each

stage-iii NSCLC patient.

From the results of our experiment, the deep learning model

performs well in the survival analysis task. However, the model is

lacking in explainability owing to the high complexity inside the

neural network, which is not realistic to explain the process to

humans. If we want to extensively apply the deep learning

algorithm in the decision-making of the NSCLC, we definitely

need to improve the explainability of the model (28–30). we

could incorporate the causal inference ideas in designing

inherently interpretable models by adding sample reweighting

technique into the loss function to compare the performance

with our deep learning result in the future (31–34). Even though

the SEER database has numerous NSCLC patient’s medical
Frontiers in Oncology 09
records, the database could record more detailed attributes in

three aspects, including 1) resection information in detail, like

resection status (R0/R1/R2) 2)detailed information related to

beam radiation, for instance, total dose and dose per fraction 3)

further information relevant to chemotherapy on drugs

and dosage.
5 Conclusions

To our best knowledge, this study is the first to research the

performance of a deep learning network and random forest in

resected Stage-III NSCLC and obtain satisfactory results in survival

prediction. In addition, the recommendation system for adjuvant

therapy based on the deep learning model will be likely applied to

offer recommendation reference to the specialist in the

clinical practice.
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