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An ultrasound-based radiomics
model to distinguish between
sclerosing adenosis and invasive
ductal carcinoma

Qun Huang, Wanxian Nong, Xiaozhen Tang and Yong Gao*

Department of Ultrasound, First Affiliated Hospital of Guangxi Medical University, Nanning,
Guangxi, China
Objectives: We aimed to develop an ultrasound-based radiomics model to

distinguish between sclerosing adenosis (SA) and invasive ductal carcinoma

(IDC) to avoid misdiagnosis and unnecessary biopsies.

Methods: From January 2020 to March 2022, 345 cases of SA or IDC that were

pathologically confirmed were included in the study. All participants underwent

pre-surgical ultrasound (US), from which clinical information and ultrasound

images were collected. The patients from the study population were randomly

divided into a training cohort (n = 208) and a validation cohort (n = 137). The US

images were imported into MaZda software (Version 4.2.6.0) to delineate the

region of interest (ROI) and extract features. Intragroup correlation coefficient

(ICC) was used to evaluate the consistency of the extracted features. The least

absolute shrinkage and selection operator (LASSO) logistic regression and cross-

validation were performed to obtain the radiomics score of the features. Based

on univariate and multivariate logistic regression analyses, a model was

developed. 56 cases from April 2022 to December 2022 were included for

independent validation of the model. The diagnostic performance of the model

and the radiomics scores were evaluated by performing the receiver operating

characteristic (ROC) analysis. The calibration curve and decision curve analysis

(DCA) were used for calibration and evaluation. Leave-One-Out Cross-

Validation (LOOCV) was used for the stability of the model.

Results: Three predictors were selected to develop the model, including

radiomics score, palpable mass and BI-RADS. In the training cohort, validation

cohort and independent validation cohort, AUC of the model and radiomics

score were 0.978 and 0.907, 0.946 and 0.886, 0.951 and 0.779, respectively. The

model showed a statistically significant difference compared with the radiomics

score (p<0.05). The Kappa value of the model was 0.79 based on LOOCV. The

Brier score, calibration curve, and DCA showed themodel had a good calibration

and clinical usefulness.
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Conclusions: The model based on radiomics, ultrasonic features, and clinical

manifestations can be used to distinguish SA from IDC, which showed good

stability and diagnostic performance. The model can be considered a potential

candidate diagnostic tool for breast lesions and can contribute to effective

clinical diagnosis.
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Introduction

Sclerosing adenosis (SA) is a common benign lesion that may

mimic breast malignancy clinically, radiologically, and pathologically

(1–4). SA is usually asymptomatic or palpated with a mass, which is

unexpectedly found in premenopausal women who have been

examined using imaging or histopathology for other reasons (2). SA

is often radiologically evaluated as amalignancy. Pathologically, SA is a

complex proliferative change consisting of enlarged and twisted

nodules and containing repeated and crowded acini accompanied by

significant myoepithelial and interstitial fibrosis (5). SA often imitates

malignancy, leading to misdiagnosis and excessive biopsies, which

have a negative influence on women’s physical and mental health. As

the most common breast cancer, IDC may coexist with SA, making it

difficult to distinguish between them (6). However, surgical resection is

the main treatment for IDC due to its invasiveness and metastasis,

whereas follow-up procedures are performed for SA (7).

The conventional breast ultrasound (US) plays a key role in

screening, diagnostic imaging, and interventional breast surgery for

breast lesions. For patients, US is relatively quicker, more

comfortable, less expensive, and radiation-free. The American

College of Radiology Breast Imaging Report and Data System

(ACR BI-RADS) has developed a standardized vocabulary to

describe the findings of US examinations, and has established a

system to classify these findings and the probability of malignant

tumors (8, 9). However, US and BI-RADS both depend on the

subjective observations of radiologists. Therefore, exploring the use

of a non-invasive and objective method to differentiate between

benign and malignant lesions is crucial.

Texture analysis technology extracts texture feature parameters

by certain image processing systems, which can objectively and

quantitatively provide information about the lesions that cannot be

identified by the naked eye (10, 11). MaZda is a software package

used for 2D and 3D image texture analyses, and it provides a

complete path for the quantitative analysis of image textures. It is

effective in its use for various imaging analyses, including X-rays,

US, and magnetic resonance imaging. It has been proven to be an

efficient and reliable tool for quantitative image analyses, providing

more accurate and objective medical diagnoses (12–15).
02
A logistic regression model is based on a multivariate regression

analysis, integrating multiple predictors and using multiple indicators

to diagnose or predict the occurrence or progress of diseases (16, 17).

