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Background: Hepatocellular carcinoma (HCC) is the most common primary

malignancy of the liver. Long non-coding RNAs (lncRNAs) play important roles in

the occurrence and development of HCC through multiple pathways. Our previous

study reported the specific molecular mechanism for sulfatide regulation of integrin

aV expression and cell adhesion in HCC cells through lncRNA AY927503. Next, it is

necessary to identify more sulfatide-related lncRNAs, explore their clinical signifcance,

and determine new targeted treatment strategies.

Methods: Microarrays were used to screen a complete set of lncRNAs with different

expression profiles in sulfatide-treated cells. Sulfatide-related lncRNAs expression data

and corresponding HCC patient survival information were obtained from the The

Cancer Genome Atlas (TCGA) database, and the prognosis prediction model was

constructed based on Cox regression analysis. Methylated RNA immunoprecipitation

with next generation sequencing (MeRIP-seq) was used to detemine the effect of

sulfatide on lncRNAs m6Amodification. Tumor Immune Estimation Resource (TIMER)

and Gene set nnrichment analysis (GSEA) were utilized to enrich the immune and

functional pathways of sulfatide-related lncRNAs.

Results: A total of 85 differentially expressed lncRNAs (|Fold Change (FC)|>2, P<0.05)

were screened in sulfatide-treated HCC cells. As a result, 24 sulfatide-related lncRNAs

were highly expressed in HCC tissues, six of which were associated with poor

prognosis in HCC patients. Based on thses data, a sulfatide-related lncRNAs

prognosis assessment model for HCC was constructed. According to this risk score

analysis, the overall survival (OS) curve showed that the OS of high-risk patients was

significantly lower than that of low-risk patients (P<0.05). Notably, the expression

difference in sulfatide-related lncRNANRSN2-AS1may be related to sulfatide-induced

RNAm6Amethylation. In addition, the expression level of NRSN2-AS1was significantly

positively correlated with immune cell infiltration in HCC and participated in the

peroxisome and Peroxisome proliferator-activated receptor (PPAR) signaling

pathways.

Conclusions: In conclusion, sulfatide-related lncRNAs might be promising

prognostic and therapeutic targets for HCC.
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Background

Hepatocellular carcinoma (HCC) is the most common liver

malignancy worldwide and is one of the top five deadliest cancers,

with high morbidity and mortality rates (1). The level of sulfatide, a

sulfoglycolipid, is usually elevated in HCC (2). and can protect

hepatocytes from ischemia/reperfusion injury (3, 4). We previously

reported that sulfatide enhances integrin aV (ITGAV) expression,

leading to HCC metastasis (2, 5). Sulfatide is also abnormally

expressed in ovarian carcinoma and renal cell carcinoma (6), and

can be used as a specific biomarker for these tumors (7, 8). Moreover,

direct inhibition of sulfatide biosynthesis by zoledronic acid can

significantly inhibit the migration, invasion and lung metastasis of

basal-like breast cancer cells (9). In our earlier study, lncRNA

AY927503 was identified in sulfatide-treated HCC cells. It

promoted HCC metastasis by inducing ITGAV transcriptional

chromatin modification and was a potential molecular marker of

HCC metastasis or poor prognosis (10). Long non-coding RNAs

(lncRNAs) are RNA molecules consisting of more than 200

nucleotides with no or limited protein-coding potential, which

affect tumor proliferation, migration and metastasis in the process

of malignant tumor development (11). Therefore, further research on

sulfatide-related lncRNAs will not only expand our understanding of

the role of sulfatide in the occurrence and development of HCC, but

may also provide potential prognostic biomarkers and individualized

therapeutic targets for HCC. The present study sought to determine

the role of the sulfatide-related lncRNAs in HCC.
Methods

Cell culture and treatment

SMMC-7721 cells were obtained from Cell Bank of Type Culture

Collection of Shanghai Institute of Biochemistry & Cell Biology,

Chinese Academy of Science. They were cultured in Dulbecco’s

Modified Eagle’s Medium (Gibco, California, USA) supplemented

with 10% fetal bovine serum (FBS) (Gibco). SMMC-7721 cells were

identified by their morphological characteristics which were

consistent with the establishment report (12). Cells were not

contaminated by mycoplasma or infected with bacteria or fungi. All

cells were cultured in a humidified incubator with 5% CO2 at 37°C.
Abbreviations: HCC, Hepatocellular Carcinoma; TCGA, The Cancer Genome

