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Impact of MRI resolution for
Linac-based stereotactic
radiosurgery

Yimei Huang*, Evan Liang, Eric M. Schaff, Bo Zhao,
Karen C. Snyder, Indrin J. Chetty, Mira M. Shah
and Salim M. Siddiqui

Department of Radiation Oncology, Henry Ford Health, Detroit, MI, United States
Objective: Magnetic resonance imaging (MRI) is a standard imaging modality in

intracranial stereotactic radiosurgery (SRS) for defining target volumes. However,

wide disparities in MRI resolution exist, which could directly impact accuracy of

target delineation. Here, sequences with various MRI resolution were acquired on

phantoms to evaluate the effect on volume definition and dosimetric consequence

for cranial SRS.

Materials/Methods: Four T1-weighted MR sequences with increasing 3D

resolution were compared, including two Spin Echo (SE) 2D acquisitions with

5mm and 3mm slice thickness (SE5mm, SE3mm) and two gradient echo 3D

acquisitions (TFE, BRAVO). The voxel sizes were 0.4×0.4×5.0, 0.5×0.5×3.0,

0.9×0.9×1.25, and 0.4×0.4×0.5 mm3, respectively. Four phantoms with

simulated lesions of different shape and volume (range, 0.53–25.0 cm3) were

imaged, resulting in 16 total sets of MRIs. Four radiation oncologists provided

contours on individual MR image set. All observer contours were compared with

ground truth, defined on CT image according to the absolute dimensions of the

target structure, using Dice similarity coefficient (DSC), Hausdorff distance (HD),

mean distance-to-agreement (MDA), and the ratio between reconstructed and

true volume (Ratiovol). For dosimetric consequence, SRS plans targeting observer

volumes were created. The true Paddick conformity index (CItruepaddick), calculated

with true target volume, was correlated with quality of observer volume.

Results: All measures of observer contours improved as increasingly higher MRI

resolution was provided from SE5mm to BRAVO. The improvement in DSC, HD

and MDA was statistically significant (p<0.01). Dosimetrically, CItruepaddick  strongly

correlated with DSC of the planning observer volume (Pearson’s r=0.94,

p<0.00001).

Conclusions: Significant improvement in target definition and reduced inter-

observer variation was observed as the MRI resolution improved, which also

improved the quality of SRS plans. Results imply that high resolution 3D MR

sequences should be used to minimize potential errors in target definition, and

multi-slice 2D sequences should be avoided.
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1 Introduction

Single- and multi-fraction stereotactic radiosurgery (SRS) has

long been established as an effective treatment option for metastatic

or primary brain tumors (1–8). It has also been applied successfully in

treating benign conditions such as trigeminal neuralgia (9) and

movement disorders (10). Due to the various indications for SRS,

the size of the target volume can vary from millimeters to a few

centimeters in diameter. Accurate delineation of the target volume for

SRS treatments is crucial. Underrepresentation of the true target

volume may lead to decreased tumor control probability. On the

other hand, overrepresentation of target volume could unnecessarily

increase the normal tissue complication probability due to

surrounding organs-at-risk (11, 12).

Because of the superior soft tissue contrast afforded by MRI, T1-

weighted contrast-enhanced MRI is the standard imaging modality

for delineation of target volumes in SRS. High-resolution MRI scans

are often ordered specifically for improving contouring accuracy (13,

14). A recent consensus recommendation for brain metastases

imaging specifies post-contrast T1-weighted images using either a

3D pulse sequence with ≤ 1 mm isotropic resolution obtained in a 3T

MR scanner, or ≤ 1.5 mm isotropic resolution obtained in a 1.5T

scanner (15). Because of the higher spatial resolution, 3D pulse

sequences are normally preferred over multi-slice 2D sequences.

However, due to logistic or economic constraints, diagnostic MRIs

for radiologic assessment are sometimes utilized for treatment

planning. The diagnostic MRIs are often acquired using multi-slice

2D sequences and optimized for speed or other considerations, rather

than the spatial resolution and geometric accuracy.

Existing literature on the variability of target volume

measurement due to MR protocol variations is limited. Studies have

shown that thin-slice MR imaging protocols can reveal an increased

number of brain metastases (16, 17). Snell et al. simulated the effect

with a synthetic digital tumor and concluded that the volume of a

compact lesion can be determined with less than 10% error if there

were at least 5 slices through the region of interest (18). To our

knowledge, there is no published work that directly compares

observer volumes based on repeat MRI with different pulse

sequences, nor is there any work correlating MRI partial volume

effect with dosimetric consequence in SRS plans. In this study, a set of

phantoms was imaged with 4 different T1-weighted MRI sequences.

