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Purpose: This study aimed to investigate the ability of enhanced computed

tomography (CT)-based radiomics and dosimetric parameters in predicting

response to radiotherapy for esophageal cancer.

Methods: A retrospective analysis of 147 patients diagnosed with esophageal

cancer was performed, and the patients were divided into a training group (104

patients) and a validation group (43 patients). In total, 851 radiomics features

were extracted from the primary lesions for analysis. Maximum correlation

minimum redundancy and minimum least absolute shrinkage and selection

operator were utilized for feature screening of radiomics features, and logistic

regression was applied to construct a radiotherapy radiomics model for

esophageal cancer. Finally, univariate and multivariate parameters were used

to identify significant clinical and dosimetric characteristics for constructing

combination models. The area evaluated the predictive performance under the

receiver operating characteristics (AUC) curve and the accuracy, sensitivity, and

specificity of the training and validation cohorts.

Results: Univariate logistic regression analysis revealed statistically significant

differences in clinical parameters of sex (p=0.031) and esophageal cancer

thickness (p=0.028) on treatment response, whereas dosimetric parameters

did not differ significantly in response to treatment. The combined model

demonstrated improved discrimination between the training and validation

groups, with AUCs of 0.78 (95% confidence interval [CI], 0.69–0.87) and 0.79

(95% CI, 0.65–0.93) in the training and validation groups, respectively.

Conclusion: The combined model has potential application value in predicting

the treatment response of patients with esophageal cancer after radiotherapy.
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1 Introduction

Esophageal cancer is the eighth most prevalent and sixth most

lethal cancer worldwide. In Asia and Eastern Europe, the most

prevalent histological subtype of this malignancy is squamous cell

carcinoma (1). More than 70% of patients with esophageal cancer

are diagnosed at an intermediate to advanced stage, with

unresectable or metastatic disease, and a combination of

chemotherapy and radiation therapy is frequently provided to

patients with esophageal cancer (2). Studies have indicated that

the 5-year survival rate for patients with locally advanced

esophageal cancer treated with radiation is only 36–47% (3, 4),

and the 5-year overall survival of patients with complete remission

(CR) is better than that of patients without CR (5). Therefore, early

identification of patients who do not respond to radiotherapy and

prompt monitoring of tumor response to treatment during

radiotherapy are crucial for implementing individualized

precision radiotherapy and enhancing overall patient survival.

Computed tomography (CT) is commonly used to assess the

preoperative staging of esophageal cancer, including the extent of

infiltration, lymph node extent, and metastasis, for clinical

treatment decisions (6). However, CT only shows the external

morphological features of esophageal cancer. It is challenging to

fully assess the heterogeneity within the tumor. Radiomics extracts

quantitative CT image features with a high throughput. This

information extraction is based on the entire tumor and is not

confined to a single tissue sample, allowing for a thorough

description of tumor heterogeneity. Hou et al. investigated the

baseline CT-enhanced image characteristics of 49 patients (33

with strong response and 16 with poor response) with esophageal

cancer treated with radiation and found substantial differences in

kurtosis and skewness in histogram characteristics between the two

groups (7). Yang et al.’s analysis of patients receiving lower doses of

neoadjuvant chemoradiotherapy (nCRT) did not reveal any clinical

characteristics that predicted patients’ arrival to pathological

complete response (pCR). However, radiomics features enabled

the construction of three highly accurate models for predicting

pCR following nCRT in individuals with esophageal cancer (8).

Some researchers have attempted to predict an outcome by

combining intratumoral and peritumoral features. Radiomics

examination is not restricted to the tumor body. Hu et al.

included patients with esophageal cancer who underwent surgery

after nCRT in two institutions and extracted radiomics features

from baseline-enhanced CT intratumoral and peritumoral regions

to construct models, demonstrating that models constructed with

seven intratumoral and six peritumoral radiomics features had

superior predictive performance, with receiver operating

characteristic (ROC) curves of 0.906 and 0.85 in the training and

validation groups, respectively (9).

With the progress of radiotherapy technology, esophageal

cancer can be treated by three-dimensional conformal radiation

therapy (3D-CRT), intensity-modulated radiotherapy (IMRT), and

volumetric-modulated arc therapy (VMAT), but its 5-year survival

rate remains inadequate. Local uncontrolled or recurrence remains

the most common cause of radiotherapy failure. Due to individual
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variances, the radiation dose for each patient varies. Some studies

have demonstrated the significant efficacy of radiotherapy up to a

dose of 40 Gy in certain patients, whereas others are not sensitive to

radiotherapy and fail to improve their local control rate even when

administered 70 Gy (10). Incremental radiation therapy dosages

may result in severe toxic side effects, the severity of which is mostly

determined by clinical criteria and the quantity of healthy tissue

surrounding the exposed tumor. In radiation therapy for cancer,

metrics, such as prescribed dose, dose distribution, and dose-

volume histogram, can also be utilized to evaluate treatment

response and cancer prognostic analysis (11, 12).

To the best of our knowledge, the doses of radiotherapy received

by patients in some current studies were also significantly lower

than those of radical radiotherapy. Few studies have incorporated

dosimetric data and several other variables into predictive models.

