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Background: To investigate the contribution of machine learning decision tree

models applied to perfusion and spectroscopy MRI for multiclass classification of

lymphomas, glioblastomas, and metastases, and then to bring out the underlying

key pathophysiological processes involved in the hierarchization of the decision-

making algorithms of the models

Methods: From 2013 to 2020, 180 consecutive patients with histopathologically

proved lymphomas (n = 77), glioblastomas (n = 45), and metastases (n = 58) were

included in machine learning analysis after undergoing MRI. The perfusion

parameters (rCBVmax, PSRmax) and spectroscopic concentration ratios (lac/Cr,

Cho/NAA, Cho/Cr, and lip/Cr) were applied to construct Classification and

Regression Tree (CART) models for multiclass classification of these brain

tumors. A 5-fold random cross validation was performed on the dataset.

Results: The decision tree model thus constructed successfully classified all 3

tumor types with a performance (AUC) of 0.98 for PCNSLs, 0.98 for GBM and

1.00 for METs. The model accuracy was 0.96 with a RSquare of 0.887. Five rules

of classifier combinations were extracted with a predicted probability from 0.907

to 0.989 for that end nodes of the decision tree for tumor multiclass

classification. In hierarchical order of importance, the root node (Cho/NAA) in

the decision tree algorithm was primarily based on the proliferative, infiltrative,
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and neuronal destructive characteristics of the tumor, the internal node

(PSRmax), on tumor tissue capillary permeability characteristics, and the end

node (Lac/Cr or Cho/Cr), on tumor energy glycolytic (Warburg effect), or on

membrane lipid tumor metabolism.

Conclusion: Our study shows potential implementation of machine learning

decision tree model algorithms based on a hierarchical, convenient, and

personalized use of perfusion and spectroscopy MRI data for multiclass

classification of these brain tumors.
KEYWORDS

classification and regression tree (CART), multiclass classification, lymphoma,
glioblastoma, metastasis
Introduction

Glioblastomas (GBMs), primary central nervous system

lymphomas (PCNSLs), and metastases (METs) are the most

common brain malignant tumors in adult (1). Their accurate

preoperative characterisation is essential as their management and

prognosis differ depending on the lesion type.

Advanced functional MR imaging techniques, such as diffusion-

weighted imaging (DWI), diffusion tensor imaging (DTI),

perfusion-weighted imaging (PWI) and proton MR spectroscopy

(1H-MRS) are currently the benchmark for detection and

assessment of brain tumors. These techniques can help in the

noninvasive differentiation of these lesions, as they provide

quantitative measurements representing tumor architecture,

morphology, vascularity, and metabolism (2, 3). However,

differentiation of these malignancies can be challenging due to the

overlapping of their imaging characteristics. There are few studies

focused on differentiation between GBMs, Mets and PCNSLs (2, 3).

A meta-analysis combining articles published before December

2019, showed that DWI and DTI had a moderate diagnostic value to

differentiate glioblastomas from solitary brain metastases.

Additionally, large-scale prospective studies were required to

explore differentiation between PCNSLs and solitary brain

metastases using DWI or DTI (4). A previous meta-analysis

identified a too weak correlation between the apparent diffusion

coefficient (ADC) measured in DTI and cell count in lymphomas,

and no evidence data for metastases concluding that ADC cannot

be used as a biomarker in these entities (5).

PWI provides measurements of hemodynamic parameters of

tumor microvasculature and neoangiogenesis (rCBV: relative

cerebral blood volume), as well as tumor capillary permeability

(PSR: percentage of signal intensity recovery) (2, 6).
1H-MRS allows in vivo detection and characterization of tumor

metabolites. Changes in these metabolites often precede structural

abnormalities of the tumors. By means of characteristic changes in

the vascular and metabolic configurations in certains tumors, the

PWI and 1H-MRS modalities have the potential to offer a better
02
understanding and characterization of the vascular and metabolic

profile of brain tumors. The resulting multiparametric analyzes may

lead to a more precise classification of these tumors (7, 8).

Histopathological assessment is currently the gold standard for

brain tumor diagnosis. However, there is growing evidence that

machine learning algorithms applied on quantitative MRI data can

help with non-invasive brain tumor classification (9–11).

Few studies have used machine learning techniques to

differentiate common malignant brain tumors (12). They were

mostly only based on dichotomized classifications of MRI data.

Multiclass classifications are more useful and closer to the

radiologist’s reasoning in the daily clinical practice. Machine

learning decision-tree is one of the data mining methods. The

decision-tree procedure is a non-parametric and nonlinear method

which provides a tree-based multiclass classification to develop

predictive or classification models according to variables. It

classifies cases into groups or predicts values of a target variable

based on values of predictor or classifier variables (13). The complex

relationships between perfusion and spectroscopy MRI variables

and the differences related to intra-variable correlations can be

further investigated by machine learning decision tree models for

multiclass classification decision making.

