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RET gene plays significant roles in the nervous system and many other tissues.

Rearranged during transfection (RET) mutation is related to cell proliferation,

invasion, and migration. Many invasive tumors (e.g., non-small cell lung cancer,

thyroid cancer, and breast cancer) were found to have changes in RET. Recently,

great efforts have been made against RET. Selpercatinib and pralsetinib, with

encouraging efficacy, intracranial activity, and tolerability, were approved by the

Food and Drug Administration (FDA) in 2020. The development of acquired

resistance is inevitable, and a deeper exploration should be conducted. This

article systematically reviewed RET gene and its biology as well as the

oncogenic role in multiple cancers. Moreover, we also summarized recent

advances in the treatment of RET and the mechanism of drug resistance.
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Introduction

Precision therapy changed the prospect of solid tumors. The intervention of aberrant

tyrosine kinase has become the optimal target. Rearranged during transfection (RET) was

first identified in 1985 in the transfection of NIH3T3 (1). RET gene has been confirmed to

have a great role in the development of the kidney and nervous systems (2). The mechanism

of RET aberrant activation was different from that of other receptor tyrosine kinases, which

need both additional glial cell-derived neurotrophic factor (GDNF) family receptor-a
(GFRa) and co-receptors (GFa1/2/3/4). The tripartite complex form (GDNF

ligand+GFRa complex+RET kinase) stimulated RET by autophosphorylation and then

triggered RAS, MAPK, ERK, PI3K, and AKT signaling pathways to promote tumor cell

proliferation, migration, and differentiation (1, 3–5).

Many treatment advances have been made in recent years. Multikinase inhibitors

including sunitinib, vandetanib, regorafenib, and alectinib were approved by the Food and

Drug Administration (FDA) (6–10). However, their response rates were lower when

compared with those of ALK or ROS1, and the off-target toxicity limited the application

(11). Selective RET inhibitors LOXO-292 (selpercatinib) and BLU-667 (pralsetinib), which
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were approved by the FDA in 2020 with good clinical benefits and low

incidence of serious adverse events, were more ideal (12, 13). It is

worth mentioning that the two drugs have a strong intracerebral

activity, which is in line with the carcinogenicity of RET. However,

recent publications reported the novel acquired resistance to

selpercatinib and pralsetinib (14). Second-generation RET

inhibitors such as BOS172738, TPX-0046, TAS0953/HM06, and

LOX-18228 are currently in clinical trials (15). Moreover, platinum-

containing chemotherapy or immune-checkpoint inhibitors (ICIs)

were also explored to increase the chances of drug resistance patients.

This article systematically reviewed RET gene and its biology as

well as the oncogenic role in multiple cancers. Moreover, we also

summarized recent advances in the treatment of RET and the

mechanisms of drug resistance. Finally, we analyzed the

opportunities and challenges and, then, gave proposals for this

portion of patients to maximize their survival time in the future.
Function and biology of RET

RET gene was first identified in 1985 from the transfection of

NIH3T3 (16). It was located in chromosome 10 (10q11.2) and

contained 21 exons, its full length was 60 kb, and it was the

receptor for GDNF (17). In addition to GDNF, this family also

included artemin (ARTN), neurturin (NRTN), and persephin

(PSPN). RET gene was required for the development of the brain

and nervous systems, thyroid and lung tissues, and others (18). Unlike

other RTKs, RET gene was not bound directly to the ligands. Instead,

the RET ligands first bind to the GFRa receptor. The GFL–GFRa
complex then mediated RET homodimerization, which lead to

autophosphorylation and then activated the proliferation pathways

such as MAPK, PI3K, JAK-STAT, PKA, and PKC (19, 20).

PI3K-AKT-mTOR and RAS-RAF-MEK-ERK were the major

ways of cell survival, proliferation, migration, and differentiation

(21). Three general mechanisms of aberrant RET activation will

trigger the above pathways: in-frame RET fusions, targeted

mutation, and aberrant overexpression (22, 23). However, the

different sites lead to a different degree of tyrosine kinase

transformation. Three main ways were included: sudden changes of

codons in the extracellular region result in the transform of cysteine

residues, codon mutations in the transmembrane region cause two

receptor proteins to draw nearby non-covalent bond, and ATP binds

to its site easily made by codon mutations in the intracellular regions

(24–26). Among them, RET point mutation frequently occurred in

multiple endocrine neoplasias and medullary thyroid carcinoma (27).

