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Gain-of-function mutations of SHP2, especially D61Y and E76K, lead to the

development of neoplasms in hematopoietic cells. Previously, we found that

SHP2-D61Y and -E76K confer HCD-57 cells cytokine-independent survival and

proliferation via activation of MAPK pathway. Metabolic reprogramming is likely to

be involved in leukemogenesis led bymutant SHP2. However, detailed pathways or

key genes of altered metabolisms are unknown in leukemia cells expressing

mutant SHP2. In this study, we performed transcriptome analysis to identify

dysregulated metabolic pathways and key genes using HCD-57 transformed by

mutant SHP2. A total of 2443 and 2273 significant differentially expressed genes

(DEGs) were identified in HCD-57 expressing SHP2-D61Y and -E76K compared

with parental cells as the control, respectively. Gene ontology (GO) and Reactome

enrichment analysis showed that a large proportion of DEGs were involved in the

metabolism process. Kyoto Encyclopedia of Gene and Genome (KEGG) pathway

enrichment analysis showed that DEGs were the mostly enriched in glutathione

metabolism and biosynthesis of amino acids in metabolic pathways. Gene Set

Enrichment Analysis (GSEA) revealed that the expression of mutant SHP2 led to a

significant activation of biosynthesis of amino acids pathway in HCD-57 expressing

mutant SHP2 compared with the control. Particularly, we found that ASNS,

PHGDH, PSAT1, and SHMT2 involved in the biosynthesis of asparagine, serine,

and glycine were remarkably up-regulated. Together, these transcriptome

profiling data provided new insights into the metabolic mechanisms underlying

mutant SHP2-driven leukemogenesis.
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Introduction

Src Homology 2 domain-containing protein tyrosine

Phosphatase-2 (SHP2), encoded by PTPN11 gene, is a classical non-

receptor protein tyrosine phosphatase (PTP) (1). It is the first PTP

recognized as an oncogene. SHP2 plays key roles in regulating RAS-

ERK, PI3K-AKT, JAK-STAT and other signaling pathways, which are

mainly downstream signals of growth factor, cytokine, and integrin

receptors (2, 3). In general, SHP2 mutations are rare in solid tumors

(3). Germline mutations in SHP2 present in ~50% of Noonan

Syndrome and ~90% of LEOPARD syndrome, both congenital

developmental disorders and mainly characterized by growth

retardation, short stature, facial features, and heart defects (4).

Somatic SHP2 mutations mainly occur in several types of

hematologic malignancies, including ~10% myelodysplastic

syndromes, ~5% juvenile acute myeloid leukemia, ~7% B-cell acute

lymphoblastic leukemia, and particularly ~35% juvenile

myelomonocytic leukemia (JMML) (3, 5–7). However, the

molecular mechanisms of leukemogenesis driven by mutant SHP2

are not fully understood. Previous studies about SHP2 mutants

mainly focus on the activation of tumor proliferation signaling

pathways and the tumor microenvironment (1, 3). However, the

effects of SHP2 mutants on cancer-cell metabolism have not been

investigated. Characterizing the alterations in cellular biosynthesis

can provide insights into the mechanism of mutant SHP2-

driven leukemogenesis.

Various biological hallmarks of tumor cells are closely related to

cell metabolism, including rapid proliferation, immune escape and

drug resistance (8). The use of cellular nutrient generally requires the

binding of growth factors to their receptors to activate a series of

signaling pathways that initiate cell metabolism (9). However, gain-

of-function mutations occur in growth factor receptors or

downstream pathway genes in most tumor cells (10), leading to

constantly activated signals that overcome the growth factor

dependency (11). As the result, cancer cells acquire the ability to

autonomously uptake nutrients, providing a material basis for the

uncontrolled division and proliferation (9). Meanwhile, abnormal

metabolic pathways often induce cancer cell-specific vulnerabilities,

which provided potential therapeutic targets.