The aim of this study was to investigate the contribution of

machine learning Classification and Regression Tree (CART)

models for the multiclass classification of lymphomas,

glioblastomas and metastases using perfusion and spectroscopy

brain MRI multiparametric data, and then to bring out the

underlying key pathophysiological processes involved in the

hierarchization of the decision-making algorithms of the models.
Materials and methods

Patients

It was a single-center observational study conducted from

January 2013 to June 2020. The study was approved by the
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relevant Institutional Review Board (2211250v0 23/01/2019),

(granting a waiver of informed consent given the retrospective

nature of study). Two hundred and one patients with

histopathologically proven solitary-MET, GBM or PCNSL were

consecutively recruited and evaluated. Twenty-one patients were

excluded because of artifacts on perfusion data (6 patients),

uninterpretable spectral data (4 patients), immunocompromised

condition (2 patients), and missing data (9 patients). Thus, we

included 180 patients (81 women, 99 men, mean age: 65.4 ± 15.7);

77 previously untreated immunocompetent patients with PCNSL,

45 with GBM, and 58 with solitary metastases (Table 1).
Imaging protocol

All patients initially underwent a brain 1H-MRI examination

using a whole-body system (Verio 3T; Siemens, Erlangen,

Germany) with 32-channel phased-array head coil. The MRI

examination was carried out strictly according to the same

protocol and before the histopathological examination and/

or treatment.

Conventional MR imaging. Protocol was the following: sagittal

3D-FLAIR (TR/TE/TI = 5000/402/1800ms, FOV= 260 mm,

matrix = 156 x 128), axial 3D-T1 postcontrast (TR/TE/TI =

1900/2.93/900ms, flip angle = 9°, FOV = 255 mm, matrix =

256 x 256), and axial postcontrast T1-weighted FSE imaging

(TR/TE = 308/2.48 ms, FOV = 220 mm, matrix = 272 x 352).

PWI. Dynamic-susceptibility perfusion contrast-enhanced T2*-

weighted gradient-echo echo-planar images (TR/TE = 1980/30 ms,

4.0-mm thick sections, 0.8-mm gap, FOV = 220 mm, matrix = 128 x

128, flip angle = 90°, phases = 75) were acquired during the first pass

of a standard-dose (0.1 mmol/Kg) bolus of gadoteric acid at 0.5

mmol/mL. Contrast material was injected at a rate of 6 mL/s for all

patients, with a 10-second delay. From 7 to 12 sections were selected

on T2 FLAIR-weighted images, depending on the volume of

the tumor.
1H-MR Spectroscopy. Single voxel 1H-MRS was performed after

intravenous administration of gadoteric acid using a point-resolved

spectroscopic sequence (PRESS: TR = 1500ms/TEs = 35/135 ms,

156 scans, voxel size 15mm3). To avoid contamination of the voxel,
Frontiers in Oncology 03
saturation bands have been placed all around the voxel. Location of

the voxel were determined from 3D-T1 postcontrast images on the

three orientation planes, in order to reduce intravoxel dephasing by

excluding brain regions such as adjacent scalp, skull, sinuses and

orbits. For each kind of lesion, two MRS voxel were acquired, one

voxel was localized in the hyperperfused region corresponding to

the maximum value of rCBV and one another in the healthy

contralateral brain parenchyma.
Post-processing

rCBV measurements from DSC MR imaging data were

performed using syngo.via software (Siemens). During the first

pass of a bolus of contrast agent, T2*-weighted signal intensity

decreased. The change in the relaxation rate (DR2*, ie, the change in
the reciprocal of T2*) can be calculated from the signal intensity as

follows: DR2*(t) ={-ln[S(t)/S0]}/TE, where S(t) is the signal intensity
at time t, and S0, the unenhanced signal intensity. DR2* is

proportional to the concentration of contrast agent in the tissue,

and CBV is proportional to the area under the curve of DR2*(t),
provided there is no recirculation or leakage of contrast agent. In

general, these assumptions are violated, but the effects can be

reduced by fitting a gamma-variate function to the measured

DR2* curve. This function approximates the curve that would

have been obtained without recirculation or leakage. CBV can

then be estimated from the area under the fitted curve rather

than from the original data. ROIs of standardized size (4.5-mm

radius) were placed in regions of maximal CBV on CBV color

overlay maps for targeting and were referenced to the symmetrically

contralateral parenchyma (normal white or grey matter) for the

calculation of relative maximal CBV, rCVBmax = CBVlesion/

CBVcntralateral. Volume averaging with the blood vessels was

carefully avoided, confounding factors in the CBV analysis were

minimized, and the size of the ROIs was kept constant. Because the

maximum perfused regions of gliomas may imply aggressiveness

(2, 6, 14), we analyzed the PWI data from the maximally perfused

regions of the tumors by drawing from 5 to 27 ROIs to cover the

entire tumor volume, depending on the tumors.