However, RET fusion has been commonly reported in papillary

thyroid and non-small cell lung cancers (14, 28).
RET gene and tumor occurrence

RET expression in lung cancer

Lung cancer is the most prevalent malignant tumor in the world

with a poor survival rate and faster progression. Non-small cell lung

cancer (NSCLC) accounted for 80% to 85% (29, 30). For patients who

are not eligible for targeted therapy, platinum-based chemotherapy is
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the standard treatment. However, their survival time is less than 12

months. RET fusion was discovered in approximately 1%–2% of

NSCLC (31). KIF5B was the most common type in RET fusion, and

47 other partners have been identified so far (7, 32). The clinical and

pathological features of RET fusion NSCLC patients differ from those

caused by other oncogenes. RET fusion NSCLC patients correlated

with adenocarcinoma histology, never-smoking status, younger age,

more advanced stage disease, and potentially higher chemo-sensitivity

(pemetrexed-based regimens) (33, 34). It is of high concern that RET

fusion NSCLC patients are more likely to have brain metastases, and

the incidence is up to 27% (35, 36). Therefore, developing novel

agents with blood–brain barrier (BBB) permeability is necessary.

Multikinase inhibitors (MKIs) showed inferior activity in RET-

NSCLC, compared with EGFR or ALK. The off-target toxicity and

suboptimal intracerebral activity also limited its application in

clinical. ICIs in driver gene mutation tumors are controversial. The

present studies reported disappointing efficacy with ICI monotherapy

in this portion of patients. However, ICI-based combination therapy

may bring hope in the future (37, 38). Thus, chemotherapy remained

a reasonable choice until RET-selective tyrosine kinase inhibitors

(TKIs) emerged.
RET expression in thyroid cancer

Thyroid cancer only accounts for 3%–4% of all human cancers

commonly caused by ionization radiation (39). Nevertheless, it is

prevalent in endocrine neoplasia with the highest increase in the past

two decades. Thyroid cancer is categorized into four different types

[papillary thyroid carcinoma (PTC), follicular thyroid carcinoma

(FTC), anaplastic thyroid cancer (ATC), and medullary thyroid

cancer (MTC)]. RET mutations were most commonly found in

PTC and MTC (40). Indeed, the activation mechanisms were

different in the two types. Chromosomal rearrangements were

found in PTC, and somatic mutations lead to MTC (41).

PTC accounts for 85% of thyroid cancer and is the first human

cancer associated with RET fusion. RET/PTC chimeric protein

formed dimers that are required for oncogenic activation, which

activated the RAS/MAPK/ERK pathway to promote proliferation and

migration. An assay that targeted 244 cancer-related genes detected

RET fusion in 4.35% PTC. Subsequently, in The Cancer Genome

Atlas (TCGA) study, which enrolled 500 PTC patients, 6.8% had RET

fusion. The high-frequency forms were CCDC6-RET (RET/PTC1)

and NCOA4-RET (RET/PTC3), which were the consequences of

double-stranded breaks caused by ionizing radiation (42). RET

fusion has been reported more commonly in pediatrics and dose-

dependently with irradiation. The Chernobyl accident remained an

example that activated the MAPK pathways by chromosomal

rearrangement. Approximately 58% aged <10 years old patients

harbored RET fusion, and 50% of PTC patients who were exposed

to high radiation doses (>0.5 Gy) had RET fusion (41, 43).

Regrettably, the relationship between RET rearrangement and the

prognosis of PTC is still controversial. Some studies confirmed that

RET/PTC is a more aggressive phenotype combined with advanced-

stage disease. On the contrary, other trials hold that there was no

significant correlation between RET/PTC and tumor aggressiveness

(14, 39, 44).
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In contrast to PTC, MTC is a rare type (2%–4%) of thyroid cancer.