The observed volumes were compared with true volume to evaluate

inter-observer variation due to spatial resolution of MRI. SRS plans

based on the observer volumes were generated and the correlation

with the plan quality was evaluated.
2 Materials and methods

2.1 Phantoms

Four commercially available CT/MR phantom inserts were

included in this study, all with one or two cavities fillable with MR-

compatible solution to simulate tumor volume. Three are part of a

STEEV phantom (CIRS, Norfolk, VA, USA) that simulate a 12.5 cm3

organic tumor (P1), a 25.0 cm3 organic tumor (P2), and a 3 cm
Frontiers in Oncology 02
diameter spherical tumor (P3), respectively. These cavities were filled

with water doped with CuSO45H2O. The 4th insert (P4), part of

StereoPHAN (Sun Nuclear, Melbourne, FL, USA), has two identical

cavities that were filled with mineral oil, each with a volume of

0.53 cm3. Table 1 lists the four inserts. Select axial, coronal, and

sagittal views through the inserts from one of the MRI series are

included. The tumor volumes are surrounded by signal-free

background on the MRI.
2.2 Imaging with CT and MR

All inserts were imaged on a Brilliance 64 CT scanner (Philips

Medical Systems, Hamburg, Germany) with an axial pixel size of 0.23

× 0.23 mm2 and slice thickness of 0.65 mm. The images were

imported in Eclipse (V15.6, Varian Medical Systems, Palo Alto, CA,

USA). Target volumes were determined based on image thresholding

with the absolute dimensions consistent with vendor specifications.

These volumes are the gold standard to which the MR-based observer

contours were compared.

The inserts were imaged with four different T1-weighted MR

protocols on a Panorama 1.0T (Philips Medical Systems) and a

Discovery MR750 3.0T (GE Healthcare, Chicago, IL, USA). Table 2

lists the MRI protocols in order of increasing spatial resolution, and

these represent the typical or best resolution in T1-weighted MRI

encountered in our clinic. TFE and BRAVO sequences are both

gradient echo 3D scan technique and provide high resolution

images with near isotropic voxel dimensions. 2D multi-slice Spin

Echo (SE) provides sub-millimeter pixel size in a pre-selected

orientation but thicker slick thickness than the 3D scan images. To

compensate for worse resolution cross-plane, each SE sequence was

acquired in both axial and coronal orientations. The pair of images

was presented to the observers as a set to aid determination of the

target volumes in three dimensions. Four sets of MRs, i.e., SE5mm,

SE3mm, TFE, and BRAVO, were acquired for each insert, resulting in

16 sets of MR images.
2.3 Contouring

Four radiation oncologists experienced with cranial radiosurgery

provided the contours in Eclipse (Varian Medical System, Palo Alto,

CA). The contours were manually delineated on individual set of MR

series without referencing other MRI or CT image sets. As described

above, the true volume was determined based on CT. To compare

observer contours with true volume, all observer contours were

transferred from their respective MR series to the corresponding

CT dataset through rigid image registration. The CT and all the true

and observer contours were then exported to MIM (V6.8.7, MIM

Software Inc. Cleveland, OH, USA) for the final analysis. The

following metrics were included for comparison:

a. Dice similarity coefficient (DSC) (19): measures the overlap

between observer contour, A, and ground truth, B. The values of DSC

range from 0 (no overlap) to 1 (perfect overlap).

DSC =
2 A ∩  Bð Þ
A + B
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TABLE 1 Phantom inserts and simulated target shapes as shown in BRAVO MRI series.
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b. Ratio of observer volume to true volume (RatioVol).

c. Hausdorff distance (HD) (20): the maximum distance between

contours A and B, or max(h(A,B), h(B, A)), where h(A, B) = max
a∈A

 min
b∈B

 jja − bjj, and ||a−b|| is the Euclidean distance.

d. Mean distance to agreement (MDA) (21): the average of all

distances between points on contour A and contour B and vice versa.

The above parameters measure how close each observer contour

is to true volume. The results on the observer contours from one MR

sequence were compared with those from another MR sequence to

demonstrate the effect of MR sequence resolution. Two-sided signed-

rank tests were performed between SE5mm and SE3mm, between

SE3mm and TFE, and between TFE and BRAVO. A value of p < 0.05

was pre-determined to indicate a significantly different result.
2.4 Dosimetric impact of observer
contour variation

The true and observer volumes were all transferred to the STEEV

anthropomorphic phantom CT dataset. Assuming the only organ-at-

risk is the normal brain, a HyperArc plans (22) was generated with the

planning target volume being one of the observer volumes. A total of

16 HyperArc plans were created based on the 16 observer volumes on

insert P1 (P1-plans), and 24 HyperArc plans based on the observer

volumes on P4 (P4-plans).