Atlas; LIHC, Live Hepatocellular Carcinoma; MeRIP-seq, Methylated RNA

immunoprecipitation with next generation sequencing; FC, Fold Change; OS,

Overall Survival; DSS, Disease-Specific Survival; HR, Hazard Ratios; CI,

Confidence Intervals; TIMER, Tumor Immune Estimation Resource; KEGG,

Kyoto Encyclopedia of Genes and Genomes; GSEA, Gene Set Enrichment

Analysis; NES, normalized enrichment score; NOM P, nominal p value; FDR,

false discovery rate; DE-lncRNAs, differentially expressed LncRNAs; ROC, receiver

operating characteristic; AUC, area under curve; NKT cells, Natural killer T cells;

GSLs, Glycosylsphingolipids; ER, endoplasmic reticulum; TIME, Tumor immune

microenvironment; PPARs, Peroxisome proliferator-activated receptors; TDEs,

tumor-derived exosomes; FAO, fatty acid oxidation; TIDCs, tumor-infiltrating

DCs; ILC2s, group 2 innate lymphoid cells; TAMs, tumor-associated

macrophages; GEO, Gene Expression Omnibus
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For the sulfatide treatment, cells were incubated at the initial density

of 0.5×105 cells/mL and treated with 2 mM galactocerebroside (Gal-

Cer) or sulfatide (Sigma, St. Louis, MO, USA).
Microarray expression profiling for lncRNA

Microarray profiling was conducted in the laboratory of

Aksomics Inc. (Shanghai, China). The microarray was analyzed

using the nrStar™ Functional LncRNA PCR chip software, version

1.0 (ArrayStar, Rockville, MD, USA). The hierarchical clustering

analysis was carried out using a platform-independent software

TBtools (version x64_1_09867) (13).
Assessment of sulfatide-related lncRNAs
expression in TCGA-LIHC

The TCGA Liver Cancer project (TCGA-LIHC) (N=423) data

were downloaded from the UCSC Xena database (https://

xenabrowser.net/) (14). Log2(x+0.001) transformation was used to

standardize every gene expression profiles and noncoding genes were

identified based on their Ensemble gene IDs.
Survival prognosis analysis

A Cox proportional-hazards regression model was established to

analyze the relationship between sulfatide-related lncRNA expression

and overall survival (OS) in HCC. The patients were divided into two

groups according to the best cutoff value for each sulfatide-related

lncRNA, which calculated by the R package maxstat. The OS

significance map in HCC was evaluated using the Kaplan-Meier

plotter (http://kmplot.com/analysis/) (15).
Prognostic risk score calculation

The least absolute shrinkage and selection operator (LASSO)

regression analysis was conducted on the sulfatide-related lncRNAs.

The LASSO regression algorithm was used for feature selection with

10-fold cross-validation. The R package glmnet was used for the

analysis. For Kaplan-Meier curves, p-values and hazard ratios (HRs)

with 95% confidence intervals (CIs) were generated using log-rank

tests and univariate Cox proportional -hazards regression. Finally, six

sulfatide-related lncRNAs were selected for incorporation into the

risk score. The regression coefficient b for multivariate Cox regression

model and lncRNA expression were used to construct the risk score

formula as follows:
Immune infiltration analysis

The Tumor Immune Estimation Resource (TIMER) database

(http://timer.cistrome.org/) (16) analyzes immune cell infiltration in

tumor tissues using high-throughput sequencing (RNA-Seq

expression profiling) data (16, 17). The B cell, CD4+ T cells, CD8+
frontiersin.org
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T cells, neutrophil, macrophage and dendritic cells infiltration score

of HCC are evaluated by the Timer method of IOBR (version 0.99.9)

(18), an R software package, based on the expression profile data of

TCGA-LIHC. Spearman’s correlation coefficient between NRSN2-

AS1 and immune cell infiltration score in HCC was calculated using

corr.test function of R package psych (version 2.1.6) to determine the

significantly correlated immune infiltration score.
m6A-modified RNA immunoprecipitation
sequencing