PSR measurements were performed using syngo.via software.

ROIs were drawn on the grey-scale perfusion maps overlaid on

contrast-enhancing tumor on T1-weighted images. An ROI of 30–

40 mm2 was moved within the tumor area to look for the highest

and lowest recoveries on T2*-weighted signal-intensity curves and

was selected for maximum and minimum PSR, respectively. For

normalization, ROI of approximately 30–50 mm2 was also placed in

the symmetrically contralateral parenchyma, and ratios were

obtained. The PSR was calculated as described by Cha et al. (15):

PSR = 100% x (S1 – Smin)/(S0 - Smin), where S1, S0, and Smin are post-

contrast, pre-contrast and minimum T2*-weighted signal

intensities, respectively.

1H-MR spectroscopy raw data were analyzed with jMRUI

(Java-based Magnetic Resonance User Interface) post-processing

software. Signal intensity of each metabolite was obtained using the

AMARES algorithm (Advanced Method for Accurate, Robust and

Efficient Spectral fitting of MRS data with use of prior knowledge)
TABLE 1 Patient demographics and oncotype.

A. Patient demographics

Number
Gender n (%)

Mean age y (± SD)
Female Male

180 81 (45.0%) 99 (55.0%) 60.4 ± 7.7

B. Oncotype

Number
n (%)

PCNSL GBM METs

77 (42.8%) 45 (25.0%) 58 (32.2%)

Mean age y (± SD) 61.2 ± 8.0 62.1 ± 10.7 57.7 ± 7.6

Ratio M/F 1.57 1.65 0.87
PCNSLs, Primary central nervous system lymphomas; GBMs, Glioblastomas; METs, Metastases.
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for accurate relative quantification. AMARES is a time domain

curve-fitting approach, in which the zero-order phase and delay

time are modeled parameters of the Lorentzian function. In this

interactive quantitation method, linewidths and concentrations are

part of a non-linear model and are optimized by fitting the in vivo

signal with a combination of metabolite signals by non-linear least

square techniques. The absolute concentration of metabolites from

signal intensity as derived by JMRUI can be fitted to a simplified

equation as published (16). To ensure short and long TE MRS

methods have pros and cons in vivo metabolite quantification.

Measurements with a long TE, under a long enough TR, may

allow acquisition of the full metabolite signal and is preferable to

ensure accurate quantification of metabolites such as choline (Cho),

creatine (Cr), N-acetylaspartate (NAA). Due to its co-resonance

with long-chain lipids (Lip), (Lip/Lac) at short TE, lactate (Lac) was

quantified at long TE (lactate inverted due to the J coupling) and

lipids in the following way [lip/lac]shortTE - [lac]longTE + [Lip]shortTE,

thus allowing the separation and the correct quantification of lactate

and lipids. Five well-resolved resonance peaks were fitted: Cho

(3.22ppm), Cr (3.02ppm), NAA (2.02ppm), Lac (1.33ppm) at long

TE (135ms), and Cr and Lip/Lac (1.3ppm), Lip (0.9ppm) at short

TE (35ms), and their ratio were calculated Cho/NAA, Cho/Cr Lac/

Cr, Lip/Cr. The data were normalized using the contralateral Cr

resonance signal from the symmetric healthy parenchyma.

Spectral quality was examined for each subject based on the

following parameters: fullwidth at half maximum (FWHM) as an

estimation of the line width of the in vivo spectrum (values in ppm

were converted into Hz); SNR as determined by the maximum

signal and the residuals of the fitted spectrum; and peak coalescing.

The subjects were excluded from the study when there were major

alterations of spectral quality.

The structural image-processing tool FSL (http://

www.fmrib.ox.ax.uk/fsl) was used to estimate the gray matter,

white matter and CSF content of each voxel and to correct the

partial volume effects on the metabolite data. Brain tissue images

were extracted by removing the outer skull and scalp surfaces using

the FSL Brain Extraction Tool (http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/

BET). Finally, the FAST/FIRST tool (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/FAST; http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/FIRST) was used

to calculate the segmented tissue percentage in the VOI.

Coregistration between the spectroscopic VOI and the segmented

image was performed with a user-developed Matlab program

(MathWorks, Natick, Massachusetts).
Decision tree model

Classification and Regression Tree (CART) models provide the

combinations of the most discriminating variables in a hierarchical

order according to an algorithm. Decision tree procedure consists of

recursively partitioning data according to a relationship between the

predictors or classifiers and response values. These partitions of the

data are done recursively to form a tree of decision rules that involve

the value of the input variables. The decision rules are arranged

hierarchically in a tree-like structure with nodes connected by lines.
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The nodes represent decision rules, and the lines order the rules.