Radiation exposure is not associated with RET fusion in MTC compared

to PTC (45). MTC included five subtypes, but MEN2A and MEN2B are

the most common. The current research indicated that MEN2A is

related to the RET-C634 mutation (46). Mulligan analyzed 118

unrelated families and found that the RET-C634 mutation occurred in

95% of MEN2A families (47). In agreement with their earlier study, they

did not detect the RET-C634 mutation in MEN2B families. Instead,

MEN2B always shared the RET-M918T mutation with a 95% detection

rate. It was first detected in 1994 by a separate study that detected the

mutation in 34 unrelated MEN2B patients (48). Moreover, many studies

have confirmed that RET mutations in MEN2A and MEN2B were

reliable biomarkers for the identification of highly aggressive MTC.
RET expression in breast cancer

Breast cancer (BC) is the most common cancer in women, with

approximately 1.7 million people diagnosed every year, and RET

alteration occurrence is approximately 1.2% (49). RET amplification

is the most common, followed by RET fusion. Most RET mutations in

BC appear after drug resistance, and CCDC6-RET and NCOA4-RET

occur frequently (50). RET is actionable in ER+ BC. Gattelli identified

that RET activation promoted proliferation and migration in ER+ BC

patients (8). Plaza-Menacho showed that RET modulates the

sensitivity of ER+ BC to endocrine therapy and that activated RET

promotes estrogen-independent activation of ERa, which suggested

an interference between RET and the ERa pathway in endocrine-

resistant BC (51). After that, Isacke also determined that RET

signaling was hyperactivated in aromatase-resistant ER+ BC (52).

Although RET expression was related to ER in luminal BC, it lacked

prognostic significance as an independent biomarker. In addition to

ER+ BC, RET was also actionable in HER2-enriched and triple-

negative BC patients who failed targeted therapy (53). A recent

study showed that trastuzumab resistance was associated with the

activation of the RET–HER2 signaling axis (54).
RET expression in other tumors

RET mutations also occurred in other tumors. For example,

G533C was confirmed to increase proliferation and migration in

colon cancer (55). In pancreatic cancer, RET led to lymphatic

invasion and was upregulated in ductal adenocarcinoma (56). In

kidney cancer, RET was confirmed to predict survival and the high

expression results in a shorter survival time. In prostate cancer,

moderately to poorly differentiated tumors displayed overexpression

of RET (57). In summary, RET was increasingly recognized as an

oncogene and a potential target in multiple tumors.
RET kinase inhibitors

Non-selective MKI

Multi-targeted drugs are being used in RET mutation cancers in

the early stage. For example, type I inhibitors such as vandetanib and
Frontiers in Oncology 03
lenvatinib were confirmed to bind to the ATP in an active

conformation of RET kinase. Famous type II inhibitors such as

cabozantinib and sorafenib can bind to the ATP in an inactive

conformation. However, the clinical benefits (lower overall response

rate (ORR) and shorter progression-free survival (PFS)) and

significant off-target toxicities limited their application. A phase II

clinical trial (NCT01639508) reported that cabozantinib had not

reached the endpoints with 28% ORR, 5.5 months median PFS

(mPFS), and 9.9 months median overall survival (mOS) (7).

Similarly, a phase III clinical trial (NCT00704730) in MTC

harboring RET-M918T showed that OS was 6.6 months (58).

Also, lenvatinib (NCT01877083) in RET fusion NSCLC yielded a

relatively low response (ORR = 16%, mPFS = 7.3 months) (59).

Subsequently, a clinical study by Carlomagno identified that

vandetanib may not yield clinical efficacy. The ORR was 18%,

mPFS was 4.5 months, and mOS was 11.6 months in RET fusion

NSCLC (6). After that, randomized, phase III, registrational trials

confirmed that cabozantinib and vandetanib in patients with

advanced MTC were also unspectacular, the ORR was 28% and

45%, and mPFS was 7.2 and 11.2 months, respectively, and

uncontrollable adverse events frequently occurred (60). To sum up

all the above studies, MKIs were not outstanding agents for RET

mutation patients.
RET selective TKI

BLU-667 (pralsetinib) and LOXO-292 (selpercatinib) were

two highly selective RET inhibitors with good efficacy and tolerable

adverse effects. Currently, the clinical data of the two drugs have

been recently released. The ensuing drug resistance has become a

new challenge. Other RET inhibitors such as BOS172738,

GSK3352589, and GSK3179106 are currently undergoing phase I

clinical trials.

