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The causal association between
obesity and gastric cancer
and shared molecular
signatures: a large-scale
Mendelian randomization
and multi-omics analysis
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Li Yu4* and Kefeng Li1*

1Centre for Artificial Intelligence Driven Drug Discovery, Faculty of Applied Sciences, Macao
Polytechnic University, Macao, Macao SAR, China, 2Bioinformatics Department, Guangzhou AoCe
Medical Technology Co. Ltd., Guangzhou, China, 3Department of Endocrine Rehabilitation, Affiliated
Hospital of Liaoning University of Traditional Chinese Medicine, Shenyang, China, 4Department of
Oncology, Shengjing Hospital of China Medical University, Shenyang, China
Purpose: While observational studies have identified obesity as a potential risk

factor for gastric cancer, the causality remains uncertain. This study aimed to

evaluate the causal relationship between obesity and gastric cancer and identify

the shared molecular signatures linking obesity to gastric cancer.

Methods: A two-sample Mendelian randomization (MR) analysis was conducted

using the GWAS data of body fat percentage (exposure, n = 331,117) and gastric

cancer (outcome, n = 202,308). Bioinformatics and meta-analysis of multi-

omics data were performed to identify key molecules mediating the causality.

The meta-analysis of the plasma/serum proteome included 1,662 obese and

3,153 gastric cancer patients. Obesity and gastric cancer-associated genes were

identified using seven common gene ontology databases. The transcriptomic

data were obtained from TCGA and GEO databases. The Bioinformatic findings

were clinically validated in plasma from 220 obese and 400 gastric cancer

patients across two hospitals. Finally, structural-based virtual screening (SBVS)

was performed to explore the potential FDA-approved drugs targeting the

identified mediating molecules.

Results: The MR analysis revealed a significant causal association between obesity

and gastric cancer (IVW, OR = 1.37, 95% CI:1.12-1.69, P = 0.0028), without

pleiotropy or heterogeneity. Bioinformatic and meta-analysis of multi-omics

data revealed shared TNF, PI3K-AKT, and cytokine signaling dysregulation, with

significant upregulation of AKT1, IL-6, and TNF. The clinical study confirmed

widespread upregulation of systemic inflammatory markers in the plasma of

both diseases. SBVS identified six novel potent AKT1 inhibitors, including the

dietary supplement adenosine, representing a potentially preventive drug with

low toxicity.
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Conclusion: Obesity causally increases gastric cancer, likely mediated by

persistent AKT1/IL-6/TNF upregulation. As a potential AKT1 inhibitor, adenosine

may mitigate the obesity-to-gastric cancer transition. These findings could

inform preventive drug development to reduce gastric cancer risk in obesity.
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1 Introduction

With the rapid development of the social economy, improved

living standards, and changes in living habits, the number of obese

people is increasing globally. According to a recent World Health

Organization (WHO) report, 39% of adults aged 18 years and over

were overweight in 2016, and 13% were obese worldwide (1).

Obesity is recognized as a chronic, progressive disease requiring

long-termmanagement (2). Compared to those with normal weight,

individuals who are overweight and obese are more likely to develop

a number of potentially serious health conditions, including type 2

diabetes mellitus, nonalcoholic fatty liver disease, hypertension,

myocardial infarction, stroke, dementia, osteoarthritis and

obstructive sleep apnea (3–6).

In recent years, cancers associated with overweight and obesity

have also beennoticed. It has been reported that obesitymight increase

the incidence of several types of cancer (7–10), including gastric,

colorectal, bladder, liver, kidney, pancreatic, and breast cancers.

Furthermore, obesity and overweight are associated with increased

risks of cancer mortality (11). Unlike other cancer types, for gastric

cancer specifically, the relationship remains controversial andnot fully

understood. While some cohort studies have indicated a positive

association between high body mass index (BMI) and increased

gastric cancer risk (12–14), others found no statistically significant

relationship (15). In the past few years, systematic reviews addressing

theBMI-gastric cancer linkhave yielded inconsistent results (16, 17).A

meta-analysis published in 2023 suggested a positive association

between excess body weight and the risk of gastric cancer (18).

However, it remains uncertain whether the observed association

reflects a direct causal effect of BMI on gastric carcinogenesis, or

stems from confounding or biases inherent in conventional

epidemiological studies. For instance, the observational BMI-cancer

association may be biased by smoking, and diet, which can

independently influence both BMI and cancer risk (8).

Mendelian randomization (MR) utilizes genetic variants as

instrumental variables to make causal inferences between

exposures and outcomes. Since genotype is presumed to be

randomly allocated at conception, confounding factors are

anticipated to distribute equally among different genotypes.

Therefore, compared to traditional observations and randomized

controlled trials, MR reduces the issues of potential confounding,

reverse causation, and feasibility (19). To date, MR has been

employed to investigate the potential causal relationships between
02
obesity and a variety of diseases, including obesity (20),

cardiovascular diseases (21), depression (22) and thyroid cancer

(23). A prior small-scale MR study with limited BMI-related single

nucleotide polymorphisms (SNPs) (<50) suggested putative gastric

cancer risk from obesity (24). However, large-scale MR

incorporating more exposure and outcome genetic variants is

warranted to reliably determine causality.

Furthermore, the underlying mechanisms that causally increase

the risk of gastric cancer in obese patients and the potential

pharmaceutical interventions have not been fully explored.

Existing research indicates that several obesity-related risk factors

and certain signaling pathways are hypothesized to play important

roles in the inception and progression of cancers (25). Nonetheless,

the biological mechanisms and the relationships involving obesity

and gastric cancer are intricate and remain largely unclear. This

complexity is reflected in an array of influencing factors, including

obesity-associated hormones and adipokines, growth factors,

energy balance regulation, inflammatory processes, and multiple

signaling pathways that affect cancer progression (26, 27). Possible

mechanisms linking obesity with gastric cancer encompass obesity-

associated insulin resistance, abnormally elevated blood levels of

insulin-like growth factor (IGF), and associated levels of adipokines

such as adiponectin (APN), leptin, steroid hormones and cytokines.