To our knowledge, there is no model based on an ultrasonic texture

analysis used to distinguish between SA and IDC.Weaimed to develop

and validate an ultrasound-based radiomics model to differentiate

between SA and IDC, which could be a potential candidate diagnostic

tool for breast lesions and could help to avoid misdiagnosis and

unnecessary biopsies.
Materials and methods

Study population

This retrospective study was approved by the Research Ethics

Committee of the First Affiliated Hospital of Guangxi Medical

University. We retrospectively reviewed the medical records of

345 consecutive female patients (345 lesions) in our hospital from

January 2020 to March 2022, including 76 cases of SA and 269 cases

of IDC. Patients from the study population were randomly divided

into a training cohort (n=208, mean age: 51.3 ± 12.2 years) and a

validation cohort (n=137, mean age: 51.5 ± 10.2 years). The

consistency between the two cohorts was tested. In addition,

patients from our hospital from April 2022 to December 2022,

including 26 cases of SA and 30 cases of IDC, were included for

independent validation (n = 56, mean age: 48.3 ± 13.6 years).

The inclusion criteria were as follows: (1) a breast US was

performed before biopsy or surgery; (2) US images were available

for qualitative and radiomic analysis; (3) all participants were

confirmed as SA or IDC by biopsy or surgical pathology; (4) all

patients had not received systemic hormone therapy or neoadjuvant

chemotherapy; (5) the clinical information and US images were

complete; and (6) only a lesion in the largest or highest BI-RADS

category was included for patients with multiple lesions.

The exclusion criteria were as follows: (1) the poor quality of

ultrasonic images affected the texture analysis; (2) the pathological

result was indefinite; (3) patients had received systemic hormone

therapy or neoadjuvant chemotherapy; (4) clinical information and
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US images were lacking; and (5) the lesion was too large to delineate

the ROI.

The flow chart of the study was shown in Figure 1.
Breast ultrasound technology

All patients underwent a pre-surgical US examination. The

patients were in a supine position with their hands raised above

their heads to fully expose the breast. Color Doppler ultrasound

instruments included GE LOGIQ E9, VOLUSON E9 (General

Electric Company, Boston, USA), or HITACHI ARIEETTA 70

(HITACHI Ltd., Tokyo, Japan) with a linear array probe and a

frequency of 9-12 MHz.

The standard store images of breast lesion included at least two

vertical sections, one of which showing the maximum diameter of

the lesion. The images with the clearest and most complete

demonstration of lesions were chosen. The focus was located

slightly below the lesion, and the frequency range was 9-12MHz.

Each lesion was classified into a category (3, 4A, 4B, 4C, or 5)

according to the 5th edition of ACR BI-RADS US. According to

ACR BI-RADS classification, BI-RADS 4A means that the degree of

malignancy is very low, and the possibility of benign lesions is far

greater than that of malignant lesions. According to relevant

literature, lesions of BI-RADS 3 or 4A were considered to be

negative, and lesions of BI-RADS 4B, 4C or 5 were considered to

be malignant in our study (18). The ultrasonic features of the breast

lesions were recorded, including maximum size, shape, echo

pattern, echo distribution, boundary, orientation, posterior

feature, calcification, vascularity distribution, and associated

features. All lesions were examined and evaluated by two

ultrasound doctors with more than five years of experience with

breast US. In the case of a disagreement, a final consensus was

reached through a discussion.