All the plans were generated in 6XFFF mode on an Edge with

HD120 MLC (Varian Medical System, Palo Alto, CA), each consisted
Frontiers in Oncology 04
of four 180° arcs arranged at couch angles of 0, 45°, 270°, and 315°. A

typical beam arrangement in a HyperArc plan is shown in Figure 1.

The plans were optimized to provide optimal dose gradient and

conformity and were normalized such that 100% prescription dose

covered 99% planning target volume (V100% = 99%). The

prescription was 27 Gy in 3 fractions to P1-plans and 18 Gy in

single fraction to P4-plans, due to the target volume being close to

12.5 and 0.53 cm3, respectively.

The Paddick conformity index, CIpaddick, is recommended in the

International Commission on Radiation Units and Measurements

(ICRU) report 91 (23) for reporting SRS treatments. It is defined as

CIpaddick =   TV2
PIV

TV�PIV , where PIV is the volume of prescription isodose,

TV is the target volume, and TVPIV is the target volume covered by

the prescription dose. An ideal value of CIpaddick is 1.0. Either under-

or over-coverage of target volume leads to CIpaddick being less than 1.0

and a decrease in plan quality.

In each of the HyperArc plans, CIpaddick was evaluated using both

the planning (CIplanningpaddick ) and true target volume (CItruepaddick). To

evaluate the dosimetric impact due to the accuracy of planning

target volume, the Pearson correlation coefficient, r, was calculated

between CItruepaddick  and DSC of the planning target volume. The

correlation is considered strong if | r | > 0.7 and statistically

significant if p < 0.05.
3 Results

3.1 Contouring

From the 4 observers and 4 inserts, 18 sets of contours were

collected in each MR sequence. All observer contours were compared

with the ground truth. The comparison to true volume as a function

of MR sequence is presented in Table 3. All indices improved as the

MRI spatial resolution increased from SE5mm, SE3mm, to TFE and

BRAVO. The improvement of observer contours in DSC, HD, and

MDA was statistically significant (p < 0.01). Thus, a higher MRI

spatial resolution resulted in observer contours closer to ground truth.
3.2 Planning

The 16 P1-plans were well matched in dose conformity and

gradient based on the planning target volume. In particular, the

value of CIplanningpaddick in the 16 P1-plans was 0.92 ± 0.01 (range 0.91 to
TABLE 2 MR protocols listed with increasing image resolution.

Scanner MR Protocol Resolution in axial plane or plane of acquisition (mm2) Slice thickness (mm)

GE 3.0T
SE5mm (T1-Flair SE axial and coronal)
TR = 2100 ms, TE = 8.3 ms, TI = 895 ms 0.4 × 0.4 5.0

Philips 1.0T
SE3mm (T1 SE axial and coronal)
TR = 643.9 ms, TE = 15 ms 0.5 × 0.5 3.0

Philips 1.0T TFE TR = 7.9 ms, TE = 3.9 ms, flip angle = 9° 0.9 × 0.9 1.25

GE 3.0T BRAVO TR = 7.5 ms, TE = 3.2 ms, flip angle = 12° 0.4 × 0.4 0.5
FIGURE 1

Typical beam arrangement of a HyperArc plan in this study, consisting
of four non-coplanar 180° arcs at couch angles of 0, 45°, 90°, and
315°.
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0.93) according to the planning target volume. However, calculated

with the true target volume, CItruepaddickwas 0.88 ± 0.05 (range 0.75 to

0.96). Similarly, CIplanningpaddick was 0.82 ± 0.02 (range 0.79 to 0.85) in the 24

P4-plans, while CItruepaddickdegraded to 0.73 ± 0.13 (range 0.43 to 0.89).

Combining the 16 P1-plans and 24 P4-plans, Figure 2 shows a strong

correlation between CItruepaddickand DSC of the planning target volume

(r = 0.94, p< 0.00001). The positive correlation between CItruepaddickand

DSC suggested that, as DSC decreases due to a greater deviation of

planning target volume from true volume, CItruepaddickdeclines.

Therefore, the accuracy of observer target volume directly impacted

the quality of SRS plans.
4 Discussion

Although MRI offers superior soft tissue contrast, significant

inter-observer variations have been noted in target delineation of

brain tumors for SRS (24–26). Our study indicated that differences in

image resolution in MRI sequences can contribute to inter-observer

variation as demonstrated by parameters such as DSC, HD and MDA

when comparing observer contours with ground truth. Higher

resolution MRI leads to target volumes closer to ground truth and

reduced spread in the parameters evaluated. Thus, finer resolution

MRI allows more accurate and consistent target delineation among

the observers.

Both axial and coronal series were provided to the observers in the

SE5mm and SE3mm sequences. The axial series has superior axial

planar resolution, but coarse resolution in superior/inferior direction.