Each of these elements alters the nutritional milieu, potentially

fostering an environment conducive to tumor initiation and

progression (28).

To address the aforementioned gaps, in this study, we

conducted a large-scale, two-sample MR analysis to explore the

causal association between obesity and gastric cancer using the

genome-wide association analysis (GWAS) data from 202,308 East

Asian individuals and 8,885,324 SNPs (Gastric cancer).

Furthermore, integrated bioinformatics and meta-analyses of

multi-omics data were performed to identify the key molecular

signatures connecting obesity to elevated gastric cancer risk. A

retrospective multi-center cohort study was then conducted to

validate the in silico meta-analysis and bioinformatics. Finally,

structure-based virtual docking analysis was performed to screen

the potential FDA-approved drugs that target the mediating

molecules, which may mitigate the obesity-to-gastric cancer

transition therapeutically. This multifaceted study elucidates

putative causal mechanisms underlying obesity-associated gastric

cancer and nominates targeted therapeutic strategies to reduce

gastric cancer incidence in obese populations.
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2 Materials and methods

2.1 Mendelian randomization analysis

The GWAS summary statistic data for body fat percentage (n =

331,117) and gastric cancer (n = 202,308) were obtained from

previously published studies (29) and used as exposure and

outcome datasets, respectively. All included GWAS had F-

statistics > 10, satisfying MR assumptions.

The SNPs associated with the exposures at genome-wide

significance (P < 5 × 10−8) were selected as instrumental variables

(IVs). To ensure the independence, IVs were pruned for linkage

disequilibrium using LD clumping (r2 < 0.001, distance 10,000 kb).

To investigate the causality between obesity and gastric cancer, the

random-effect inverse variance weighted (IVW) method was

utilized as the primary analysis in the MR analyses. We

performed the Cochran Q test to assess the heterogeneity. To

evaluate the robustness of the MR estimates, we also compared

the IVW estimation with other MR models, including maximum

likelihood, and MR-Egger regression. We also utilized the intercept

term derived fromMR-Egger to assess the horizontal pleiotropy. All

MR analyses were conducted with the “TwoSampleMR” and

“Mendelian Randomization” packages in the R software

(version 4.3.1).
2.2 Meta-analysis of the
plasma/serum proteome

Search strategy: The present meta-analysis followed the

guidelines of the PRISMA 2020 Statement. We performed a

comprehensive literature search of articles through PubMed

without date limitation. Searches were updated to May 17, 2023

without language restrictions. The main search terms for obesity

were as follows: Obesity AND (plasma OR blood OR serum) AND

(proteomics OR proteome). The search terms for gastric cancer

were “stomach neoplasms”[MeSH Terms] OR “Neoplasm,

Stomach” OR “Stomach Neoplasm” OR “Neoplasms, Stomach”

OR “Gastric Neoplasms” OR “Gastric Neoplasm” OR “Neoplasm,

Gastric” OR “Neoplasms, Gastric” OR “Cancer of Stomach” OR

“Stomach Cancers” OR “Gastric Cancer” OR “Cancer, Gastric” OR

“Cancers, Gastric” OR “Gastric Cancers” OR “Stomach Cancer”

OR “Cancer, Stomach” OR “Cancers, Stomach” OR “Cancer of the

Stomach” OR “Gastric Cancer, Familial Diffuse”) AND (plasma OR

blood OR serum) AND (proteomics OR proteome).

Inclusion and exclusion criteria: The inclusion criteria for

selecting the studies for this meta-analysis were as follows (1):

proteomic analysis of obese/gastric cancer patients (2), plasma/

serum samples (3), case-control comparison, and (4) All study

designs. The exclusion criteria were (1): animal studies (2),

unidentified proteins, and (3) meta-analyses, meeting abstracts,

letters to the editor, case reports, and reviews. The flow charts of

the meta-analysis selection process are listed in Figures S1, S2.

Data extraction and synthesis: Two authors (AX and H.H.Y.T)

independently evaluated all possible articles and extracted relevant
Frontiers in Oncology 03
information. Any disagreements were resolved by a third author

(X.Z). The extracted data from each study included sample sizes,

significantly altered protein names/UniProt IDs, fold changes (FC,

case/control), adjusted P values, and the area under the receiver

operating characteristic (ROC) curve (AUROCs). This information

can be found in Tables S1, S2. We performed cross-data quality

checks between reviewers at each step and reviewed all the

references included after constructing the dataset.

Meta-analysis: To perform the meta-analysis, we standardized

the effect size for each protein to fold change (Case/control) and

only included proteins with FDR adjusted P values < 0.05 for the

analysis. Gene IDs (Entrez IDs) were converted from protein

Uniport IDs using HGNC (https://www.genenames.org/).

Pathway enrichment analysis was conducted using DataVis

Builder (http://bioinformatics.vip), and the interactome of the

enriched pathways was visualized through Cytoscape 3.10.0.

Higgins I-squared (I2) statistic was used to assess the

heterogeneity across the included studies. A random-effect meta-

analysis was used for I2>50%, otherwise a fixed-effect model was

performed. Meta-analysis was performed in Stata 17.0, and forest

plots were created.
2.3 Identification of obesity and gastric
cancer associated genes

First, the MeSH IDs for obesity (MeSH ID: D009765) and

gastric cancer (MeSH ID: D013274) were obtained from NCBI.