The maximum size was the largest diameter of the tumor. The

shape was defined as regular or irregular. The echo pattern was

divided into hypoechoic, or complex echo. The echo distribution
Frontiers in Oncology 03
was divided into uniform or non-uniform types. The boundary was

interpreted as well-circumscribed or obscure. The orientation was

depicted as whether or not the breast lesion was parallel to the chest

wall. The posterior acoustic features were classified as attenuated or

not. The vascularity distribution was recorded as absent or internal

(1). Associated features included duct ectasia, and palpable mass.
Pathological findings

The histopathological results of all lesions were obtained from

the surgical resection report. Each specimen was placed in a

formalin solution, and then histopathological treatment was

carried out using the standard procedures. The final pathological

results were evaluated by experienced pathologists.
Radiomic analysis

The section of the largest diameter of the lesion was selected to

draw ROI by one ultrasound doctor with more than ten years

experience of breast US. ROI was set to be 0.1-0.2cm along the inner

edge of the lesion. The ultrasound gray-scale images were imported

into MaZda software (Version 4.2.6.0), and the ROI results were

then delineated manually (Figure 2). After normalization, a total of

279 descriptors were used to characterize the gray-scale image

texture using MaZda software, including nine texture features

based on the histogram, 11 features based on the co-occurrence

matrix (derived from 20 co-occurrence matrices produced for four

directions and five inter-pixel distances), five features based on the

run-length matrix (each in four different directions), five features

based on a gradient map, five features based on an autoregressive

model, and up to 20 features based on the Haar wavelet

transform (12).

In order to select the features with good reproducibility and

stability to build the model, 30 ultrasound images of breast lesions

were randomly selected. The ROI was drawn by another ultrasound

doctor with more than ten years experience of breast US and the

features were extracted again. Intragroup correlation coefficient

(ICC) was used to evaluate the consistency between the ROI

extraction features, which was drawn by two ultrasound doctors.

The features with ICC greater than or equal to 0.75 were considered

to have good reproducibility and stability. The least absolute

shrinkage and selection operator (LASSO) logistic regression and

cross-validation were performed to select the significant features.

The selected features were used to establish the radiomics score.
Development and validation of the model

We conducted univariate and multivariate logistic regression

analyses to explore the influencing factors. The candidate factors

included clinical information, ultrasonic features, BI-RADS, and the

radiomics score. In the training cohort, variables selected by the

univariate analysis (p<0.05) were used for the multivariate logistic

regression to determine the independent risk factors for themodel. On
FIGURE 1

The flow chart of the study.
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the basis of the validation cohort, the discrimination, calibration, and

clinical usefulness of the model were evaluated. In addition, the logistic

score of each patient in the independent validation cohort was

calculated using our model. The ROC curves were plotted to assess

the diagnostic performance of themodel (19). The area under the ROC

curve (AUC) was used to quantify discrimination. The calibration

curve was used to examine the model’s predictive accuracy. To

determine the clinical usefulness of the model, a decision curve

analysis (DCA) was performed (20). Leave-One-Out Cross-

Validation (LOOCV) was used to test the stability of the model,

which was graded as very good (Kappa value of 0.80 to 1.00), good

(Kappa value of 0.60 to 0.80), fair (Kappa value of 0.40 to 0.60),

moderate (Kappa value of 0.20 to 0.40) or poor (Kappa value<0.20).
Statistical analysis

The statistical analysis was conducted using R software (version

4.1.3) and SPSS 26.0 (Chicago, IL). For the categorical variables, the

Chi-square test was used, although when necessary, Fisher’s exact

test was used. The Student’s t-test was used to compare the

continuous variables with a normal distribution. The reported

statistical significance levels were all two-sided, and a P value<

0.05 was considered significant.

The “caret” package of R software was used to randomly split

the total data, 60% of which was included in the training cohort and

the remaining 40% in the verification cohort. At the same time, the

package was also used for cross-validation. The “glmnet” package

was used for the LASSO regression. The “glm” function of R
Frontiers in Oncology 04
software was used for the logistic regression analysis. The “Cairo”

package was used to plot the model. The “pROC” package was used

to plot the ROC curves and to measure the AUCs, which were

compared using DeLong’s test. The “calibrate” function was used

for the calibration curves. The “decision_curve” function was used

to perform the DCA.
Results

Study population

A total of 401 lesions from 401 female patients (mean age: 50.9

± 11.8 years, age range: 21-89 years) were recruited, including 102

SA (mean age: 47.1 ± 12.7 years, age range: 21-83 years) and 299

IDC (mean age: 52.2 ± 11.2 years, age range: 23-89 years). There

were 208 patients with 208 lesions in the training cohort (mean age:

51.3 ± 12.2 years), 137 patients with 137 lesions in the validation

cohort (mean age: 51.5 ± 10.2 years), and 56 patients with 56 lesions

in the independent validation cohort (mean age: 48.3 ± 13.6 years).
Clinical and ultrasonic characteristics

The clinical and ultrasonic characteristics of the training cohort

and the verification cohort were shown in Table 1. There were no

statistical differences in 14 observation indexes (p>0.05) between

the training cohort and the verification cohort, which indicated that

the consistency between the two cohorts was good.
A B

FIGURE 2

Ultrasound and histopathologic findings of a 35-year-old woman with SA. (A) The ultrasound image showed a hypoechoic lesion with irregular
shape. The lesion was classified as BI-RADS 4C and considered malignant, which was considered benign by our model. (B) ROI was manually drawn
in red by MaZda software along the edge of the lesion.
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Radiomic analysis

Based on the training cohort, we extracted 279 texture features

for each ROI. According to the result of reproducibility analysis by
Frontiers in Oncology 05
two ultrasound doctors, 250 radiomic features had good consistency

(ICC ≥ 0.75). Through the LASSO regression (Figure 3), the

following six optimal variables were selected: Skewness,

Horz l_RLNonUni , Horz l_GLevNonU, WavEnLL_s .3 ,

WavEnLH_s.3, and WavEnLH_s.4. Based on these six features,

the radiomics score was calculated using the following formula:

Radiomics score  =   − 3:675163  −  Skewness �  2:24776 �  10−1

−  Horzl _RLNonUni �  9:498166 �  10−6

−  Horzl _GLevNonU  �  3:05807 �  10−4

+  WavEnLL _ s:3 �  6:213542 �  10−5

+  WavEnLH _ s:3 �  6:650157 �  10−3

+  WavEnLH _ s:4 �  1:14583 �  10−3

Development and validation of the model

In the training cohort, a univariate analysis was performed on

14 observation indexes (Table 2). A multivariate logistic regression

was used to analyze the selected variables (p<0.05) to determine the

independent risk factors for the model (Table 2). Based on

radiomics score, BI-RADS and palpable mass as independent risk

variables (p<0.05), the logistic regression model was established by

the following function (Table 3):

Logit(P)  =   − 5:880236  +  3:996762X1  +  3:130755X2 

−  1:603437X3

The nomogram was developed based on the logistic regression

model (Figure 4) (21, 22).

The diagnostic performances of the model and the radiomics

scores were verified by the ROC analysis (Figure 5). The AUC was

used to quantify discrimination. In the training cohort, the AUC of

the model and the radiomics score were 0.978 (95% confidence

interval [CI: 0.960-0.997]) and 0.907 (95% confidence interval [CI:
TABLE 1 The clinical and ultrasonic characteristics in the training and
validation cohorts.

Training cohort
(n=208)

Validation cohort
(n=137)

P-
value

Age (years) 51.3 ± 12.2 51.5 ± 10.2 0.863

Pathology 0.962

SA
IDC

46 (22.1%)
162 (77.9%)

30 (21.9%)
107 (78.1%)

BI-RADS 0.509

3-4A
4B-5

44 (21.2%)
164 (78.8%)

25 (18.2%)
112 (81.8%)

Tumor Size (cm) 2.3 ± 1.3 2.3 ± 1.1 0.867

Duct Ectasia 0.981

None
Ectasia

199 (95.7%)
9 (4.3%)

131 (95.6%)
6 (4.4%)

Palpable Mass 0.217

None
Palpable

36 (17.3%)
172 (82.7%)

17 (12.4%)
120 (87.6%)

Echo Pattern 1.000

Hypoechoic
Complex Echo

202 (97.1%)
6 (2.9%)

133 (97.1%)
4 (2.9%)

Echo
Distribution

0.053

Uniform
Non-Uniform

21 (10.1%)
187 (89.9%)

6 (4.4%)
131 (95.6%)

Boundary 0.630

Well-
Circumscribed
Obscure

92 (44.2%)
116 (55.8%)

57 (41.6%)
80 (58.4%)

Shape 0.455

Regular
Irregular

20 (9.6%)
188 (90.4%)

10 (7.3%)
127 (92.7%)

Orientation 0.478

Parallel
Not Parallel

170 (81.7%)
38 (18.3%)

116 (84.7%)
21 (15.3%)