Metabolic reprogramming is believed to result from oncogene

activation or metabolic enzymes alterations (12). Previous studies

have shown that some key proteins in cell proliferation-related

signaling pathways are involved in metabolic reprogramming (13).

The serine/threonine kinase AKT, for instance, does not only activate

cell division signals, but also regulates glucose uptake to provide

energy to cancer cells. The activation of AKT has been found to

support the growth factor-independent survival via multi-step

regulation of glucose metabolism, including promotion of glucose

uptake by up-regulation of glucose transporter 1 (GLUT1) and

activation of hexokinase (HK) (14, 15). In most cases, a variety of

oncogenes lead to metabolic reprogramming by inducing broad

changes in gene expressions (16). For instance, MYC enhances

aerobic glycolysis by up-regulating GLUT1, PKM, LDH and MCT1,

which also reprograms the glutathione biosynthesis (13, 17). Besides,

cancer cells with specific oncogenic activation exhibit a defined

metabolic preference (16). For example, EGFR activation promotes
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the serine synthesis pathway whereas FGFR activation enhances

aerobic glycolysis and recycles lactate (16).

Our previous studies have shown that the expression of mutant

SHP2 led to growth factor-independency of HCD-57, an

erythropoietin (EPO)-dependent erythroid leukemia cell line (18),

suggesting the possibility of mutant SHP2-reprogrammed cell

metabolism in HCD-57. For this reason, we investigated altered

metabolism pathways of parental and SHP2-mutant HCD-57 based

on transcriptome analysis. Analysis of Kyoto Encyclopedia of Gene

and Genome (KEGG) metabolism-related pathways revealed that

differentially expressed genes (DEGs) were mainly enriched in

glutathione metabolism and biosynthesis of amino acids pathways.

Gene Set Enrichment Analysis (GSEA) showed the biosynthesis of

amino acids pathway was significantly activated by the expression of

mutant SHP2. In addition, we found that mRNA expression of ASNS

involved in asparagine synthesis, PHGDH and PSAT1 involved in

serine biosynthesis, and SHMT2 involved in glycine synthesis were

significantly increased in HCD-57 expressing mutant SHP2,

compared with parental cells. Taken together, we identified

aberrant metabolic pathways in mutant SHP2-driven leukemia cells,

which may provide potential metabolism-targeted therapies for

leukemia with SHP2 mutations.
Materials and methods

Cell culture

HCD-57 was a kind gift from Dr. Zhizhuang Joe Zhao, the

University of Oklahoma, Health Science Center. HCD-57 was

cultured in IMDM (Gibco, MA, USA) supplemented with 20% FBS

(Hyclone, UT, USA) and 20 ng/mL EPO (Peprotech, NJ, USA).

Parental HCD-57 cells were starved for 8 h without EPO before

total RNA isolation. HCD-57/SHP2-D61Y and HCD-57/SHP2-E76K,

as the mutant SHP2-expressing cells, have acquired EPO-

independent survival and proliferation. They were cultured in

IMDM supplemented with 20% FBS and in absence of EPO. All

cells were cultured in a humidified atmosphere at 37°C with 5% CO2.
Generation of mutant
SHP2-transformed HCD-57

Retroviruses carrying mutant SHP2 were generated by using

pMSCV-IRES-GFP as described previously (19). Briefly, the full-

length SHP2-D61Y and SHP2-E76K were cloned to pMSCV-IRES-

GFP, respectively. Plasmids containing mutant SHP2 were used to

transfect GP2-293 cells together with pVSV-G helper plasmid using

Lipofectamine 3000 reagent (Thermo Fisher Scientific, MA, USA).