Next, Corresponding keywords were identified using the MeSH

database: Obesity: D009765, Adiposity, Adiposis; Gastric cancer:

D013274, Stomach Neoplasm, Stomach Carcinoma, Stomach

Cancer, Gastric Neoplasm, Gastric Cancer, Gastric Carcinoma.

Disease-associated genes were retrieved from CTD, TTD, OMIM,

GeneCards, MalaCards, DisGeNET and DrugBank using the

keywords, from each database’s release to May 25, 2022.

The retrieved disease-associated genes were then filtered as

follows: CTD: InferenceScore ≥ 50, GeneCards and MalaCards:

Score ≥ 10 in GeneCards and MalaCards databases, and DisGeNET:

Score ≥ 0.3. After conversion to gene IDs using UniProt and Entrez,

duplicated and invalid entries were removed. Genes with ≥4

occurrences were retained.
2.4 Construction of obesity and gastric
cancer gene interaction networks

Disease-associated genes identified in the previous step were

used as seed genes to construct interaction networks. Protein-

protein and gene-regulatory interactions were obtained from

HPRD, BioGRID, and KEGG. For HPRD, direct interactors of

seed genes were selected to build a background disease network. In

BioGRID, interactions with ≥2 counts were retained as the

background network. From KEGG, protein-protein (PPrel) and

gene expression (Gerel) interactions were integrated. The Jaccard

indexwas used to assess the similarity and diversity of two gene
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interaction networks. It is calculated as the intersection size divided

by the union size (J = |A∩B|/|A∪B|).
Cytoscape v3.9.1 and the jActiveModules plugin were used to

mine bioactive modules from the integrated obesity-gastric cancer

network (NHOGC). Differentially expressed genes (DEGs) from

obesity (GSE9624) and gastric cancer (GSE54129, GSE29998) GEO

datasets were integrated into NHOGC. The top 5 bioactive modules

per dataset were merged into independent active networks for each

disease. The networks were then analyzed using Cytoscape MCODE

plugin (Degree Cutoff = 2, Node Score Cutoff = 0.2, K-Core = 2,

Max. Depth = 100) to identify molecular complexes.
2.5 Analysis of AKT1, IL-6, TNF gene
expression, and associated pathways in
obesity and gastric cancer

GEO database: Microarray gene expression data were collected

from GEO for obesity and gastric cancer. Inclusion criteria were (1):

human case-control studies (2); gene expression profiling (3), ≥3

case and control samples per study (4), detailed methods and probe

annotation files. After screening, the following datasets were

selected: one dataset for obesity (GSE9624) and two datasets for

gastric cancer (GSE54129, and GSE29998). Further details can be

found in Supplementary Material/Method.

TCGA database: TCGA clinical data was used to categorize

samples into the obese (BMI ≥ 30, n = 113) and the normal weight

(18.5 < BMI ≤ 24.9, n = 96) groups. For gastric cancer, Level 3 RNA-

seq data was downloaded from UCSC XENA (https://

xenabrowser.net/datapages/). A total of 417 samples were

obtained, including 380 gastric cancer and 37 adjacent normal

tissues. Patients without BMI values were excluded (see details in

Supplementary Material/Method).
2.6 Multi-center, retrospective clinical
cohort validation

To validate the results of our meta-analysis and bioinformatic

analysis, we conducted a retrospective cohort study using data from

two hospitals: Shengjing Hospital of China Medical University (SJH)

and Affiliated Hospital of Liaoning University of Traditional Chinese

Medicine (LUTCMH). The study protocols were approved by the

respective Institutional ReviewBoards (IRBs) (SJH IRB # sj-2023-c411

and LUTCMH IRB # LUTCM-Endo-20230122).

Inclusion criteria were untreated obesity/gastric cancer patients

aged 18-85 years at these centers between June 2020-June 2023.

Exclusion criteria were co-existing diseases, prior treatment, or

pregnancy. A total of 220 obesity and 400 gastric cancer patients

were enrolled (80 obesity, and 290 gastric cancer from SJH).

Medical records were reviewed to extract baseline complete blood

count (CBC), and analyzed the following systematic inflammatory

markers: white blood cell count (WBC), percentage of neutrophils

(%NEUT), percentage of eosinophils (%EOS), percentage of

basophils (%BASO); percentage of monocytes (%MONO),

percentage of lymphocytes (%LYMPH), neutrophil count
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(#NEUT), eosinophil count (#EOS), basophil count (#BASO),

