AUTHOR=Strolin Silvia , Santoro Miriam , Paolani Giulia , Ammendolia Ilario , Arcelli Alessandra , Benini Anna , Bisello Silvia , Cardano Raffaele , Cavallini Letizia , Deraco Elisa , Donati Costanza Maria , Galietta Erika , Galuppi Andrea , Guido Alessandra , Ferioli Martina , Laghi Viola , Medici Federica , Ntreta Maria , Razganiayeva Natalya , Siepe Giambattista , Tolento Giorgio , Vallerossa Daria , Zamagni Alice , Morganti Alessio Giuseppe , Strigari Lidia TITLE=How smart is artificial intelligence in organs delineation? Testing a CE and FDA-approved Deep-Learning tool using multiple expert contours delineated on planning CT images JOURNAL=Frontiers in Oncology VOLUME=13 YEAR=2023 URL=https://www.frontiersin.org/journals/oncology/articles/10.3389/fonc.2023.1089807 DOI=10.3389/fonc.2023.1089807 ISSN=2234-943X ABSTRACT=Background

A CE- and FDA-approved cloud-based Deep learning (DL)-tool for automatic organs at risk (OARs) and clinical target volumes segmentation on computer tomography images is available. Before its implementation in the clinical practice, an independent external validation was conducted.

Methods

At least a senior and two in training Radiation Oncologists (ROs) manually contoured the volumes of interest (VOIs) for 6 tumoral sites. The auto-segmented contours were retrieved from the DL-tool and, if needed, manually corrected by ROs. The level of ROs satisfaction and the duration of contouring were registered. Relative volume differences, similarity indices, satisfactory grades, and time saved were analyzed using a semi-automatic tool.

Results

Seven thousand seven hundred sixty-five VOIs were delineated on the CT images of 111 representative patients. The median (range) time for manual VOIs delineation, DL-based segmentation, and subsequent manual corrections were 25.0 (8.0-115.0), 2.3 (1.2-8) and 10.0 minutes (0.3-46.3), respectively. The overall time for VOIs retrieving and modification was statistically significantly lower than for manual contouring (p<0.001). The DL-tool was generally appreciated by ROs, with 44% of vote 4 (well done) and 43% of vote 5 (very well done), correlated with the saved time (p<0.001). The relative volume differences and similarity indexes suggested a better inter-agreement of manually adjusted DL-based VOIs than manually segmented ones.

Conclusions

The application of the DL-tool resulted satisfactory, especially in complex delineation cases, improving the ROs inter-agreement of delineated VOIs and saving time.