Total RNA samples were extracted, ragmented to 100bp, and

immunoprecipitated using anti-m6A antibody (abcam). Then, eluted

RNA and MeRIPed RNA were analyzed using deep sequencing with

an Illumina Novaseq™ 6000 platform on the CLOUDSEQ Bio-tech

Ltd (Shanghai, China) following the vendor’s recommended protocol

(19)l.
Biological signaling pathway analysis

Pathway enrichment analysis of Kyoto Encyclopedia of Genes and

Genomes (KEGG) was performed using the Gene Set Enrichment

Analysis (GSEA) database in TCGA-LIHC, which classified the data

into high- and low- expression groups based on their NRSN2-AS1

expression (20). Gene sets with |normalized enrichment score (NES)|

>1, nominal p value (NOM P) <0.05, and false discovery rate (FDR) q

<0.25 were considered to have significant enrichment.
Statistical analysis

Differences in the expression of sulfatide-related lncRNAs

between normal and tumor samples from each tumor were

analyzed for significance using unpaired Wilcoxon rank sum and

signed rank tests. Survival curves were statistically tested using the

log rank test, where p-values and HRs with 95% CIs were

represented via Kaplan-Meier plots. The significant correlations

between sulfatide-related lncRNAs expression and immune cell

infiltration scores in HCC were determined by analyzing

Spearman’s correlation coefficients. Pearson correlation analysis

was performed between the expression level of NRSN2-AS1_

(ENSG00000225377) and gene set expression level of RNA m6A

methylation-modifying enzyme. The level of significance was set at

P < 0.05. The bioinformatics analysis platform Sangerbox, version

3.0 (http://vip.sangerbox.com/) (21), was used for processing of all

the statistical analyses.
Results

Sulfatide induced differential expression of
multiple lncRNAs in HCC cells

The lncRNA profiles of sulfatide-treated HCC cells were

compared to those of control cells using ArrayStar lncRNA
Frontiers in Oncology 03
microarray V2.0. This comparison identified 85 differentially

expressed lncRNAs (DE-lncRNAs) based on their Ensemble IDs (|

FC|>2, P < 0.05) (Figures 1A, B. Supplementary Table 1). These DE-

lncRNAs were further classified by biotype, most of which were

lncRNAs as processed transcripts, unclassified processed transcripts,

processing/unprocessed pseudogenes, and small amounts of protein

coding transcripts or unclassified transcripts (Figure 1C).
Identification of differentially expressed
sulfatide-related lncRNAs

The TCGA-LIHC dataset was used to detect the expression of

these 85 sulfatide-related lncRNAs in HCC tissues, showing that 24 of

them were highly expressed in HCC compared to normal liver tissues

(Figure 2A). However, the expression of three sulfatide-related

lncRNAs, AP002841.2 (ENST00000504610), RP11-733O18.1

(ENST00000422914) and RP5-885L7.10 (ENST00000412500) were

lower in HCC tissues (Figure 2B).
Prognostic value of sulfatide-related
lncRNAs

Among the above mentioned 27 sulfatide-related lncRNAs, six

lncRNAs were ultimately identified to be related to prognosis

(Figure 3A), including RP11-122M14.1 (ENST00000415202), RP11-

280O1.2 (also known as LRRC52-AS1; ENST00000438275),

AC079354.5 (ENST00000447111), AC005037.3 (ENST00000413848),

AC108488.3 (also known as RNASEH1-AS1; ENST00000438436) and

RP5-1103G7.4 (also known as NRSN2-AS1; ENST00000442637).

Kaplan–Meier survival analysis was utilized to evaluate the

significance of lncRNA expression in patient prognosis (Figure 3B).

High levels of these sulfatide-related lncRNAs were all correlated with

poor prognosis in patients with HCC (Figure 3).
Construction of prognostic signature based
on sulfatide-related lncRNAs

Based on the expression of six sulfatide-related lncRNAs and

multivariate Cox regression coefficient, the prognosis risk score for

sulfatide-related lncRNAs was calculated using the following formula:

riskscore (lambda.min=0.0029) = (2.0727) × LRRC52-AS1 + (0.3691) ×

RNASEH1-AS1 + (0.2646) × NRSN2-AS1 (Figures 4A, B).