monocyte count (#MONO), lymphocyte count (#LYMPH), red

blood cell count (RBC), hemoglobin (HGB), hematocrit (HCT),

mean corpuscular volume (MCV), mean corpuscular hemoglobin

(MCH), mean corpuscular hemoglobin concentration (MCHC), red

cell distribution width coefficient of variation (RDW-CV), red cell

distribution width standard deviation (RDW-SD), platelet count

(PLT), platelet crit (PCT), mean platelet volume (MPV), platelet

distribution width (PDW), platelet large cell ratio (P-LCR). All

participants provided written informed consent prior to

blood collection.
2.7 Structure-based virtual screening

To identify the compounds with the favorable interaction with

the AKT1, the 3D crystal structure of AKT1(PDB ID: 3MV5) was

used for docking-based virtual screening. Through molecular

docking simulation of the binding pocket of AKT1, 1729 FDA

approved drugs were screened. Protein preparation: The AKT1

structure was prepared using the Schrödinger Protein Preparation

Wizard (Schrödinger, LLC, New York, NY) by removing water

molecules, optimizing bonds, and adding hydrogens. Ligand

preparation: All FDA-approved ligands were prepared using the

LigPrep module in the Schrödinger package to generate the

stereoisomers of each ligand. Receptor grid generation: The AKT1

binding site grid was defined using Schrödinger’s Receptor Grid

Generation. Molecular docking: Prepared ligands were docked

using Schrödinger’s SP docking protocol. Docking poses were

ranked by docking score. All docking results were sorted from the

lowest to highest of the docking score. Validation: The co-

crystallized inhibitor was re-docked into the AKT1 site to

evaluate binding reproducibility. Visualization of docking results

was performed by PyMOL.
2.8 Statistical analysis

Adult BMI classifications were: underweight (<18.5 kg/m2),

normal weight (18.5 to 24.9 kg/m2), overweight (25 to 29.9 kg/

m2), and obese (≥30 kg/m2). Data are presented as mean ± standard

deviation (SD) or median and interquartile range (IRQ), depending

on the distribution. Differences between obesity and gastric cancer

groups were analyzed using either Student’s t-test or the Mann-

Whitney U test. The proportions between the two groups were

compared using the two-proportion z-test. All statistical analyses,

unless otherwise specified, were conducted using R version 4.3.1. A

P < 0.05 was considered statistically significant.
3 Results

3.1 Overview of the study design

The overview of the study design for this work is shown in

Figure 1. Briefly, we first conducted Mendelian randomization
frontiersin.org

https://xenabrowser.net/datapages/
https://xenabrowser.net/datapages/
https://doi.org/10.3389/fonc.2023.1091958
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xing et al. 10.3389/fonc.2023.1091958
analysis to explore the causal relationship between obesity and

gastric cancer. To identify the molecular mechanisms linking

obesity to gastric cancer, we performed the bioinformatic analyses

and meta-analyses of multi-omics data. For the proteome, we meta-

analyzed all published proteomics studies to characterize and

compare the alternations in the plasma/serum proteome between

patients with obesity and gastric cancer. At the genomic level, we

leveraged seven major gene ontology databases to pinpoint obesity-

and cancer-associated genes. Transcriptomic data from TCGA and

GEO databases were analyzed to delineate shared dysregulated gene

expression profiles in gastric cancer and obesity. Furthermore, the

bioinformatics and meta-analysis findings were validated using

multi-center, retrospective clinical cohorts. Finally, structural-

based virtual screening (SBVS) was implemented to explore

prospective FDA-approved drugs targeting the identified putative
Frontiers in Oncology 05
mediating molecules, which may prevent the transition from

obesity to gastric cancer.
3.2 MR analysis of body fat percentage on
gastric cancer risk

In total, 24,630 genetic variants associated with body fat

percentage reached genome-wide significance (P <5×10−8)

(Figure 2A). of these, 261 SNPs were selected as the IVs (Table

S3). The F-statistics for the IVs ranged from 17.15036 to 248.93198,

all exceeding 10, indicating the IVs were not biased by weak

instruments (Table S4).

The IVW analysis showed that the genetic changes in the body

fat percentage were statistically associated with the risk of gastric
FIGURE 1

The overall design of this study.
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cancer (OR =1.37, 95% CI: 1.12-1.69, P = 0.0028, Figure 2B), with

no evidence of heterogeneity among IVs (Q = 239.7314, P = 0.1385).

The causality between body fat percentage and gastric cancer

was also confirmed by other MR models, including the MR-Egger

(bootstrap) (OR = 1.71, 95% CI: 1.19-2.45, P = 0.004), and

maximum likelihood [OR = 1.39, 95% CI: 1.13-1.69, P = 0.0015)

(Figure 2B). The scatter plot and trend line showed the consistent

trend of causal relationship between obesity and gastric cancer for

all three MR models (Figure 2C). The MR Egger test showed no

indication of horizontal pleiotropy (P = 0.39).
3.3 The shared genes associated with
obesity and gastric cancer

The disease-associated genes related to obesity and gastric

cancer were explored across seven major gene ontology databases,

including CTD, TTD, OMIM, GeneCards, MalaCards, DisGeNET,

and DrugBank. After sorting, ID conversion, and removing the

duplicates and invalid values, we identified 1,712 obesity-related

genes and 1,669 gastric-cancer-related genes. The overlap of these

genes between databases for each disease is shown in Figures 3A, B.

We observed variability in the content and number of relevant

genes curated across databases. To address this issue, we focused on

high-confidence genes appearing in ≥4 databases concurrently for

subsequent analyses. This yielded 57 target genes associated with

obesity and 63 with gastric cancer. Among these, 3 genes - AKT1,
Frontiers in Oncology 06
IL-6, and TNF - were shared between the obesity and gastric cancer

sets (Figure 3C).
3.4 The shared gene interaction networks
in obesity and gastric cancer

Using the disease-associated genes from section 3.3, we

constructed obesity and gastric cancer gene interaction networks

using three major gene interactome databases: HPRD, BioGRID,

and KEGG. The obesity network comprised 732, 976, and 1,044

edges in HPRD, BioGRID, and KEGG, respectively (Figure S5A).

The gastric cancer network contained 2,151, 4,681, and 2,386 edges,

respectively (Figure S5B). Integrating both networks yielded a

combined human obesity-gastric cancer network (NHOGC)

(Figure S5C). Interestingly, strong associations existed between

the diseases at interaction network level, with the Jaccard

similarity coefficients of 23.5% for nodes and 6.1% for edges.