Subsequently, the medium was collected and centrifuged at 20, 000 g

for 2 h at 4°C to enrich retroviruses. HCD-57 cells were infected by

retroviruses with 5 mg/mL polybrene (Sigma-Aldrich, MO, USA) with

centrifugation at 1, 800 g for 2 h at room temperature. The infected

cells were cultured in IMDM in absence of EPO. Single colonies were

picked after 8-10 days of culture and further expanded in EPO-free

IMDM supplemented with 20% FBS.
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Total RNA isolation

Total RNA from cells was isolated using Trizol (Invitrogen, CA,

USA) per the manufacturer’s instructions. The isolated total RNA was

qualified and quantified by using a Nano Drop and Agilent 2100

bioanalyzer (Thermo Fisher Scientific, MA, USA).
mRNA library construction

RNA-seq library construction and RNA high-throughput

sequencing were entrusted to Beijing Genomics Institute (Beijing,

China). In brief, mRNA for each sample was purified using Oligo

(dT)-attached magnetic beads and then fragmented into small pieces

with fragment buffer. First-strand cDNA was generated using random

hexamer-primed reverse transcription, followed by a second-strand

cDNA synthesis and end repair using A-Tailing Mix and RNA Index

Adapters. The cDNA fragments were then amplified by PCR, and

purified by Ampure XP Beads. The product was validated on the Agilent

Technologies 2100 bioanalyzer. The double-stranded PCR products

from previous step were heated denatured and circularized by the

splint oligo sequence to get the final library, which was amplified with

phi29 tomakeDNA nanoballs (DNBs) containing more than 300 copies

of one molecular. DNBs were loaded into the patterned nanoarray and

single end 50 bases reads were generated on BGIseq500 platform.
Bioinformatics analysis

Clean reads were filtered by FASTQ (version 0.18.0). Reads

containing sequencing adapters, unknown nucleotides (‘N’ base) and

low-quality bases were removed. Clean reads were obtained and stored in

FASTQ format. The clean reads were mapped to the reference genome

using HISAT2 (v2.2.4). StringTie (V1.3.1) was applied to assemble the

map reads and gotten fragments per kilobase of transcript per million

mapped reads (FPKM) to calculated gene expression. Bioinformatic

analyses were performed using the Omicsmart online platform (http://

www.omicsmart.com). Principal component analysis (PCA) was

performed with R package gmodels (http://www.r-project.org/). DEGs

analysis was performed by edgeR. The parameter of false discovery rate

(FDR) below 0.05 and absolute fold change ≥ 2 were considered DEGs.

Analysis of Gene Ontology (GO), KEGG, and Reactome were based on

database (http://www.geneontology.org/), (https://www.genome.jp/kegg/

), and (https://reactome.org/). Enrichment analysis identified significantly

enriched in DEGs comparing with the whole genome background. The

calculated P value was gone through FDR correction, taking FDR ≤ 0.05

as a threshold. GSEA was performed using software GSEA to identify

whether a set of genes in specific KEGG pathways shows significant

differences in two groups.

Results

Transcriptomic profiling analyses of HCD-57
expressing SHP2-D61Y and -E76K

To investigate the effect of mutant SHP2 on HCD-57 cells, RNA-

seq was performed among HCD-57 cells expression SHP2-D61Y,
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SHP2-E76K, and parental HCD-57 cells. Owing to the expression of

mutant SHP2 led to growth factor-independency of HCD-57, we

cultured parental HCD-57 cells in medium deprived EPO for 8 h to

remove the stimulation of growth factor. PCA analysis clearly

separated the parental HCD-57 cells from HCD-57 expressing

SHP2-D61Y and -E76K based on PC1, with PC1 contributing

69.6% variation, making it the dominant component (Figure 1A).

The number of DEGs was 2443 and 2273 for HCD-57 cells expressing

mutant SHP2-D61Y and -E76K compared to the control (Figure 1B),

respectively. Hierarchical clustering of differential gene expression

patterns was performed, and a heatmap was used to present the

results. The analysis revealed comparable patterns among the HCD-

57 cells expressing SHP2-D61Y and SHP2-E76K, while the

transcriptome profiles of these mutant cells were much different

from parental HCD-57 cells deprived of EPO (Figure 1C). A Venn

diagram was performed and 1436 mutual DEGs were identified

among the two compared groups (Figure 1D).
Mutant SHP2 dysregulated cellular
metabolic biological processes

We performed multiple enrichment analyses to investigate

biological functions and altered pathways related to these DEGs.