Subsequently, an X-tile diagram was used to generate the optimal

cutoff point for the risk score. The TCGA-LIHC patients were divided

into high- and low-risk groups based on this cutoff risk score value. A

prognostic curve and a scatter plot were used to indicate the risk score

and survival status of each HCC patient (Figures 4C, D). In addition,

the heat map of the expression profiles for candidate lncRNAs

demonstrated that they were all highly expressed in the high-risk

group (Figure 4E). Kaplan-Meier analysis validated that the TCGA-

LIHC patients in the high-risk group showed a significantly worse

survival than those in the low-risk group at the 10-year time point
frontiersin.org
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(Figure 4F). Furthermore, the time-dependent receiver operating

characteristic (ROC) analyses showed that the area under curve

(AUC) for the risk score model was 0.671 at the one-year time point,

0.621 at the three-year time point, and 0.629 at the five-year time point

(Figure 4G). Taken together, these findings represented the three

sulfatide-related lncRNAs as the prognostic signature for HCC patients.
NRSN2-AS1 expression was associated with
RNA m6A methylation

Our previous study reported that sulfatide does not only affect the

binding of METTL3 to METTL14 and WTAP by acetylating the

METTL3 protein (19), but also inhibits the YTHDF2 expression in
Frontiers in Oncology 04
HCC cells (22). Next, we investigated whether RNAm6Amethylation

modification affected sulfatide-related lncRNA expression. The

MeRIP-seq experiments were performed, in order to clarify the role

of RNA m6A methylation modification. Their results showed that the

abundance of m6A in NRSN2-AS1, one of sulfatide-related lncRNAs,

was significantly increased in sulfatide-treated HCC cells. This

suggested that m6A modification was related to the regulation of

NRSN2-AS1 expression (Figure 5A). Furthermore, the relationship

between NRSN2-AS1 expression level and a series of m6A-binding

proteins (23) was analyzed in TCGA-LIHC samples. The results

showed that the expression levels of NRSN2-AS1 were positively

correlated with the expression of m6A writer and reader signatures

(Figure 5B). In summary, the expression of NRSN2-AS1 in HCC was

related to the changes in RNA m6A methylation induced by sulfatide.
A

B

C

FIGURE 1

Multiple lncRNAs were differentially expressed in HCC cells after sulfatide treatment. (A) Volcano plot representing differentially expressed lncRNAs in
HCC cells after sulfatide treatment. (B) Heat map showing differentially expressed lncRNAs in sulfatide-treated HCC cells and control cells. (C) Transcript
classification analysis of differentially expressed lncRNAs.
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Role of NRSN2-AS1 in HCC immune
microenvironment characterization

An increasing number of studies have demonstrated that sulfatide

is involved in tumor immunity, where the HIF-1-galactose-3-o-

mercaptotransferase 1-sulfide axis enhanced immune escape of

renal clear cell carcinoma by increasing tumor cell-platelet binding

(24). In addition, a subpopulation of type II Natural killer T cells

(NKT cells) characterized by their response to autoglycolipid sulfides

was shown to induce a major immunomodulatory mechanism that

controls inflammation in anticancer immunity (25). To further

examine whether the sulfatide-related lncRNA NRSN2-AS1 can act

as an immune indicator, a correlation analysis of NRSN2-AS1

expression with immune infiltration was performed. TIMER data

showed that high NRSN2-AS1 expression was significantly associated
Frontiers in Oncology 05
with six types of immune cells (B cells, CD4+ T cells, CD8+ T cells,

macrophages, neutrophils and dendritic cells) in HCC (Figure 6).

This result pointed out that NRSN2-AS1 may serve as an indicator in

tumor immune microenvironment (TIME) characterization in HCC.
Functional enrichment analysis
of NRSN2-AS1 in HCC

To investigate the biological functions and pathways associated

with the sulfatide-related lncRNA NRSN2-AS1, the TCGA-LIHC

samples were divided into high- and low-expression groups based on

their NRSN2-AS1 expression. GSEA was used to evaluate the

enrichment of KEGG pathways. The pathways associated with high

NRSN2-AS1 expression were enriched in the Cell Cycle pathway
A

B

FIGURE 2

Differentially expressed sulfatide-related lncRNAs in TCGA-LIHC. (A) Screening of highly expressed sulfatide-related lncRNAs in TCGA-LIHC.
(B) Sulfatide-related lncRNAs with low expression in TCGA-LIHC. *, p<0.05. **, p<0.01. ***, p<0.001. ****, p<0.0001.
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(Figure 7A). The pathways associated with low expression of NRSN2-