The first rule at the top of the tree is called the root node,

subsequent rules, internal nodes, and end rules, end (leaf) nodes

with only connection (17). The partition algorithm searches all

possible splits of predictors or classifiers to best predict or classify

the response. It chooses optimum splits from many possible splits

until the desired fit is reached.

For continuous predictors or classifiers, the partition is done

according to a splitting “cut” value for the factor. The sample is

divided into values below and above this cutting value. For

categorical responses, decision rules provide the rate of

observations, and the fitted value attributed to the response that

occurred for that node of the tree for each response level. The fitted

value is the probability estimated for the response levels,

minimizing the residual log-likelihood chi-square. Node splitting

is based on the LogWorth statistic [-log10(chi-squared p-

value)] (18).

In the decision-tree, the root node is the predictor or classifier

variable the most important. It divides the whole population with

the highest information gain. The internal nodes are the variables

classified in descending order of importance of information

gain (19).
Statistical analysis

The variables assessed were spectroscopic concentration ratios

(Lac/Cr, Cho/NAA, Cho/Cr, and Lip/Cr), perfusion parameters

(rCBVmax, PSRmax), and oncotype groups (METs, GBMs,

PCNSLs). Mean values and frequencies were expressed with their

standard deviations (± SDs) and percentages (%), respectively.

Kolmogorov–Smirnov test confirmed normal distribution of

continuous variables.

Differences among groups were tested using 1-way ANOVA

and the Fisher PLSD post hoc test (Fisher’s Protected Least

Significant Difference).

Data mining algorithms, especially decision-tree, works with no

missing data. Therefore, after cleaning and preparing the dataset,

only 180 patients were included in the final data analysis.

All the variables were included at the same time as input for the

Classification and Regression Tree models. The K fold random

cross-validation procedure to train and test classifiers was used with

K = 5 to improve the estimated performance of the model, although

it is computationally expensive to train the model on multiple

training sets. There is a bias-variance trade-off associated with the

choice of k in k-fold cross-validation. Typically using k = 5 yields

test error rate estimations that suffer neither from excessively high

bias error nor from very high variance error. K-fold cross validation

randomly splits the dataset into k stratified folds. Iteratively, each of

the k sets is used as a test set once from new unseen data to validate

the model while the remaining data (k-1 folds) are used as a training

set to fit and generate the model. The process is repeated K times,

i.e., as many times as the number of stratified folds. Thus, each data

point is used in a test set only once. In total, k models are generated,

and k validation statistics are obtained. To prevent overfitting which
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is the risk of good model validation on training data and poor model

generalization on testing data, the k-fold cross-validation stopping

rule is a minimum threshold for improvement in the cross

validation RSquare. The stopping rule selects a model for which

the next ten models have a cross validation RSquare improvement

of less than 0.005 units. The model giving the best tradeoff between

bias error and variance error is chosen as the final model. This

method is useful for small data sets, because it makes efficient use of

limited amounts of data.

In our study, the Classification and Regression Tree (CART)

models are the decision-tree algorithms which were applied for

brain tumor multiclass classification. They create a division of the

tree and pruning a tree on the cost complexity (20). Information

Gain, Gini index and Gain ratio are important splitting criteria. The

CART algorithm uses the Gini impurity index to select the

best variable.

Impurity was measured by the Gini index as:

Gini   (D) = 1 −o
m

i=1
P2
i

with Pi is the probability recording in D belongs to class Ci and is

estimated by jCi,Dj
jDj (20). The sum is computed over m classes.

A confusion matrix was constructed to determine the

performance of the decision-tree process in the multiclass

classification procedure of oncotype group variable, and the

corresponding accuracy, sensitivity, specificity, positive predictive

value (PPV), and negative predictive value (NPV) were calculated.

In addition, the RSquare value, the accuracy and the classification

performance quantified by the area under the receiver operating

characteristics (ROC) curve (AUC) with 95% confidence interval

(CI), were computed for comparison (21).

The ROC plot is a method to visualize and select classifiers

based on their classification performance as quantified by the area

under the ROC curve (AUC). The classifier’s area under the

curve (AUC) can be described as the classifier’s probability of

classifying a randomly selected positive result with the highest

predictive accuracy.