Posterior Feature 0.993

None
Attenuation

173 (83.2%)
35 (16.8%)

114 (83.2%)
23 (16.8%)

Calcification 0.828

None
Calcification

89 (42.8%)
119 (57.2%)

57 (41.6%)
80 (58.4%)

Vascularity
Distribution

0.994

Absent
Internal

76 (36.5%)
132 (63.5%)

50 (36.5%)
87(63.5%)
FIGURE 3

Selection of texture features by the least absolute shrinkage and
selection operator (LASSO) regression in the training cohort.
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0.854-0.960]), respectively. In the validation cohort, the AUC of the

model and the radiomics score were 0.946 (95% confidence interval

[CI: 0.903-0.990]) and 0.886 (95% confidence interval [CI: 0.821-

0.951]), respectively. In the total dataset, the AUC of the model and

the radiomics score were 0.965 (95% confidence interval [CI: 0.943-

0.986]) and 0.899 (95% confidence interval [CI: 0.858-0.939]),

respectively. In the independent validation cohort, the AUCs of
TABLE 2 Results of the univariate and multivariate logistic regression analysis in the training cohort.

Univariate
logistic regression analysis

Multivariate
logistic regression analysis

OR (95% CI) P-value OR (95% CI) P-value

Age 0.97 (0.87-1.07) 0.559

BI-RADS

3-4A
4B-5

Ref.
79.78 (4.81-3889.12) 0.007

Ref.
54.42 (12.98-308.27)

<0.001

Tumor Size (cm) 2.87 (0.86-11.72) 0.100

Duct Ectasia

None
Ectasia

Ref.
0.02 (0.00-1.19) 0.055

Palpable Mass

None
Palpable

Ref.
68.03 (5.04-2661.21) 0.006

Ref.
22.89 (4.33-144.54)

<0.001

Echo Pattern

Hypoechoic
Complex Echo

Ref.
0.06 (0.00-36.89) 0.539

Echo Distribution

Uniform
Non-Uniform

Ref.
13.98 (0.72-659.76) 0.112

Boundary

Well-Circumscribed
Obscure

Ref.
7.85 (0.77-154.81) 0.109

Shape

Regular
Irregular

Ref.
5.83 (0.18-215.56) 0.316

Orientation

Parallel
Not Parallel

Ref.
0.67 (0.02-32.58) 0.819

Posterior Feature

None
Attenuation

Ref.
0.48 (0.02-15.15) 0.642

Calcification

None
Calcification

Ref.
0.14 (0.00-2.01) 0.184

Vascularity Distribution

Absent
Internal

Ref.
8.28 (0.84-146.54) 0.088

Radiomics Score 0.13 (0.02-0.54) 0.019 0.20 (0.07-0.46) 0.001
fro
TABLE 3 Variable assignment table in the logistic regression model.

Variable Code Variable assignment

BI-RADS X1 3-4A=0, 4B-5 = 1

Palpable Mass X2 None=0, Palpable=1

Radiomics Score X3 Score
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the model and the radiomics score were 0.951 (95% confidence

interval [CI: 0.891-1]) and 0.779 (95% confidence interval [CI:

0.650-0.909]), respectively. (Table 4) According to DeLong’s test,

there were statistically significant differences (p<0.05) between the

model and radiomics scores.

The specificity, sensitivity, accuracy, Youden index, negative

predictive value, positive predictive value, false positive rate, true

positive rate, true negative rate and false negative rate of the model

and the radiomics score in the training cohort, the validation cohort,

the total dataset and in the independent validation cohort were

shown in Table 5, respectively. The Brier score of 0.066 suggested a
Frontiers in Oncology 07
high accuracy of themodel. The calibration curve demonstrated good

agreement between the prediction and the pathological results

(Figure 6). The DCA was plotted for the model (Figure 7). It

demonstrated that if the threshold probability is more than 5%,

using the model to predict SA and IDC will be more beneficial than

either the treat-all-patients scheme (assuming all lesions are IDC) or

the treat-none scheme (assuming all lesions are SA). Based on Leave-

One-Out Cross-Validation, the Kappa value of this model was 0.79,

which proved that the model had good stability.