Selpercatinib is an oral RET inhibitor designed to overcome the

weaknesses of MKIs. The in vitro and in vivo studies revealed that

selpercatinib can inhibit wild and altered RET, meanwhile

holding back KDR/VEGFR2 activity. LIBRETTO-001, a global

phase I/II trial, demonstrated that selpercatinib had the perfect

outcomes in RET fusion NSCLC patients with a 68% ORR. The

ORR of the brain metastases patients also reached 91%. The

median diagnostic odds ratio (mDOR) was 20.3 months, and mPFS

was up to 18.4 months (13). After that, LIBRETTO-321 was

performed to evaluate the efficacy and safety of selpercatinib in

Chinese patients. Consistent with the previous conclusions, the

ORR was 61.1%, and 90% of the patients remained in continuous

remission after 6 months (28). As for RET-mutant MTC, LIBRETTO-

001 showed a 56% ORR, and the ORR was similar regardless of

whether MKI has been used before (61). Therefore, the FDA

accelerated the approval of selpercatinib for RET mutation NSCLC

and MTC patients in 2020. Currently, LIBRETTO-121 and

LIBRETTO-431 are ongoing to confirm the effectiveness of

selpercatinib in other tumors.

Same as selpercatinib, pralsetinib is also an ATP-competitive

inhibitor that selectively inhibits RET. ARROW was a single-arm

phase I/II trial that demonstrated that 90% of PTC and MTC

have radiographic tumor reduction with pralsetinib. The ORR
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was 60% (disease control rate (DCR) 100%) vs. 63% (DCR 94%) in

RET fusion NSCLC and RET mutation MTC. Nine patients

with brain metastases showed an intracranial response rate of 56%

in MTC (12). Remarkably, pralsetinib can be widely used regardless of

RET fusion partner (62). Based on these data, pralsetinib was granted

by the FDA in 2020 for RET mutation NSCLC and MTC.

Subsequently, China’s State Food and Drug Administration

[National Medical Products Administration (NMPA)] also

approved pralsetinib for Chinese patients in March 2021. Other

ongoing clinical trials such as NCT04222972, NCT04222972, and

NCT04760288 were aimed to assess the application of pralsetinib in

other tumors.
Other therapy

ICIs have become the keystone in cancer treatment and are

considered a salvage treatment for patients with actionable driver

alterations after targeted therapies. Building on previous experience

that ICI monotherapy was unsatisfactory, combination therapy has

been increasingly applied in RET mutation cancers. A clinical trial

showed that bevacizumab+carboplatin+pemetrexed can highly

prolong the survival time of RET fusion NSCLC patients. The

mPFS was 6.6 months vs. 5.7 months (63). Subsequently, Guisier

also determined the effectiveness of ICIs-based combination therapy

for RET mutation cancers in a real-world setting. Among 107

patients, only nine had RET translocation. Before ICIs, they

had received at least one line of treatment. The results showed the

mPFS was 7.6 months, the median DOR was 4.7 months, and the

ORR was 38% (64). A multicenter retrospective study reported a high

DCR (60%) in RET mutation patients who failed targeted therapy,

with a conclusion that was in line with that of another trial (ORR =

58%, mPFS = 5.4 months, mOS = 19 months) (65). Based on the

above data, the therapeutic value of ICIs in patients with RET

mutation has become clear. After targeted therapy, ICIs or in

combination with chemotherapy will bring new vitality to this

portion of patients.

Given that those RET selective inhibitors were recognized

recently, the majority of patients are still being treated with

chemotherapy. Platinum-doublet chemotherapy is the standard

regimen in RET mutation NSCLC patients (66). A multicenter

retrospective study showed that 65 RET fusion NSCLC patients

used platinum-based chemotherapy as the first-line treatment, the

ORR was 51%, and the mPFS was 7.8 months. Another global trial

also showed optimistic results (mPFS = 6.6 vs. 7.8 months, OS = 23.6

vs. 24.8 months) in RET mutation NSCLC and MTC patients (67, 68).
The mechanistic pathway of drug
resistance

According to the present data, both instinct and acquired

resistance of RET TKIs exist. Understanding the mechanistic

pathway of targeted agents is imperative to prolong remissions due

to the drugs. On-target and off-target resistance were included to

explain the underlying mechanisms of drug resistance.
Frontiers in Oncology 04
On-target mechanism of drug resistance