Statistics were performed using SAS software (version 9.4; SAS

Institute, Carry, NC). A two-tailed P-value< 0.05 was considered

statistically significant.
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Results

Perfusion and Spectoscopy
parameter analysis

Mean values of perfusion parameters (rCBV, PSRmax) and

spectroscopic concentration ratios (Cho/Cr, Cho/NAA, Lac/Cr, Lip/

Cr) in the tumor groups PCNSL, GBM, and metastases are depicted in

Table 2. One-way ANOVA of variance analysis applied to the

perfusion and spectroscopy parameters showed significant differences

among the 3 groups of lesions, for all studied parameters (P<.001,

respectively). Pairwise comparisons for the one-way ANOVA using

Fisher’s PSLD test are summarized in Table 2. Perfusion and

spectroscopy MRI images for GBMs, PCNSLs and METs are

displayed in Figures 1–3, respectively.
Classification and Regression decision-Tree
(CART) algorithm for multiclass
classification of PCNSLs, GBMs and METs

The CART decision-tree model successfully classified the 3 tumor

types in our cohort (Figure 4). The performance (AUC) of the models

was 0.98 for PCNSLs, 0.98 for GBM and 1.00 for METs (Figure 5). The

accuracy of the model was 0.96 with a RSquare of 0.887.

In hierarchical order of importance, the nodes in the decision-tree

model algorithm were Cho/NAA, PSRmax, and Lac/Cr or Cho/Cr for

the multiclass classification decision making of PCNSLs, GBMs, and

METs brain tumors. The block diagram in Figure 1 summarizes the

analysis steps in decision-tree and machine learning models for

multiclass classification of all tumors. Five rules of classifier

combinations were extracted through the decision tree model:

Rule 1 was Cho/NAA< 0.29 with a predicted probability of

0.989 for that node of the tree for META multiclass classification.

Rule 2 was Cho/NAA ≥ 1.79, PSR< 95 with a predicted

probability of 0.931 for that end node of the tree for GBM

multiclass classification.

Rule 3 was Cho/NAA [0.29 - 1.79[, PSR< 95, Cho/Cr ≥ 2.44

with a predicted probability of 0.907 for that end node of the tree for

PCNSL multiclass classification.
TABLE 2 Mean values and standard deviation (SD) of perfusion and spectroscopy parameters in the differentiation of brain tumours.

Oncotype of lesions rCBV PSRmax Cho/Cr Cho/Naa Lact/Cr Lip/Cr

PCNSLs 1.8536 ± 0.503 107.145 ± 13.305 3.283 ± 1.3449 2.415 ± 1.345 2.469 ± 1.333 3.039 ± 1.582

GBMs 2.470 ± 0.998 85.522 ±12.456 2.932 ± 1.337 3.157 ± 1.337 1.796 ± 0.929 4.167 ± 2.245

METs 1.655 ± 1.057 86.647 ± 26.853 2.196 ± 1.342 -* 0.807 ± 0.917 6.193 ± 2.004

P (anova) < 0.001 < 0.001 <0.001 <0.001 <0.001 <0.001

F (anova) 18.216 27.908 10.985 110.194 36.691 45.659

P PCNSLs vs GBM < 0.001 < 0.001 0.149 0.006 <0.001 0.001

P PCNSLs vs METs 0.191 < 0.001 <0.001 – <0.001 <0.001

P GBM vs METs < 0.001 0.811 0.013 – <0.001 <0.001
*No measurable NAA peaks at 2.02 ppm in METsastases.
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FIGURE 2

Lymphoma. (A) hypersignal FLAIR of the lesion; (B) location of the MRS voxel in the enhancing signal on the 3D T1 post-gadolinium; (C) spectrum of
the MRS voxel obtained at short TE (top) showing a strong resonance of Lipid and long TE (bottom), increased Cho/NAA & Cho/Cr ratios; (D) PWI
imaging showing PSR about 180%, without significant increasing rCBV.
FIGURE 1

Glioblastoma. (A) hypersignal FLAIR of the lesion; (B) location of the MRS voxel in the enhancing signal on the 3D T1 post-gadolinium; (C) spectrum
of the MRS voxel obtained at short TE (top) and long TE (bottom) showing a strong resonance of lactate and increased Cho/NAA & Cho/Cr ratios;
(D) PWI CBV cartography showing hyperperfusion of the lesion with a rCBVmax at 4.56.
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Rule 4 was Cho/NAA ≥ 0.29, PSR ≥ 95, Lac/Cr< 1.18 with a

predicted probability of 0.930 for that end node of the tree for

PCNSL multiclass classification.