We found that a mass of dysregulation genes was related to metabolic

process using GO classification in SHP2-D61Y and SHP2-E76K

transformed cells compared to the control (Figure 2A). In cells

expressing SHP2-D61Y, genes involved in metabolism accounted

for ~60% in the total up-regulated DEGs, and ~58% in down-

regulated DEGs, respectively. Cells transformed by SHP2-E76K

showed ~59% for up-regulated proportion and ~57% for down-

regulated proportion involved in metabolism. In addition, KEGG

analysis in whole pathway maps identified metabolic pathways as the

most significantly enriched pathways in both two comparison groups

(Figure 2B). As expected, Reactome analysis also showed significant

enrichment of metabolism reaction (Figure 2C). These results

indicated that the expression of SHP2 mutants leads to a

remodeling of cellular metabolism.
Altered metabolism pathways in HCD-57
expressing mutant SHP2

We performed KEGG pathway analysis of all DEGs to identify

significantly enriched metabolic pathways. We found that the most

enriched pathways in cells expressing SHP2-D61Y and SHP2-E76K

compared with the control were glutathione metabolism and

biosynthesis of amino acids pathways (Figure 3A). Subsequently, we

found that the expression of mutant SHP2-D61Y and SHP2-E76K

significantly activated the biosynthesis of amino acids pathway based

on GSEA analysis (Figure 3C). The schematic diagrams of alterations

in KEGG pathways regarding biosynthesis of amino acids was

revealed in Supplementary Figures 1 and 2. There was a down-

regulation in the glutathione metabolism pathway whereas the

nominal p-value and FDR q-value (false discovery rate) did not

reach a statistical significance (Figure 3B). The remaining metabolic

pathways that were significantly enriched (P<0.05) both in SHP2-
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D61Y and -E76K cells were presented in Table 1. These data suggest

that biosynthesis of amino acids may play an important role in

leukemogenesis induced by mutant SHP2.
Genes associated with serine and glycine
synthesis were significantly up-regulated in
SHP2-mutant HCD-57

To further investigate genes with significantly altered expression

in the biosynthesis of amino acids caused by the expression of SHP2-

D61Y and SHP2-E76K, we obtained 13 mutually dysregulated genes

using the Venn diagram (Figure 4A). The heatmap showed

significantly up-regulated genes in cells expressing mutant SHP2,

including ASNS, PSAT1, PHGDH, SHMT2, and ALDH18A1

(Figure 4B). The FPKM values of 13 mutually dysregulated genes

are shown in Table 2. Phosphoglycerate dehydrogenase (PHGDH)

catalyzes the reversible oxidation of 3-phosphoglycerate to 3-

phosphohydroxypyruvate, the first step of the de novo serine

biosynthesis pathway. Subsequently, 3- phosphohydroxypyruvate is

converted to phosphoserine by phosphoserine aminotransferase 1

(PSAT1) and then to serine by phosphoserine phosphatase. Serine

hydroxymethyltransferase (SHMT2) catalyzes the reversible

transition from serine to glycine and promotes the production of

one-carbon units. Asparagine synthetase (ASNS) converts aspartate

and glutamine to asparagine. ALDH18A1 is a member of the aldehyde

dehydrogenase family, and its encoded protein catalyzes the reduction
Frontiers in Oncology 04
of glutamate to delta1-pyrroline-5-carboxylate, a critical step in the de