To better understand the modularity in biological networks and

explore their biological functions, we integrated gene expression

data from transcriptomic analysis with NHOGC to create bioactive

subnetworks for obesity and gastric cancer. The resulting active

disease networks contained 1,338 nodes and 2,685 edges for obesity

(Figure S6A) and 3,045 nodes and 5,947 edges for gastric cancer

(Figure S6B), respectively. We further used the MCODE plugin in

Cytoscape to identify the highly interconnected regions (clusters) in

the constructed bioactive gene interaction networks of obesity and
A

B

C

FIGURE 2

The results of MR analysis. (A) Manhattan plot showing distribution of p-values from genome-wide association study of body fat percentage (ukb-a-
264). (B) Forest plot of MR analysis of the body fat percentage and gastric cancer. (C) Individual estimates about the causal effect of Body fat
percentage on Gastric Cancer. The X-axis shows the single nucleotide polymorphism (SNP) effect and standard error (SE) on each of the 261 body
fat percentage SNPs. The Y-axis shows the SNP effect and SE on gastric cancer. Analyses were conducted by using the conventional IVW, MR-Egger
(bootstrap), Maximum likelihood. The slope of each line corresponding to the estimated MR effect per method.
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gastric cancer. These clusters often play critical roles in biological

systems. We identified six highly interconnected gene clusters for

obesity (Figure 4A) and six gastric cancer-related gene clusters

(Figure 4B). Strikingly, 36.8% of obesity and 39.7% of cancer genes

from Section 3.2 fell within these highly connected clusters, with

substantial overlap between diseases. For instance, the obesity

cluster 1 contained ten cancer-linked genes (Figure 4A).

Reciprocally, cancer clusters included obesity genes (Figure 4B).

Crucially, AKT1, IL-6, and TNF were present in the active gene

interaction clusters of both diseases.
3.5 Analysis of AKT1, IL-6, and TNF
gene expression in obesity and
gastric cancer transcriptomics

At the transcriptomic level, we observed significantly increased

expression of AKT1 in both the omental adipose tissue from obese

patients and the tumor tissue of gastric cancer patients compared to

their respective controls (Figures 4C–G). However, some heterogeneity

was noted for IL-6 and TNF expression across cohorts, possibly due to

differences in subject enrollment criteria and experimental conditions.
Frontiers in Oncology 07
3.6 Meta-analysis of plasma/serum
proteomics reveals shared alterations
in obesity and gastric cancer

We performed a systematic meta-analysis of plasma/serum

proteomics studies in obesity and gastric cancer. For obesity, 13

studies were included (n=1662, Figure S1). For gastric cancer, 28

studies were analyzed (n=3153, Figure S2). Tables S1, S2 provides

the essential characteristics of the studies included in our analysis.

In obesity, 161 differentially expressed proteins were identified,

mapping to 21 significantly enriched pathways (≥3 proteins/

pathway) (Figure S3A). In gastric cancer, 158 proteins across 14

pathways were altered (Figure S3A and Table S2). Of these, 43

proteins were commonly differentially expressed in both obesity

and gastric cancer (Figure S3B). Notably, 43 dysregulated proteins

overlapped between diseases, largely mapping to inflammation and

immune pathways like TNF, PI3K-AKT, and cytokine signaling

(Figures S3C, S4).

We examined the combined fold changes (FC) of the shared

pathways in obesity and cancer versus controls. In obesity, PI3K-

AKT (FC 2.76, 95% CI: 0.87-4.65), inflammatory cytokines (FC

2.60, 95% CI: 1.61-3.59), and TNF signaling (FC 1.29, 95% CI: 0.75-
A B

C

FIGURE 3

The shared disease-associated genes between obesity and gastric cancer across seven common gene annotation databases. (A) The obesity-
associated genes across seven gene annotation databases. (B) The gastric cancer-associated genes among seven common gene databases. (C) The
shared disease-associated genes between obesity and gastric cancer.
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1.62) were upregulated (Figure 5A). Similarly, these pathways were

overexpressed in gastric cancer - PI3K-AKT (FC 1.23, 95% CI: 1.01-

1.44), inflammatory cytokines (FC: 1.49, 95% CI: 1.33-1.65), TNF

signaling (FC 1.36, 95% CI: 1.14-1.57) (Figure 5B).
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3.7 Multi-center clinical cohort validation

To validate the meta-analysis and bioinformatics findings, a

retrospective multi-center cohort study was conducted. 220
A

B

D E F GC

FIGURE 4

The highly interconnected modules in active gene interaction networks of obesity (A) and gastric cancer (B). The data were obtained from publicly available
databases, including TCGA (C, E), GEO (D, F, G), For obesity, the overall fold changes (FCs) of the protein expression levels in three signaling pathways were
meta-analyzed using the proteomics data from plasma/serum (A), while gene expression analysis was performed using omental adipose tissue (C, D). For
gastric cancer, the overall fold changes of protein expression in three signaling pathways were meta-analyzed using the proteomics data from plasma/serum
(B), and gene expression analysis was performed using tumor tissue samples (E–G). Statistical significance was determined using the student’s t-test or
Mann-Whitney U test, with *P < 0.05, **P < 0.01, and ***P < 0.001 denoting significance levels. The MCODE plugin in Cytoscape was used to identify the
highly interconnected regions (clusters) in the constructed bioactive gene interaction networks of obesity and gastric cancer. These clusters often play critical
roles in biological systems. NS means not significant.
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obesity and 400 gastric cancer patients were enrolled across two

hospitals (Table 1). We examined complete blood count markers

to assess shared chronic inflammation and immune activation in

both diseases. Notably, widespread abnormalities were observed

in inflammatory markers including monocyte percentage, white

blood cell count, and basophil count in whole blood of obesity

and gastric cancer groups (Figures 6A, B). Overall, the clinical
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data corroborated the presence of shared chronic inflammation

and immune activation in obesity and gastric cancer evident

across multi-omics layers - from genes and networks to

expression and plasma proteins. The collective multi-level

evidence points to interconnected inflammatory and immune

dysregulation in the pathophysiological links between obesity

and gastric cancer risk.
A

B

FIGURE 5

The differential gene and protein expression of PI3K-AKT signaling pathway, inflammatory cytokines pathway, and TNF signaling pathway between
obesity and gastric cancer compared with the normal controls. The data were obtained from a meta-analysis of the published studies [(A, B), the
inclusion flowchart is listed in Figures S1 and S2].
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3.8 Results of structural-based
virtual docking