Rule 5 was Cho/NAA ≥ 0.29, PSR ≥ 95, Lac/Cr ≥ 1.80 with a

predicted probability of 0.976 for that end node of the tree for

PCNSL multiclass classification.
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Discussion

We investigated the contribution of Classification and

Regression Tree (CART) models in the multiclass classification of

lymphomas, glioblastomas, and metastases where metabolic and

perfusion data are used as classification features.
FIGURE 3

Metastasis. MRI-MRS imaging. (A) hypersignal FLAIR of the lesion; (B) location of the MRS voxel in the enhancing signal on the 3D T1 post-
gadolinium; (C) spectrum of the MRS voxel obtained at short TE (top) showing a strong resonance of Lipid and long TE (bottom) increased Cho/NAA
& Cho/Cr ratios persistence of free lipids resonance; (D) PWI cartography of CBV showing hyperperfusion of the lesion with a rCBVmax at 2.96.
FIGURE 4

Block diagrams of analysis steps in machine learning decision-tree models for multiclass classification of PCNSL, GBM, and MET brain tumors.
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Decision-tree models

Decision-tree models are modeling methods that have several

advantages. They can handle nonlinear complexe relationships,

creating rules, and being easy to interpret (22, 23). They have the

ability to convert complex risk equations into an organized

flowchart, which can be easily navigated to identify appropriate

classifiers. A simple, practical, and user-friendly approach which

can help clinicians to make more valid classifier-based decisions.

Furthermore, they help to remove unnecessary parameters to

classify brain tumors.

The strengths of decision tree models are the prioritization in

order of importance of classifiers in multiclass classification

decision making and the visualization of the risk or class of a

given subject. This can help in better decision making than

predictors obtained from regression models (24). This is a clear

advantage of decision-tree models compared to multivariate

regression models. Indeed, decision-tree models reveal the

classifiers that have the highest classification accuracy, and yield

threshold values of these classifier where tree branching takes place.

One key feature is that the developed decision-tree models in this

study provide a hierarchical organization of the different classifiers

in brain tumor multiclass classification. The most sensitive

classifiers appear first in the decision tree and the most specific

classifiers last. This allows a hierarchical utilization of the different

classifiers for multiclass classification decision making. Moreover,

the decision-tree model yields a supervised machine learning

classification that can accurately discriminate classifiers based on

training dataset, retrospectively acquired, and can assesse the

generalization of classifiers on a testing prospective dataset.

Nonlinear classification of data, which involves multiple classes in

the real world, is a crucial research topic in the field of data

classification (25–28). Deep networks have proven highly efficient in

executing numerous complex tasks, such as nonlinear multiclass

classification of data and images, but at the expense of

interpretability (29–32). Besides, tree-based models are widely used at

predictive or classification tasks using structured tabular data (28, 33).

Lack of interpretability limits the use of deep networks in applications

involving clinical decision making. Transparency of the decision-

making processes of deep networks remains an essential clinical,
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legal, and ethical requirement for patient care (34). In this context,

some recent research explores novel alternative approaches to decision

tree training that aim to improve the performance, interpretability and

ease of implementation of models in nonlinear data multiclass

classification (28, 33, 35, 36). In these avenues for future work,

decision tree-based deep neural networks aims to combine the

concepts of deep networks and decision tree models to facilitate

more accurate and robust nonlinear classification of data (28). This

also aims to provide a better understanding of deep networks and paves

the way for the transparency of their black box nature (35). Prospects

for expanding the application of deep networks for multiclass

classification of common malignant brain tumors using MRI data

holds immense potential for various advancements in the field.
Algorithm nodes of decision-tree models
in hierarchical order of importance

In hierarchical order of importance, algorithm nodes of our

Classification and Regression Tree (CART) models were Cho/NAA,

PSRmax, and Lac/Cr or Cho/Cr for decision making of PCNSLs,

GBMs, and METs tumor multiclass classification.
The root node of the algorithm

The root node (Cho/NAA) of the algorithm was based on the

underlying metabolic tumor process involved in membrane lipid

metabolism, due to increased cell membrane turnover by

proliferating tumor cells, versus neuronal density and viability.

The root node led to the decision making of the MET classification.

Indeed, Cho is phosphorylated by Choline Kinase (CK) to

phosphocholine (P-Cho) through the CDP-choline pathway of

phosphatidylcholine (PtdCho) biosynthesis (37, 38). P-Cho for

PtdCho synthesis can also be produced from sphingomyelin

hydrolysis by a lysosomal sphingomyelinase (39). PtdCho is

considered as an intermediate in the cycle of synthesis and

degradation of subcellular membrane lipid. The enzyme Choline

Kinase is overexpressed in several brain tumors, hence the presence

of choline peak in MRS spectra, which reflects an increased cell
FIGURE 5

ROC graphs visualizing and selecting classifiers based on their classification performance quantified by the areas under the ROC curve (AUC) for
each step of the algorithm.
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membrane turnover and proliferation, as well as increased

cellularity (38). In tumors, the level of Cho correlates with the

malignancy degree, reflecting cellularity (40). However, some

studies have reported that the Cho/Cr ratio alone is not reliable

in differentiating brain METs from GBMs (1).