The coronal series complements the axial series by providing superior

resolution in coronal plane but coarse resolution in anterior/posterior
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direction. Combining information from the two series effectively

allows the volume of a target to be defined accurately in three

dimensions. Due to the subjectivity in combining information from

axial and coronal series however, the superior and inferior portion of

the volume could be either over- or under-represented, especially with

irregular target volume shapes. In the clinical setting of cranial

radiosurgery, the risk of over- or under-treating the superior or

inferior portion of the disease increases when multi-slice 2D

sequences with thick slices are used for SRS treatment planning.

Figure 3 compares true volume with the axial, coronal, and sagittal

views of observer contours based on SE5mm sequence on phantom

insert P1. The volumes were shown on the SE5mm axial series with

full range of window and level. Besides the significant variation in

observer contours at superior and inferior portions of the volume,

large deviations were also noted where there is substantial change in

tumor shape across plane (Figure 3A)

The other factor that contributes to the inter-observer variation

was the difference in user window/level preferences and related

impact on visualization of target boundaries. This factor leads to

systematic over- or under-estimation of the target volume. Figure 4

compares true volume with observer contours based on BRAVO

sequence on phantom insert P1. Comparing to Figure 3, the

agreement with true volume is much improved.

To avoid being influenced by other MRI series or CT images, the

observers were instructed to delineate directly on the individual MR

sequence. The volumes were then transferred on to the CT image set.

All the transferred volumes were visually confirmed to be consistent

with the original observer volumes on MRI. The CT image, true

volume, and transferred observer volumes were then exported and

analyzed in MIM. There could be potential differences in volume

calculation and rendering between different systems (27, 28). To

confirm fidelity of volumes following transfer from Eclipse to MIM,

volumes reported by the two systems were compared, and the

difference was negligible 0.01 ± 0.01 cc. Because all the analysis was

carried out on one system, uncertainty due to variations in the

handling of the volumes by different systems is minimized.

In this study, we simulated T1-weighted post-contract images

using the MR and CT compatible inserts. The influence of other

image series, such as pre-contrast T1-weighted, T2-weighted, fluid-

attenuated inversion recovery image, etc, which might be useful for

target delineation in SRS planning was not investigated. The

simulated target volumes were well-defined and surrounded by

signal-free background in the MR images. In a clinical brain MR

image, it is likely that inter-observer variation would increase due to

MR spatial resolution and other factors including image contrast and

signal-to-noise ratio (SNR). The lesions included in this study were
FIGURE 2

True Paddick conformity index (CItruepaddick) as a function of Dice

similarity coefficient (DSC) of the planning target volume (N=40).
TABLE 3 Comparison of observer delineated versus ground truth contours using DSC, HD, MDA, and Ratiovol..

MR Sequence DSC HD (mm) MDA (mm) RatioVol

SE5mm 0.86 ± 0.09 [0.63-0.94] 3.77 ± 1.96 [1.17-8.04] 0.75 ± 0.33 [0.27-1.44] 1.23 ± 0.34 [0.87-2.09]

SE3mm 0.91 ± 0.05 [0.79-0.96] 2.72 ± 1.22 [1.05-5.29] 0.47 ± 0.18 [0.24-0.93] 1.08 ± 0.19 [0.79-1.52]

TFE 0.94 ± 0.04 [0.85-0.97] 2.19 ± 1.28 [0.94-4.96] 0.31 ± 0.12 [0.13-0.56] 1.06 ± 0.13 [0.86-1.35]

BRAVO 0.96 ± 0.02 [0.92-0.98] 1.52 ± 1.28 [0.68-4.07] 0.18 ± 0.07 [0.10-0.31] 1.00 ± 0.07 [0.91-1.17]
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small and the MRIs were acquired with targets placed in the magnetic

isocenter. For large lesions, or discrete lesions spread out over a large

volume, any geometric distortion in the MRI could also lead to

systematic deviation in user contours.
5 Conclusion

Significant improvements in target definition and reduced inter-

observer variations were observed as the MR image resolution

improved. Results imply that the highest resolution 3D MR

sequences should be used to minimize potential errors in target

definition, and multi-slice 2D sequences should be avoided. Even

with high-resolution 3D MR sequences, care should be used with the

window and level of the image for consistent target definition.
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A B C

FIGURE 3

Observer contours on SE5mm MR sequence and true volume (red) on Phantom insert P1 in axial (A), coronal (B), and sagittal (C) views. The volumes are
shown on SE5mm axial MR series with full range of window and level. Circled area showed significant deviation from true volume.
A B C

FIGURE 4

Observer contours on BRAVO MR sequence and true volume (red) on Phantom insert P1 in axial (A), coronal (B), and sagittal (C) views. The volumes are
shown on BRAVO series with full range of window and level.
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