A total of 1729 FDA approved drugs were docked against the

target protein AKT1 and ranked from the lowest to highest docking

scores (Table S5). The top 6 compounds with the most favorable

(lowest) docking scores were selected for further analysis

(Figures 7A–F). These included Nelfinavir, Remdesivir,

Baricitinib, Baricitinib phosphate, Adenosine, and Ruxolitinib

phosphate (Table 2). To elucidate binding mechanisms, protein–

ligand interaction analysis was conducted for the 6 top-ranking
Frontiers in Oncology 10
compounds using PyMOL visualization. The analysis revealed key

interactions with Asp292, Glu234, Ala230, Glu228, Arg4, and other

residues (Figure 7). Of note, the dietary supplement adenosine was

among the top hits, representing a potentially preventive drug

candidate with low toxicity.
4 Discussion

In the current study, we utilized genetic variants from large-

scale GWAS datasets in a two-sample MR analysis to demonstrate a
TABLE 1 Patient characteristics in the independent clinical validation study.

Patient characteristics Obesity (n = 220) Gastric cancer (n = 400) P value

Gender, male (%) 160 (72.7%) 300 (75%) 1.00

Age (median [IQR]) 48.0 [40.0, 54.5] 65.0 [57.0, 69.3] 0.042

BMI (mean ± SD) 32.9 ± 7.5 23.4 ± 5.8 0.003

WBC (median [IQR]) 7.56 [6.48, 7.79] 6.52 [5.45, 8.05] 0.302

%NEUT (median [IQR]) 57.7 [55.4, 61.7] 64.4 [55.1, 70.9] 0.154

%EOS (median [IQR]) 2.1 [1.2, 2.4] 1.5 [1.0, 2.2] 0.374

%BASO (mean ± SD) 0.62 ± 0.40 0.60 ± 0.29 0.917

%MONO (median [IQR]) 6.9 [4.9, 7.9] 7.5 [6.2, 9.2] 0.223

%LYMPH (median [IQR]) 32.5 [27.4, 36.3] 23.3 [19.9, 32.4] 0.047

#NEUT (median [IQR]) 4.65 [3.38, 5.08] 4.50 [2.70, 5.35] 0.836

#EOS (mean ± SD) 0.15 ± 0.07 0.12 ± 0.09 0.414

#BASO (mean ± SD) 0.04 ± 0.02 0.02 ± 0.04 0.110

#MONO (median [IQR]) 0.52 [0.40, 0.58] 0.50 [0.40, 0.60] 0.771

#LYMPH (median [IQR]) 2.42 [1.95, 2.64] 1.50 [1.17, 2.02] 0.004

RBC (mean ± SD) 4.93 ± 0.62 4.30 ± 0.92 0.067

HGB (mean ± SD) 148.3 ± 19.7 109.7 ± 41.9 0.012

HCT (median [IQR]) 45.0 [40.3, 46.7] 38.6 [34.8, 42.6] 0.063

MCV (median [IQR]) 88.9 [86.8, 90.5] 86.3 [81.8, 89.2] 0.295

MCH (median [IQR]) 30.0 [28.6, 31.2] 28.8 [26.9, 30.7] 0.601

MCHC (mean ± SD) 339.9 ± 13.7 284.3 ± 42.4 0.001

RDW-CV (mean ± SD) 12.9 ± 0.87 16.5 ± 3.84 0.009

RDW-SD (mean ± SD) 41.4 ± 2.5 49.8 ± 7.80 0.006

PLT (median [IQR]) 220.0 [207.5, 301.5] 312.5 [253.0, 379.5] 0.433

PCT (median [IQR]) 0.22 [0.21, 0.27] 0.26 [0.18, 0.23] 0.512

MPV (median [IQR]) 9.85 [8.72, 10.5] 9.73 [8.58, 10.7] 0.347

PDW (mean ± SD) 13.5 ± 2.94 9.73 ± 0.25 0.057

P-LCR (median [IQR]) 23.9 [15.6, 29.2] 25.1 [14.7, 27.6] 0.714
fro
Data are mean ± standard deviation (SD) or median and interquartile range (IRQ) depending on the distribution. Differences between obesity and gastric cancer groups were analyzed using
either Student’s t-tests or Mann–Whitney U tests. The proportions between the two groups were analyzed using the two-proportion z-test. P < 0.05 was statistically significant.
BMI, Body Mass Index; WBC, White Blood Cell Count; %NEUT, Percentage of Neutrophils; %EOS, Percentage of Eosinophils; %BASO, Percentage of Basophils; %MONO, Percentage of
Monocytes; %LYMPH, Percentage of Lymphocytes; #NEUT, Neutrophil Count; #EOS, Eosinophil Count; #BASO, Basophil Count; #MONO, Monocyte Count; #LYMPH, Lymphocyte Count;
RBC, Red Blood Cell Count; HGB, Hemoglobin; HCT, Hematocrit; MCV, Mean Corpuscular Volume; MCH, Mean Corpuscular Hemoglobin; MCHC, Mean Corpuscular Hemoglobin
Concentration; RDW-CV, Red Cell Distribution Width Coefficient of Variation; RDW-SD, Red Cell Distribution Width Standard Deviation; PLT, Platelet Count; PCT, Platelet Crit; MPV, Mean
Platelet Volume; PDW, Platelet Distribution Width; P-LCR, Platelet Large Cell Ratio.
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A B