NAA peak gets contributions from N-acetylaspartyl glutamate

(NAAG), glycoproteins, and amino acid residues in peptides (37).

NAA is one of the most abundant amino acids in the CNS (41, 42).

It is synthesized in the neuronal mitochondria by the L-aspartate N-

acetyltransferase from L-aspartate and acetyl coenzyme A, and is

transported into the cytosol to be converted by the enzyme

aspartoacylase into aspartate and acetate (41, 42). NAA is a

marker of neural density and functional integrity of neuronal

mitochondrial metabolism (42). NAA decrease indicates a loss of

neuronal structures or function, or a displacement of normal brain

tissue by highly proliferating tumor cells (37, 43). NAA is not

present in tumors outside the central nervous system (44).

The close relationship between Cho and NAA may explain the

importance of the assessment of membrane lipid metabolism versus

neuronal viability (Cho/NAA ratio) for the classification decision

making according to the infiltration or displacement of normal

brain tissue relative to neuronal density.

In this study, significantly elevated Cho/Cr levels were noted in

PCNSLs compared to those in METs (P< 0.001). The Cho/Cr ratio

in GBMs was also significantly higher than that in METs (P =

0.013), but was not significantly different than that in PCNSL (P =

0.0149), in agreement with several previous studies (1–3). NAA was

undetectable at 2.02 ppm in METs. Significantly elevated Cho/NAA

levels in GBMs compared with those in PCNSLs (P = 0.006)

indicated that loss of neuronal structures or functions was higher

in GBMs than that in PCNLs.

Indeed, NAA levels are almost completely absent in brain

metastases (45, 46). They constitute a strong argument in the

multiclass classification of tumors and may partly explain the

good performance of the model. Typically, metastases grow

expansively and noninfiltratively, and rarely contain brain tissue

within the lesion. Metastatic lesions tend to be encapsulated without

high Cho signals or other abnormalities outside the region of

enhancement (8, 47). The brain is replaced by the lesion (48) and

the presence of NAA in the spectra of metastases is attributed to

voxel contamination by adjacent normal brain rather than to the

intra-tumor signal (44, 48–50). On the other hand, GBM and

PCNSL tumors are not circumscribed but diffusely infiltrating

into the brain tissue. NAA is decreased whenever the brain is

damaged. The infiltrated brain parenchyma can produce NAA

signals without definite contamination from surrounding normal

brain tissue (49).

The root node of the algorithm was primarily based on the

proliferative, infiltrative, and neuronal destructive characteristics of

the tumor.
The second node of the algorithm

The second node of the algorithm (PSRmax) concerned the underlying

hemodynamic tumor process involved in capillary permeability.
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PSRmax is the percentage of maximum signal intensity

recovered at the end of the first pass of contrast agent relative to

baseline (before contrast administration) from the T2* signal-

intensity curve of MRI perfusion (2). The degree of this recovery

depends on several factors, such as contrast agent leakage,

extravascular space size, and blood flow rate (2).

In this study, significantly elevated PSRmax levels were noted in

PCNSLs compared to those in GBMs and METs (P< 0.001,

respectively), without significant difference between those in

GBMs and METs (P = 0.811). Previous studies (2, 14, 15, 51)

showed that tumor capillary permeability assessment (PSRmax)

appears to be useful in differentiating PCNSLs from GBMs and

METs, or METs from PCNSLs and GBMs. Furthermore, combined

Cho/NAA and PSRmax classifier may provide the best differential

diagnostic performance to discriminate PCNSLs from GBMs and

METs (3). However, PSRmax on its own is not effective enough to

discriminate GBMs from other common brain tumors such as

PCNSLs and METs (2, 3, 14, 15, 51).

The second node of the algorithm was primarily based on

tumor tissue capillary permeability characteristics.
The end node of the algorithm

The third and end node of the algorithm hinged on the

underlying metabolic tumor process involved in intracellular

glycolytic energy metabolism (Lac/Cr) in the decision making of

GBMs and PCNSLs classifications, or membrane lipid metabolism

due to increased cell membrane turnover by proliferating tumor

cells (Cho/Cr) for PCNSLs classification decision making.

Lactate (Lac) is usually undetectable by MR imaging in a

healthy brain. Its detection indicates the presence of ischemic

processes and macrophage invasion (52). Lactate detection

indicates an alterated cell energy metabolism related to increased

energy demand (52). Lactate resonance (Lac/Cr) indicates impaired

oxidative phosphorylation and increased anaeroby glycolysis

(Warburg effect) (53, 54) linked to a highly cellular process,

associated to increased membrane lipid metabolism (Cho/Cr) due

to membrane biosynthesis by proliferating tumor cells (52). In brain

tumors, lactate is an indicator of malignancy (52, 55, 56).