There was an acquired resistance inside the target kinase, which

was continuously activated by kinase inhibitors. Gatekeeper mutations

and solvent front mutations are two common types in MKI and TKI

(15). The construction of the in vitro model confirmed that RET V840

gatekeeper mutations mediated drug resistance in the following two

ways: lead the spatial conflict between leucine and methionine side

chains and the 4-bromo-2-fluorophenyl group and increase the

adenosine triphosphate affinity (22). A recent study showed that a

novel RET inhibitor, SYHA1815, can overcome this resistance, which

may be a new direction for drug development (69). However, Gly-810 is

representative of solvent front mutation, which is located at the solvent

front of the ATP binding pocket (70). Solomon reported that RET

G810R, G810S, and G810C mutations occurred in three NSCLC cases

with RET fusion after selpercatinib (71). Of note, their study also

described that RET V840 gatekeeper mutation and G810 solvent front

mutation could be present at the same time. Therefore, more clinical

studies need to explore whether RET-selective TKI was able to prevent

gatekeeper mutation.
Off-target mechanism of drug resistance

Off-target resistance activates different intracellular pathways that

bypass the kinase-mediated signal. MET, EGFR, BRAF, and RAS were

all reported in recent trials, of which MET was common as a recurring

and potential type of resistance of selpercatinib and pralsetinib (72). A

retrospective clinical trial analyzed 20 RET fusion NSCLC patients

who were resistant to selpercatinib and pralsetinib, and they found

15% MET amplification and 10% G810C/S mutation. EGFR would

activate downstream pathways and disrupt the combination of kinase

inhibitors to restore fusion signaling complexes, which promote

proliferation and hide RET inhibitors (73, 74). RAS and BRAF

mutations were reported in two and one KIF5B-RET fusion NSCLC

patients, respectively, who received selpercatinib, yet more

experimental validation is still needed.
Next-generation RET inhibitors

While not overwhelmingly dominant, RET resistance mutations

are recurrent in patients treated with selpercatinib or pralsetinib. For

these patients, novel RET inhibitors harboring potency against the

resistance mutations are needed. Next-generation RET inhibitors

including BOS172738, TPX-0046, TAS0953/HM06, and LOX-18228

were designed to solve the above problems. BOS172738 could

overcome RET-G810 resistance and showed good activity in

patients with RET fusion tumors (55). A phase I clinical trial

showed good efficacy and safety with 33% ORR. TPX-0046 presents

perfect benefits in vitro and in vivo RET fusion cancers. It can

overcome RET-G810 resistance. A phase I/II clinical trial

(NCT04161391) is ongoing to evaluate the efficacy and safety of

TPX-0046 in advanced cancers harboring RET mutants (15). HM06,

another selective RET inhibitor, circumvents RET-V804X gatekeeper

mutation and RET-G810X resistance mutations. This drug is

currently in phase I/II clinical trials (NCT04683250) in a patient
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with RET mutation (75). Lastly, LOX-18228 can inhibit RET-V804X

and RET-G810X mutations, which have a promising use after first-

generation RET inhibitors. LOX-18228 is now entering phase I

clinical trials.
Summary and prospects

RET proto-oncogene was identified more than 30 years ago, and

the rearrangement andmutation of RET have been reported in a variety

of cancers, including thyroid cancer, non-small cell lung cancer, and

breast cancer. Currently, targeted therapy and immune checkpoint

inhibitors brought new life to this portion of patients. Multiple kinase

inhibitors easily generate toxicity because of the off-target effects. Most

of them were not authorized by the FDA (76–80). Immune checkpoint

inhibitors as the post-line treatment option were sensible for driver

gene mutation patients (38, 63, 81, 82). The highly selective RET

inhibitors such as selpercatinib and pralsetinib provided considerable

benefit in both MTC and NSCLC patients and were authorized for the

first-line treatment (83, 84). However, like other inhibitors, on-target or

bypass resistance of RET-TKI will become more common. Several

novel RET inhibitors, which cover not only the drug-resistant site but

also other RTKs that can activate parallel signaling pathways, are at an

early stage (26, 85). Of note, further research still needs to explore the

broader coverage of potential resistance mechanisms, and combination

therapies to optimally pathways are also important.
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