FIGURE 6

The shared upregulation of systematic inflammatory markers between obesity and gastric cancers was validated by a multi-center clinical study.
(A) Abnormal inflammation parameters in patients with obesity (n = 220). (B) Abnormal inflammation parameters in patients with gastric cancer (n =
400). A total of 220 patients with obesity and 400 patients with gastric cancer were enrolled in two centers. The number of patients with abnormal
systemic inflammatory markers in the complete blood cell count (CBC) was analyzed. WBC, White Blood Cell Count; %NEUT, Percentage of
Neutrophils; %EOS, Percentage of Eosinophils; %BASO, Percentage of Basophils; %MONO, Percentage of Monocytes; %LYMPH, Percentage of
Lymphocytes; #NEUT, Neutrophil Count; #EOS, Eosinophil Count; #BASO, Basophil Count; #MONO, Monocyte Count; #LYMPH, Lymphocyte
Count; RBC, Red Blood Cell Count; HGB, Hemoglobin; HCT, Hematocrit; MCV, Mean Corpuscular Volume; MCH, Mean Corpuscular Hemoglobin;
MCHC, Mean Corpuscular Hemoglobin Concentration; RDW-CV, Red Cell Distribution Width Coefficient of Variation; RDW-SD, Red Cell Distribution
Width Standard Deviation; PLT, Platelet Count; PCT, Platelet Crit; MPV, Mean Platelet Volume; PDW, Platelet Distribution Width; P-LCR, Platelet
Large Cell Ratio.
A B

D E F

C

FIGURE 7

Molecular docking analysis of the top six ligands against the target protein AKT-1. (A) Surface interaction and molecular interaction of Nelfinavir in
the active binding site of the AKT-1 protein. (B) Surface interaction and molecular interaction of Remdesivir in the active binding site of the AKT-1
protein. (C) Surface interaction and molecular interaction of Baricitinib in the active binding site of the AKT-1 protein. (D) Surface interaction and
molecular interaction of Baricitinib phosphate in the active binding site of the AKT-1 protein. (E) Surface interaction and molecular interaction of
Adenosine in the active binding site of the AKT-1 protein. (F) Surface interaction and molecular interaction of Ruxolitinib phosphate in the active
binding site of the AKT-1 protein.
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causal relationship between obesity and gastric cancer risk. We further

delineated potentialmolecular signatures linking elevatedBMI to higher

gastric cancer odds through integrated bioinformatics, meta-analyses of

multi-omics data and multi-center cohort validation. Structure-based

virtual screening was also performed to identify prospective FDA-

approved drugs targeting the identified mediating mechanisms.

Overall, our study provides unique insights into potentially modifiable

drivers of the obesity-gastric cancer connection, while informing

preventive strategies and novel therapeutics.

Adipose tissue inflammation may significantly contribute to

cancer development and progression (30). In obesity, macrophages

accumulation in in adipose tissue initiates a cascade immune cells

interactions, proinflammatory cytokines, and hypoxic signaling that

creates conditions enabling tumorigenesis (31). As the adipose tissue

outgrows its blood supply, hypoxia causes adipocyte stress and death

(32). inflammation is increasingly recognized as apivotal factor in tumor

progression, with cancers often originating from sites of infection,

chronic irritation, and inflammation (33). Chronic tissue damage,

such as inflammation in adipose tissue, can stimulate wound healing

mechanisms that generate an oncogenic microenvironment.

Interestingly, malignant cells may hijack inflammatory tissue repair

processes to drive growth and invasion (30).A growing bodyof evidence

indicates a close relationship between cancer development and

inflammatory responses (34). Previous studies have also confirmed

that both IL-6 and TNF genes are closely associated with immune

inflammation (35, 36).

Inflammatory adipocytes release proinflammatory including

cytokines such as TNFa, monocyte chemoattractant protein-1

(MCP-1), IL-1b, and IL-6 (37). Prior studies have indicated that

TNFa, IL-1b, IL-6 promote tumor growth in obese mouse models.

These cytokines can trigger inflammation and activate the oncogenic

transcription factor STAT3 (38). Moreover, inflammation is

associated with elevated circulating levels of C-reactive protein

(CRP) and IL-6 (39). A previous study has reported that

inflammation in adipose tissue is a crucial element in the

development of obesity-induced insulin resistance and obesity-

related metabolic diseases (40). Obesity-associated WAT

inflammation was shown to correlate with mechanical

modifications in the extracellular matrix (ECM), which can

promote tumor growth (30). Insulin can stimulate the synthesis of

IGF-I, both ofwhich have strongmitogenic effects on tumor cells. For

example, insulin and IGF-I activate PI3K/Akt/mTOR and Ras/Raf/

MAPKsignaling pathways, thereby stimulating tumor growth (41). It

is becoming increasingly evident that the tumor microenvironment
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is majorly orchestrated by inflammatory cells and plays a pivotal role

in the tumor process, including cell proliferation, survival, and

migration (42). Adipose inflammation is reversible, representing a

therapeutic target to potentially sever obesity-cancer links.

Consequently, inhibiting inflammatory and proliferative pathways

warrants exploration for combating obesity-driven carcinogenesis.

Obesity may also influence the development of cancer through

dysfunctional adipose tissue and dysregulated signaling pathways

that lead to altered mRNA expression profiles. Predominantly, these

signaling pathways include PI3K/Akt, Ras/MAPK, and STAT3

signaling pathways, which are impacted by the cancer risk factors

associated with obesity (43). Adipose tissue functions as an

endocrine organ that produces and secretes polypeptide

hormones and adipokines. Leptin and adiponectin are most

abundant among these and are implicated in cancer development.

Leptin, in particular, has been extensively investigated as a potential

mediator of obesity-related cancers (44, 45). It is known to

accelerate cancer progression by activating the PI3K, MAPK, and

STAT3 signaling pathways (46). Therefore, targeting these pathways

may provide a new approach tomitigatingobesity-related cancer risks.