novo biosynthesis of proline, ornithine, and arginine. In addition, our

analysis found carbon metabolism, as well as glycine, serine, and

threonine metabolism pathways also dysregulated in SHP2-mutant

cells, and the differentially expressed genes were also mainly PSAT1,

PHGDH, and SHMT2 (Supplementary Figure 3). These data suggest

that the gain-of-function SHP2 mutants could promote serine and

glycine synthesis via up-regulating the mRNA expression of PSAT1,

PHGDH, and SHMT2.
Discussion

In this study, we performed RNA-seq transcriptome sequencing

analysis to identify dysregulated metabolic pathways and key genes

based on HCD-57 cells transformed by SHP2-D61Y or -E76K. We

found that DEGs caused by the expression of mutant SHP2 were

mainly enriched in metabolic pathways, especially glutathione

metabolism and biosynthesis of amino acids pathways. Importantly,

we found that the biosynthesis of amino acids pathway was

significantly activated in HCD-57 cells expressing SHP2-D61Y and

SHP2-E76K. In addition, our data showed that the mRNA expression

of ASNS, PHGDH, PSAT1, and SHMT2 involved in asparagine,

serine, and glycine biosynthesis were significantly increased in cells

expressing mutant SHP2. Furthermore, our analysis found that

PSAT1, PHGDH, and SHMT2 were also key genes leading to the

upregulation of carbon metabolism, as well as glycine, serine, and
A B

DC

FIGURE 1

Basic transcriptomic analysis profile among mutant-SHP2 transfected cells and parental HCD-57 cells deprived EPO. (A) PCA plots of DEGs identified in
HCD-57 cells expressing SHP2-D61Y and -E76K compared to parental HCD-57 cells. (B) The number of DEGs (up-regulated and down-regulated) in
two compared groups. FDR<0.05, |log2FC|>1. (C) Heatmap of hierarchical clustering results for all identified DEGs at SHP2-D61Y, SHP2-E76K and
parental HCD-57 cells (red, up-regulated; blue, down-regulated). (D) Venn diagram of the numbers of DEGs in HCD-57 vs SHP2-D61Y and HCD-57
vs SHP2-E76K.
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threonine metabolism pathways. These findings suggest that gain-of-

function mutants of SHP2 might promote serine synthesis by

activating the expression of PSAT1 and PHGDH, and promote

glycine biosynthesis by activating the expression of SHMT2 for

leukemia initiation and progression.

Reprogramming of metabolic pathways ensures the survival and

proliferation of cancer cells in a nutrient-deficient environment (20).

Besides, immune cell metabolic reprogramming alters immune cell

function by interfering with critical transcriptional and post-

transcriptional activation mechanisms, to keep growing tumors from

being attacked by the immune system (20, 21). Alterations in

carbohydrate metabolism in tumor cells have been reported. Tumor

cells take up and use more glucose than they need, which is known as

the Warburg effect (22). Recently, the amino acid dependence of tumor

cells has received more andmore attention (23). Amino acids have been
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demonstrated to be the dominant nitrogen source for hexosamines,

nucleotides, and other nitrogenous compounds in rapidly proliferating

cells (24, 25). Indeed, like glucose, there are major differences in the

uptake and secretion of several amino acids in tumors relative to

normal tissues. Compared to normal tissues, tumors require a large

number of amino acids for bioenergetic, biosynthetic, and redox

balance support (26, 27). This high demand is not limited to essential

amino acids, but also for nonessential amino acids (NEAA) (24, 27).