According to the model, the lower the radiomics score, the

higher the BI-RADS classification, the more palpable the mass, and

the greater the possibility of IDC.
Discussion

We developed and validated an ultrasound-based radiomics

model, which included the radiomics score, BI-RADS and palpable

mass, to distinguish between SA and IDC. Although the radiomics

score we created was proved to have a high AUC value, the model

showed a better diagnostic efficacy and clinical utility than the

radiomics score alone, which indicates the superiority of the model

in disease identification.

SA is an IDC-mimicking benign proliferative breast lesion, which

is usually asymptomatic or only palpated with a mass. In previous
FIGURE 4

The nomogram was established based on the model.
D

A B

C

FIGURE 5

Receiver operating characteristic (ROC) curves of the model and radiomics score in the training cohort (A), validation cohort (B), total dataset
(C) and independent validation cohort (D), respectively.
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studies, it has been confirmed that SA can imitate IDC clinically,

radiologically, and pathologically, so it is necessary to distinguish

between SA and IDC (1–5, 7). As a convenient, affordable, and

radiation-free imaging examination, the US is a most widely used

breast screening technique. Liu et al. found that US BI-RADS atlas and

elastography are powerful tools in diagnosing SA (1). Shao et al.

asserted that an enhancedUS could improve the diagnostic accuracy of

SA (23). However, these researchers used a subjective analysis or

expensive inspections. The texture analysis is a new computer-aided

technology used for quantitative analyses of image information

through algorithms, which can prevent the subjectivity of ultrasonic

examinations and BI-RADS classifications (10, 11). To our knowledge,

no research has focused on ultrasonic omics to distinguish between SA

and IDC using a texture analysis.

We selected six radiomic features based on a regression analysis,

including one histogram parameter (Skewness), two grey level run-

length matrix (RLM) parameters (Horzl_RLNonUni and

Horzl_GLevNonU), and three Haar wavelet transform parameters

(WavEnLL_s.3, WavEnLH_s.3, and WavEnLH_s.4). The texture

analysis was normalized by MaZda software. According to the

coefficients, Skewness, Horzl_RLNonUni, and Horzl_GLevNonU

were negatively correlated with the radiomics score. That is, the

larger the Skewness, Horzl_RLNonUni, and Horzl_GLevNonU, the
Frontiers in Oncology 08
lower the radiomics score and the higher the probability of IDC. In

addition, the three Haar wavelet transform parameters were all

positively correlated with the radiomics score, which indicates that

when these three parameters are larger, the radiomics score is

higher and the probability of IDC is lower. Furthermore,

skewness seemed to contribute most to the radiomics score.

The histogram is computed based on the intensity of the pixels

without considering any spatial relations between the pixels within the

image (12). As one characteristic variable of a histogram, a high

skewness means an asymmetrical distribution with a long right tail.

A tumorwith a high skewness of signal intensity ismainly composed of

fibrosis or stroma. In this study, skewness was positively correlated

with the malignant degree of the tumor, which may be related to the

high gray intensity of the image caused by hyperplasia, fibrosis,

calcification, and tumor cell accumulation in the IDC glands.

Previous studies have shown that a high mammographic density

independently predicts the risk of breast cancer and that a high

skewness of a tumor might be related to poor survival (24–26). Our

observations were consistent with these previous reports. On a gray-

level image, the RLM quantifies the coarseness of a texture in a specific

direction. When runs are equally distributed throughout the gray

levels, the function of gray-level non-uniformity reaches its lowest

values. If the runs are equally distributed throughout the lengths, the
TABLE 4 AUCs of the radiomics score and model.

Training cohort
(n=208)

P-
value

Validation cohort
(n=137)

P-
value

Total dataset
(n=345)

P-
value

Independent validation
cohort (n=56)

P-
value

AUC (95% CI) AUC (95% CI) AUC (95% CI) AUC (95% CI)

Model 0.978 (0.960-0.997) 0.946 (0.903-0.990) 0.965 (0.943-0.986) 0.951 (0.891-1)

Radiomics
score

0.907 (0.854-0.960) 0.886 (0.821-0.951) 0.899 (0.858-0.939) 0.779 (0.650-0.909)

Model vs.
Radiomics
score

0.005 0.025 <0.001 0.002
frontie
TABLE 5 The evaluation index of the radiomics score and model.