AS1 were enriched in peroxisome and perxisome proliferator-activated

receptor (PPAR) signaling pathways related to immune response (26,

27), as well as a variety of amino acid (tryptophan, arginine, proline,

glycine, serine, threonine, tyrosine, and histidine) and lipid (fatty acid

and linoleic acid) metabolic pathways (Figures 7B-D).
Discussion

HCC is the most frequently occurring type of primary liver

cancer, and its pathogenesis involves a complex transcriptional

regulation disorder (28–30) and energy metabolism abnormality

(31–33). Therefore, identifying reliable and effective biomarkers for

HCC prognosis is of great importance. Glycosylsphingolipids

(GSLs) are important components of cell membranes and act as

signaling molecules in cellular processes. Similar to GSLs, sulfatide

(glycosphingolipid sulfate) is also composed of lipid and sugar

components, and its precursor galactosylceramide connects the

sulfate ester group to the carbohydrate component in the
Frontiers in Oncology 06
endoplasmic reticulum (ER) (34). Elevated expression of sulfatide

has been found in many human cancer cell lines and tissues, and can

be used as a biomarker of some cancers (4, 35, 36). Abundant

sulfatide on the surface of cancer cells is a natural ligand of P-

selectin ligand that helps to promote tumor metastasis (37, 38).

Many lncRNAs are abnormally expressed in various cancers,

including HCC, and play a key role in tumorigenesis (39). We

previously reported the abundant expression of sulfatide in HCC

(5), and investigated the specific molecular mechanism for sulfatide

regulation of integrin aV expression and cell adhesion in HCC cells

via lncRNA AY927503 (10, 22, 40). However, the effect of sulfatide

on the expression levels of other lncRNAs in HCC cells and the role

of these DE-lncRNAs in prognosis and immunotherapy evaluation

require further study.

The present study screened 85 DE-lncRNAs (|FC|>2, P<0.05) in

sulfatide-treated HCC cells based on their Ensemble IDs. Tthe

TCGA-LIHC database 27 sulfatide-related lncRNAs that were

differentially expressed in HCC and adjacent tissues, of which 24

were highly expressed in HCC tissues. RP11-122M14.1, RP11-

280O1.2, AC079354.5, AC005037.3, AC108488.3 and RP5-
A

B

FIGURE 3

Identification of sulfatide-related lncRNAs with prognostic value in HCC patients. (A) Univariate Cox regression analysis of six differentially expressed
sulfatide-related lncRNAs and risk scores in HCC samples. (B) Kaplan-Meier analytical evaluation of prognostic values of six differentially expressed
sulfatide-related lncRNAs.
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1103G7.4 are six sulfatide-related lncRNAs with abnormally high

expression that were significantly associated with poor prognosis in

HCC patients. When selecting specific variables to build the prognosis

evaluation model, overfitting often occurs if too many variables are

present (41). Regularization is an important method to solve the

overfitting problem (42). LASSO regression constructs a penalty

function and adds L1 regularization after the loss function to obtain

a more accurate model with fewer variables (43). After the LASSO

regression analysis of six lncRNAs, only three were found to be related

to the patient prognosis. Based on the risk score results and sulfatide-
Frontiers in Oncology 07
related lncRNA construction, the OS for high-risk patients was

significantly lower than that for low-risk patients (P<0.05).

Sulfatide had been demonstrated to be one of several natural

ligands for type II CD1d-restricted NKT cells, which can regulate

tumor immunity (36, 44, 45). More and more studies have also found

the potential effect of lncRNAs on immune cells infiltration in TIME.

For example, lncRNA MIAT is distributed in HCC. It is enriched in

FOXP3+CD4+T, PDCD1+CD8+, and GZMK+CD8+T cells, affects

the immune microenvironment of HCC by regulating the expression

of target genes JAK2, SLC6A6, KCND1, MEIS3, and RIN1, and
A B

D

E

F

G

C

FIGURE 4

Prognostic risk score characteristics of sulfatide-related lncRNAs in HCC. (A), (B) LASSO Cox regression with 10-fold cross-validation of the prognostic
value of three sulfatide-related lncRNAs, including LRRC52-AS1, RNASEH1-AS1, and NRSN2-AS1. C, (D) Risk curve (C) and scatter plot (D) for the risk
score and survival status of each HCC case. Blue and red dots in (D) represent death and survival, respectively. (E) Heat map showing the expression
profiles of three sulfatide-related lncRNAs in the high-risk and low-risk group. (F) Kaplan-Meier prognostic prediction analyses of risk score model at 10-
year timepoint. (G) Time-dependent receiver operating characteristic curves for the prognostic prediction of risk score models at one-, three-, and five-
year time points.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1091132
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2023.1091132
participates in the immune escape process in HCC (46). The lncRNA