The PI3K/Akt/mTOR signaling pathway is a key pathway linking

obesity and cancer. It is the target of obesity and regulates cell

proliferation and survival (26), thereby promoting tumor growth

and metastasis (47). Notably, the PI3K/Akt/mTOR signaling

pathway is also one of the signaling mediators of obesity-related

factors and has thus become the focus of obesity and cancer. This

pathway gets activated by insulin (48) and IGF-I, which are frequently

found at high levels in the serum of overweight and obese patients,

leading to enhanced PI3K/Akt/mTOR activation (49). The STAT3

pathway is widely studied and plays a crucial role in IL-6-mediated

carcinogenesis, which can be reduced by blocking the IL-6 pathway

(50). However, it is also activated by other signaling pathways that

induce elevated oncogenic levels, making the relationship between

obesity and cancer more complex.

Our study identified the dietary supplement adenosine as a

potentially preventive, low toxicity drug candidate for mitigating

the obesity-to-cancer transition. Adenosine exerts diverse biological

effects via multiple receptors. These receptors are expressed on most

immune cells and suppress immune/inflammatory responses,

providing a protective shield to cells and tissues against an

excessive immune reaction and immune-related damage (51). A

few reports indicate adenosine receptors play roles in glucose

homeostasis, inflammation, lipid synthesis, insulin resistance, and

thermogenesis, suggesting that adenosine involvement in obesity
TABLE 2 Docking scores of top 6 hit FDA-approved drugs.

Compound Name Docking Score Molecular formula FDA Application Disease

Nelfinavir -10.733 C32H45N3O4S 20778 Immune system

Remdesivir -9.309 C27H35N6O8P 214787 Immune system; Infection

Baricitinib -9.183 C16H17N7O2S 207924 Inflammation

Baricitinib phosphate -9.183 C16H20N7O6PS 207924 Inflammation

Adenosine -9.017 C10H13N5O4 76404 Cardiovascular system

Ruxolitinib phosphate -8.697 C17H21N6O4P 202192 Cardiovascular system
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pathogenesis (52, 53). Therefore, pharmacological modulation of

adenosine receptors may have therapeutic potential.
5 Conclusion

In this study, we demonstrate a significant causal relationship

between elevated body fat percentage and increased risk of gastric

cancer using Mendelian randomization analysis. Further integrated

bioinformatics and meta-analysis of multi-omics data and clinical

evidence points to interconnected inflammatory and immune

dysfunction centered around AKT1, IL-6, and TNF as key

mechanisms linking obesity to elevated gastric cancer risk. Structure-

based screening identified the dietary supplement adenosine as a

promising safe AKT1 inhibitor, potentially mitigating the obesity-to-

cancer transition. These findings could inform strategies to curb rising

obesity-associated gastric cancer rates worldwide. Further

experimental and clinical evaluation of adenosine for gastric cancer

prevention in obese individuals is warranted.
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sAKT1 AKT serine/threonine kinase 1

BH Benjamini Hochberg

BLCA Bladder Cancer

BMI Body Mass Index

BP Biological Process

BioGRID Biological General Repository for Interaction Datasets

CC Cellular Component

CESC Cervical Cancer

CHOL Bile Duct Cancer

COAD Colon Cancer

COADREAD Colon and Rectal Cancer

CRP C-reactive protein

CTD Comparative Toxicogenomics Database

DEG differentially expressed gene

DLBC Large B-cell Lymphoma

ESCA Esophageal Cancer

GC Gastric Cancer

GEO Gene Expression Omnibus

GErel gene expression interaction

GO Gene Ontology

GPL GEO Platform

H. pylori Helicobacter pylori

HBV Hepatitis B virus

HPRD Human Protein Reference Database

IGF insulin like growth factor

IGF-IR type 1 insulin-like growth factor receptor

IL interleukins

IL6 Interleukin 6

KEGG Kyoto Encyclopedia of Genes and Genomes

KIRP Kidney Papillary Cell Carcinoma

LIHC Liver Cancer

MCODE Molecular Complex Detection

MCP-1 Monocyte Chemoattractant Protein-1

MF Molecular Function

NHOGC Network of Human Obesity and Gastric Cancer

NK cells natural killer cells

NS not significant

OB Obesity
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OMIM Online Mendelian Inheritance in Man

PCOS Polycystic Ovarian Syndrome

PPrel protein-protein interaction

PTM post-translational modification

READ Rectal Cancer

SKCM Melanoma

STAD Stomach Cancer

THYM Thymoma

TNF Tumor Necrosis Factor

TTD Therapeutic Target Database

UCEC Endometrioid Cancer

UCS Uterine Carcinosarcoma

UVM Ocular melanomas

WAT white adipose tissue

WHO World Health Organization

WBC White Blood Cell Count

%NEUT Percentage of Neutrophils

%EOS Percentage of Eosinophils

%BASO Percentage of Basophils

%MONO Percentage of Monocytes

%LYMPH Percentage of Lymphocytes

#NEUT Neutrophil Count

#EOS Eosinophil Count

#BASO Basophil Count

#MONO Monocyte Count

#LYMPH Lymphocyte Count

RBC Red Blood Cell Count

HGB Hemoglobin

HCT Hematocrit

MCV Mean Corpuscular Volume

MCH Mean Corpuscular Hemoglobin

MCHC Mean Corpuscular Hemoglobin Concentration

RDW-CV Red Cell Distribution Width Coefficient of Variation

RDW-SD Red Cell Distribution Width Standard Deviation

PLT Platelet Count

PCT Platelet Crit

MPV Mean Platelet Volume

PDW Platelet Distribution Width

P-LCR Platelet Large Cell Ratio

ECM extracellular matrix
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IV Instrumental Variable

SNP Single Nucleotide Polymorphism

IVW Inverse Variance Weighted

OR Odds Ratio

CI Confidence Interval

GWAS Genome-wide association studies

MR Mendelian Randomization

LD Linkage Disequilibrium

SBVS structure-based virtual screening
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