In the present study, significantly elevated Lac/Cr levels were

noted in PCNSLs compared to those in GBMs (P< 0.001),

themselves greater than those in METs (P< 0.001), which is

consistent with several studies (51, 52). A previous study showed

that combined PSRmax and lactate/Cr or PSRmax and Cho/Cr

classifiers may provide the best differential diagnostic performance

to discriminate METs from PCNSLs and GBMs (3). However,

Lactate resonance on its own has not been found reliable in

distinguishing the brain METs from GBMs (47, 57, 58).

The end node of the algorithm was primarily based on energy

glycolytic (Warburg effect) or membrane lipid tumor metabolism.

Cerebral blood volume (rCBV) is an index of microvascularity and

neoangiogenesis correlated with the aggressiveness and malignancy of

tumors (2, 6). It has been used in the grading of gliomas (14).

Significantly elevated rCBV levels were noted in GBMs compared

to those in METs and PCNSLs, (P< 0.001, respectively), which is
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consistent with several studies (2, 14, 15, 59, 60). However, there is a

substantial overlap in rCBV values between these malignancies. Several

prior studies have reported that rCBV have highlighted some salient

features of these malignancies, but they are not always consistent and

corroborative. Accordingly, rCBV may not be useful in the

discrimination between these tumor types (2, 14, 15, 51, 59, 61, 62).

In the case of metastases, rCBV values may vary over a large range

depending on the origin and histopathology of the tumor tissue.

Hypervascular metastases such as renal cell carcinoma and

melanoma have a markedly high rCBV than less vascularized

metastases (60, 63). PSR has been reported to be a better criterion

than rCBV to differentiate these lesions (2, 3, 14, 51, 64).

As a result, microvasculature and neoangiogenesis tumor

(rCBV) was not a sufficiently efficient algorithm node for

multiclass classification of common brain tumors.
The strengths and limitations of the study

Our study has several potential strenghs including histopathologic

examination to confirm the diagnosis in all patients prior to inclusion, a

multiclass classification procedure (three-class classification), K-fold

random cross-validation to minimize the risk of overfitting (high

variance error and low bias error) and provide a better

approximation of the performance of the trained model in clinical

practice. The interesting property of a machine learning model is its

ability to categorize new unseen data. Cross validation is a technique

used to determine how the results of a machine learning model could

be generalized to new, unseen data. This approach provides a

mechanism to get the test-data Mean Square Error with the current

dataset without the need of finding new data to test the model.

The implementation of machine learning decision tree models

focused on data from the relevant MRI modalities, such as perfusion

and spectroscopy, for the multiclass classification of lymphomas,

glioblastomas and metastases. This was to highlight and understand

the involvement of the relevant underlying hemodynamic and

metabolic pathophysiological processes in the prioritization of

machine learning decision tree model discrimination algorithms

for the multiclass classification of these brain tumors. The

information contained in the multiparametric data of perfusion

and spectroscopy constituted a sufficiently enriched informative

value to allow a satisfactory multiclass classification performance of

these brain tumors. This could suggest that there was little to be

gained by introducing additional data from less relevant modalities.

Our study may have a few potential limitations including small

sample size, model generalizability from model performance

monocentric validation, quantification of the metabolites’

concentration which may be affected by low signal-to-noise ratio,

field inhomogeneities, metabolite spectra overlapping, and

quantification of rCBV in regions of disrupted BBB with

consecutive leakage of contrast agent into the interstitial space

which may affect its accuracy (14, 51). In regions of disrupted

BBB with consecutive leakage of contrast agent into the interstitial

space, rCBV measurement accuracy may be affected. The increase

in the T1 weighted signal from contrast media leakage can partly

cancel out the decrease in the T2* weighted signal, which can lead to
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an over- or under-estimation of perfusion parameters (65). There

are several strategies to minimize the effect of T1 shortening, such as

preload contrast agent administration or mathematic leakage-

correction model (66). However, the lack of consensus reflects

that methodical flaws are not yet resolved limiting the

comparability of different MR perfusion studies.
Conclusion

Our study shows potential implementation of machine learning

algorithms and decision tree-models based on perfusion and

spectroscopy MRI data for an accurate multiclass classification of

common brain tumors. The complex and nonlinear relationships

between many perfusion and spectroscopy MRI variables can be

simplified by multivariate classification methods, and differences

related to intra-variable correlations may be further emphasied

between tumor types. Classification and Regression Tree models

allow a hierarchical and convenient use of MRI perfusion and

spectroscopy parameters for the multiclass classification of these

brain tumors and provide a supplementary approach for a

personalized decision support.
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