NEAA are not only components of proteins but also intermediate

metabolites fueling multiple biosynthetic pathways. For example,

glycine is synthesized from serine, threonine, choline, and

hydroxyproline, and is degraded through the glycine cleavage system,

serine hydroxymethyltransferase, and conversion to glyoxylate (28). In

addition, glycine is utilized for the biosynthesis of glutathione, heme,

creatine, nucleic acids, and uric acid (28).
A

B

C

FIGURE 2

Enrichment analyses of all DEGs in HCD-57 vs SHP2-D61Y and HCD-57 vs SHP2-E76K. (A) Top 10 biological processes based on descending order by
number of DEGs through GO analysis. (B) Top 10 pathways enriched by KEGG enrichment analysis. (C) Top 10 biological pathways and processes
enriched by Reactome analysis.
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The serine synthesis pathway (SSP) has been widely reported as a

critical pathway enabling cancer cell proliferation and metastasis. Serine

is a central precursor of biosynthetic metabolism, including being

charged onto transfer RNAs for protein synthesis, providing head

groups for sphingolipid and phospholipid synthesis, and serving as a

precursor for cellular glycine and one-carbon unit (29). PHGDH is a

rate-limiting enzyme for de novo serine biosynthesis and is mainly up-

regulated to active serine biosynthesis. A high PHGDH expression has

been extensively reported in several tumors, particularly breast and
Frontiers in Oncology 06
melanoma, and its high expression in these tumors is associated with

poor prognosis (27). Importantly, its knockdown and silence exhibit

obvious anti-tumor responses both in vitro and in vivo (30). PSAT1 is

the transaminase for serine. It catalyzed the phosphohydroxypyruvate

oxidized by PHGDH to produce phosphoserine, which is then

dephosphorylated by 1-3-phosphoserine phosphatase (PSPH) to form

serine. PSAT1 expression is elevated in colon cancer and lung

adenocarcinoma, and has been shown to enhance cell proliferation,

metastasis, and chemoresistance (31, 32).
A

B C

FIGURE 3

Pathways for metabolism-specific dysregulation caused by mutant SHP2 expression. (A) Top 10 enriched pathways related to metabolism based on
KEGG enrichment analysis for all DEGs. GSEA plots of (B) Glutathione metabolism and (C) Biosynthesis of amino acids target genes on HCD-57
expressing SHP2-D61Y or -E76K vs parental cells. Normalized enrichment score (NES), nominal P-value and FDR Q-values are indicated.
TABLE 1 List of metabolic pathways significantly enriched both in HCD-57 cells expression SHP2-D61Y and -E76K (P<0.05).

Pathways HCD-57 vs SHP2-D61Y HCD-57 vs SHP2-E76K

Name KEGG-B-Class DEGs P-
value

Q-
value

NES
(GSEA) DEGs P-

value
Q-

value NES

Metabolic pathways Global and overview maps 259 0.0000 0.0000 NA 226 0.0000 0.0004 NA

Glutathione metabolism Metabolism of other amino acids 23 0.0000 0.0005 -1.1912 19 0.0001 0.0090 -1.1279

Biosynthesis of amino acids Global and overview maps 23 0.0000 0.0030 1.6843 19 0.0004 0.0217 1.4097

Carbon metabolism Global and overview maps 26 0.0014 0.0748 1.5362 19 0.0450 0.2511 1.2666

One carbon pool by folate
Metabolism of cofactors and

vitamins
7 0.0041 0.1219 0.8887 7 0.0021 0.0486 -0.7613

Pyrimidine metabolism Nucleotide metabolism 13 0.0124 0.2027 -0.8285 7 0.0093 0.1126 -0.8684

Glycine, serine and threonine
metabolism

Amino acid metabolism 10 0.0200 0.2634 1.2259 12 0.0009 0.0302 1.0145

Sulfur metabolism Energy metabolism 4 0.0309 0.3111 NA 4 0.0213 0.1769 NA

Purine metabolism Nucleotide metabolism 23 0.0451 0.3758 0.8631 24 0.0074 0.1061 -0.9653
fronti
The threshold of significant differentially expressed genes (DEGs) was set as FDR<0.05, |log2FC|>1. P-value and Q-value were calculated from KEGG analysis. Normalized Enrichment Score (NES)
were obtained from Gene Set Enrichment Analysis (GSEA).
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Serine and glycine metabolism are closely linked, as glycine is