MIAT also mediates HCC immune response by targeting the miR-

411-5p/STAT3/PD-L1 axis (47). Therefore, we speculated that

sulfated-related lncRNAs may also be involved in regulating the

HCC TIME. Based on the TIMER database, we confirmed that the

high expression of sulfatide-related lncRNA NRSN2-AS1 was

significantly related to the infiltration of immune cells, such as

macrophages, dendritic cells, neutrophils, B cells, CD4+T cells, and

CD8+T cells in HCC. As a newly identified lncRNA, NRSN2-AS1 has

not been well studied in cancer. The latest research found that

NRSN2-AS1 is significantly overexpressed in ovarian cancer, plays a

tumor-promoting role as the sponge of miR-744-5p, and regulates the

Wnt/b-catenin signaling pathway via the miR-744-5p/PRKX axis

(48). It was also found that SOX2 promotes NRSN2-AS1

transcription in esophageal squamous cell carcinoma (ESCC), and
Frontiers in Oncology 08
that NRSN2-AS1 promotes its progression by regulating the ubiquitin

degradation of PGK1 (49). However, the role and mechanism of

NRSN2-AS1 in tumor immunity remain unknown.

The GSEA results suggested that the pathways related to the low

expression of NRSN2-AS1 are mainly enriched in the peroxisome and

PPAR signaling pathways. Peroxisome proliferator-activated

receptors (PPARs) belong to the nuclear hormone receptor family.

They are divided into a, b, and g subtypes, and participate in the

metabolism of various energy substances and tumor immunity.

PPARa was found to respond to the fatty acids delivered by tumor-

derived exosomes (TDEs), resulting in excess lipid droplet biogenesis

and enhanced fatty acid oxidation (FAO), culminating in a metabolic

shift toward mitochondrial oxidative phosphorylation, which drives

tumor-infiltrating DCs (TIDCs) immune dysfunction (50). It was

reported that CD36 is selectively upregulated in intrautumoral Treg
A

B

FIGURE 5

Sulfatide affects NRSN2-AS1 expression by regulating the RNA m6A methylation modification. (A) Abundances of m6A in NRSN2-AS1 determined by
MeRIP-seq. (B) Pearson correlation of NRSN2-AS1 expression and m6A writer, reader, and eraser signature expressions.
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A B D E FC

FIGURE 6

Correlation of NRSN2-AS1 in tumor immune microenvironment characterization. (A-F). Correlation between NRSN2-AS1 expression and immune
infiltration level of B cells (A), CD4+ T cells (B), CD8+ T cells (C), neutrophils (D), macrophages (E), and dendritic cells (F) in HCC.
A B

D

C

FIGURE 7

Gene set enrichment analysis for NRSN2-AS1. (A). Significantly enriched pathways in patients with high NRSN2-AS1 expression. (B-D). Significantly
enriched pathways in patients with low NRSN2-AS1 expression.
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cells as a central metabolic modulator activates PPARb signaling to

regulate mitochondrial adaptation, and programs Treg cells to adapt

to lactic acid-enriched TME (51). PPARg is selectively expressed in

group 2 innate lymphoid cells (ILC2s) supported the IL-33-dependent

tumor promoting effect (27). The PPARg-dependent upregulation of

FAO also mediates the pro-tumor (also known as M2-like)

polarization of tumor-associated macrophages (TAMs) (52). Tumor

infiltrating T cells have also been found to have a progressive loss

of PPAR-gamma coactivator 1a (PGC1a), which programs

mitochondrial biogenesis, induced by chronic Akt signaling. This

results in continuous loss of mitochondrial function and quality of

tumor-specific T cells (53). These results provide a possible direction

for further research on the role and mechanism of NRSN2-AS1 in

HCC tumor immunity.
Conclusions

In this study, we described the influence of sulfatide on lncRNA

expression in HCC cells and found that these sulfatide-related

lncRNAs serve as a good prognostic marker for HCC patients. In

addition, we showed that NRSN2-AS1 may be an indicator of TIME

characterization in HCC. These results help to improve the

understanding of the comprehensive characteristics and role of

sulfatide in the development and progression of HCC and will help

to optimize immunotherapy regimens.
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