Training cohort (n=208) Validation cohort (n=137) Total dataset (n=345) Independent validation cohort
(n=56)

Model Radiomics score Model Radiomics score Model Radiomics score Model Radiomics score

specificity 0.913 0.826 0.867 0.767 0.908 0.803 0.846 0.538

sensitivity 0.920 0.895 0.907 0.850 0.892 0.877 0.967 0.967

accuracy 0.918 0.880 0.898 0.832 0.896 0.861 0.911 0.768

Youden index 0.833 0.721 0.774 0.617 0.800 0.680 0.813 0.505

npv 0.764 0.691 0.722 0.590 0.704 0.649 0.957 0.933

ppv 0.974 0.948 0.960 0.929 0.972 0.940 0.879 0.707

fpr 0.087 0.174 0.133 0.233 0.092 0.197 0.154 0.462

tpr 0.920 0.895 0.907 0.850 0.892 0.877 0.967 0.967

tnr 0.913 0.826 0.867 0.767 0.908 0.803 0.846 0.538

fnr 0.080 0.105 0.093 0.150 0.108 0.123 0.033 0.033
(npv,negative predictive value; ppv,positive predictive value; fpr,false positive rate; tpr,true positive rate; tnr,true negative rate; fnr,false negative rate).
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function of run length non-uniformity has a low value (27). In our

study, Horzl_RLNonUni and Horzl_GLevNonU were negatively

correlated with the radiomics score, which meant that the gray levels

and the lengths of IDC were nonuniform. This is consistent with our

observation of the IDC ultrasonic features. The wavelet transform

provides time/space and frequency (or scale) resolution information of

the signal/image and the details of the image at different frequencies,

which reflects the detailed features of the image. When the image is

clearer or the frequency is richer, the parameter value is higher. The

Haar wavelet has mainly been used for the feature extraction of breast

cancer diagnoses in many studies (28).In this study, the selected three

Haar wavelet transform parameters were all positively correlated with

the radiomics score, which meant that the IDC texture images were
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blurred. This may be due to the heterogeneity of IDC cells and the

proliferation of tumor blood vessels, which are prone to necrosis and

make the tumor image blurry.

Despite the promising performance of the radiomics score, the

model of our study, which combined ultrasonic characteristics, BI-

RADS, clinical information, and radiomic features, had the

advantages of being affordable and objective, suggesting that it is

beneficial to combine a texture analysis with ultrasonic features and

clinical manifestations in future medical work. Based on the

univariate logistic regression, each index was gradually fitted, and

three characteristics were screened out as indicators to distinguish

between SA and IDC. Soo-Yeon Kim et al. proposed that BI-RADS

4B or 5 was independently related to malignant tumors, and had a

high upgrade rate (29). Based on our findings, BI-RADS 3 or 4A

suggests that SA is possible, and a higher classification tends to be

malignant. A palpable mass with a lower radiomics score further

suggests IDC. The results were basically consistent with previous

research conclusions (1, 29, 30). In addition, based on the

multivariate logistic regression analysis, the influence of

confounding factors was eliminated, and the final three variables

were obtained, including the radiomics score, BI-RADS and

palpable mass, which were used as independent influence factors

and were selected to develop the model.

There are some limitations of the current study that need to be

further investigated. (1) This study was a retrospective analysis,

therefore it was difficult to completely overcome the operator

dependency of the initial examination, making a bias error

inevitable. (2) This study was a single-center research study, so the
D

A B

C

FIGURE 6

Calibration curve for the model in the training cohort (A), validation cohort (B), total dataset (C) and independent validation cohort (D), respectively.
FIGURE 7

Decision curve analysis for the model and radiomics score.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1090617
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Huang et al. 10.3389/fonc.2023.1090617
number of SA and IDC cases was limited. The performance of this

model needs to be verified by other centers and a larger cohort in the

future. (3) We only included patients with SA and IDC, though the

differences in the texture features for the pathological subtypes of

breast cancer and adenosis can be analyzed in the future.
Conclusion

The model in our study based on radiomics, ultrasonic features,

and clinical manifestations can be used to distinguish SA from IDC,

which showed good stability and diagnostic performance. The model

can be considered a potential candidate diagnostic tool for breast

lesions and can contribute to effective clinical diagnosis and treatment.
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