directly generated from serine via the serine hydroxymethyltransferase

enzymes SHMT1 and SHMT2 (24). Importantly, the conversion of

serine to glycine provides one-carbon units, which provide the necessary

proteins, nucleic acids, lipids, and other biological macromolecules to

support tumor growth (27). Serine, glycine, and their relation to one-

carbon metabolism are highly relevant aspects of tumor metabolism

(33). The directionality of serine/glycine conversion is a significant factor

for cancer cell metabolism and evidence indicates that mitochondrial

SHMT2 is the main serine-glycine converting enzyme (34). SHMT2 is

upregulated in various cancer cells, and its depletion could trigger ROS-

dependent mitochondria-mediated apoptosis (35).

ASNS converts aspartate and glutamine to asparagine and

glutamate through an ATP-dependent amidotransferase reaction

(36). Asparagine plays a crucial regulatory role in conditions of

glutamine depletion (37). The precise role of asparagine in

modulating tumor growth is unknown (38). ASNS is frequently up-

regulated in tumors and is associated with poor prognosis (37, 39). In

acute lymphoblastic leukemia (ALL), primary cells and many ALL cell

lines exhibit a low expression level of ASNS (40). Su et al. found that

different cells and patients expressed different amounts of ASNS
Frontiers in Oncology 07
mRNA and suggested it should pay attention to the differentiation

of mRNA, protein content, and kinase activity in ASNS (41). Besides,

Hutson et al. demonstrated that ASNS mRNA content increased in

cells deprived of free amino acids (42). Later studies have also shown

that endoplasmic reticulum stress increases ASNS transcription via

the unfolded protein response (43). Ye et al. concluded that activation

of ASNS by ATF4 with amino acid limitation may serve a vital

biological process for tumor initiation and growth (44).

Exploring the metabolic adaptation mechanisms of uncontrolled

tumor proliferation led by driver mutations has become a hot topic in

cancer research. Preclinical research and clinical practice have shown

therapeutic benefits by targeting tumor amino acid metabolism. One

example is asparaginase that depletes both asparagine and glutamine

in serum, which has been widely used to treat childhood acute

lymphoblastic leukemia (45). A detailed understanding of the

metabolic adaptation mechanisms of tumor cells may help the

discovery of novel therapeutic targets, especially for relapsed and

refractory neoplasms including SHP2-mutant JMML. The

identification of specific driver mutation-dependent metabolic

vulnerabilities is the bottleneck for the precise tumor treatment,

which requires further investigation in the further.
A B

FIGURE 4

Differential gene analysis involved in the biosynthesis of amino acids pathway caused by mutant SHP2 expression. (A) Venn diagram indicating the
overlap dysregulated genes in the biosynthesis of amino acids pathway in HCD-57 vs SHP2-D61Y and HCD-57 vs SHP2-E76K. (B) Heatmap of 13 DEGs
shared in both comparisons in the biosynthesis of amino acids metabolites pathway.
TABLE 2 FPKM values of 13 genes commonly dysregulated in biosynthesis of amino acids pathway in HCD-57 cells expression SHP2-D61Y and -E76K.

Symbol ENO11 ALDOA PGAM1 ENO12 CTH PYCR1 SDSL

HCD-57 75.26 122.95 18.87 55.07 0.80 1.86 7.60

SHP2-D61Y 633.94 1349.77 239.24 527.25 15.18 8.98 36.05

SHP2-E76K 195.85 281.77 56.60 136.91 5.30 4.64 20.00

Symbol GPT2 ALDH18A1 SHMT2 PHGDH PSAT1 ASNS

HCD-57 2.72 36.96 65.34 61.91 48.00 104.82

SHP2-D61Y 13.12 88.33 159.39 231.75 192.18 318.86

SHP2-E76K 7.11 100.42 165.38 183.02 169.66 305.13
ENO11, Enolase 1, alpha non-neuron; ENO12, Enolase 1B, retrotransposed.
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