To assist clinicians in deciding the best course of treatment for

patients with esophageal cancer receiving radiation, this study

aimed to examine the effects of enhanced CT-based radiomics in

predicting the response to radiotherapy.
2 Materials and methods

2.1 Patients and treatment

The ethical committee allowed a retrospective collection of 147

patients with a histological diagnosis of esophageal squamous cell

carcinoma at our hospital between January 2018 and December

2021 (approval number: S2022035-01). The inclusion criteria

were as follows: (a) patients with a histopathology-confirmed

squamous cell carcinoma of the esophagus, (b) patients who

had completed radiotherapy, (c) patients without distant

metastases or other neoplastic diseases, and (d) patients

with trackable treatment results. The exclusion criteria were as

follows: (a) patients with missing follow-up data; (b) patients who

had previously undergone chest radiation, chemotherapy, or

surgical tumor excision; (c) patients with multifocal primary

disease; and (d) extreme respiratory motion artifacts; and (e)

invisible tumor on CT image. Image quality is judged by the two

radiologists independently, and the disagreement is resolved

through negotiation. Patients underwent 3D-CRT, IMRT, or

VMAT during the treatment period. In total, 100% of the

prescribed dose encompassed 95% of the volume of the target

area for all patients.
2.2 Response assessment

After 3 months of treatment, response to treatment was assessed

by CT findings and determined according to the efficacy evaluation

criteria for solid tumors (Response Evaluation Criteria in Solid

Tumors) (13). CR, partial response (PR), stable disease (SD), and

progressive disease (PD) were assessed. Patients with CR or PR were

classified as responders, whereas patients with SD or PD were

classified as nonresponders.
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2.3 Image acquisition

All patients underwent chest CT examinations utilizing a

Siemens large-aperture CT scanner. The scan parameters (tube

voltage, 120 kVp; tube current, 200 mAs; matrix, 512×512; layer

thickness, 5 mm; layer spacing, 5 mm) were in accordance with the

clinical standard acquisition methodology. Iodine contrast agent

was injected at 3 ml/s using a high-pressure syringe. A radiation

oncologist drew the primary gross tumor volume (GTV) on

Oncentra software, which was subsequently examined by an

experienced radiation oncologist. Avoiding the esophagus lumen,

blood arteries, periesophageal fat, and artifacts were outlined as

the GTV.
2.4 Feature extraction

TPS exported Digital Imaging and Communications in

Medicine files to 3D Slicer(version,4.11, https://www.slicer.org)

for preprocessing (1×1×1 resampling) and feature extraction

(Supplementary Figure 1) (14). In total, 851 features, comprising

107 original features and 744 wavelet features, were extracted from

each GTV. The original features included 18 first-order statistical

features, 14 shape size features, 14 gray-level dependence matrix, 16

gray-level size zone matrix, 24 gray-level co-occurrence matrix,16

gray-level run-length matrix, and 5 neighboring gray tone difference

matrix. Image transformation features, such as wavelet transform

features, were primarily utilized to divide original tumor images

into distinct frequency domains. Except for 14 shape features that

do not change with image transformation, each of the 93 features is

extracted to different values in the image GTV after 8

wavelet transforms.
2.5 Feature screening and
model construction

Random stratified sampling was used to divide 147 patients into

two groups (104 and 43 patients in the training and validation

groups, respectively). Data standardization and feature extraction

were performed using R software (version 3.6.0, https://www.r-

project.org).The extracted features were preprocessed with Z-score

for normalization to reduce the effect of different magnitudes on the

features, specifically by eliminating the mean of each feature to

center the feature values and then dividing by the standard

deviation of each feature. The minimum redundancy maximum

relevance (mRMR) algorithm was then used to screen features. The

mRMR algorithm is based on calculating a pair of correlation

coefficient (A) and redundancy coefficient value (B) for each

feature, where the correlation coefficient represents the

relationship between the feature and treatment response and the

redundancy coefficient represents the redundancy coefficient

between features. The A-B values of all parameter values for

features were then ordered in decreasing order (15). The least

absolute shrinkage and selection operator (LASSO) method was

then utilized for additional feature screening using tenfold cross-
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validation. A logistic regression model calculated a radiomics score

(Rad-score) for each patient using model-weighted coefficients.
2.6 Model construction and evaluation

We established a combined model to predict the efficacy of

radiotherapy for esophageal cancer by using multivariate logistic

regression analysis. The variables included Rad-score, clinical and

dosimetric parameters. The Combine model is finally demonstrated

through a nomogram. The performance of the model was evaluated

using area under the curve (AUC), precision, sensitivity, and

specificity. Using a decision curve analysis, the quantification of

net benefits under different threshold probabilities was confirmed.
2.7 Statistical analyses

All statistical analyses were performed using the R software.

Continuous variables are expressed as median (Q1, Q3) using the

Mann–Whitney U test. For the count data, the Fisher’s exact

probability approach was utilized. Univariate and multivariate

logistic regression analyses were performed to identify the

independent predictors of clinical and dosimetric indicators. The

difference in AUC between models was examined using the Delong

test. P<0.05 was considered statistically significant.
3 Results

In total, 236 patients with esophageal cancer were treated in our

hospital, of whom 15 discontinued treatment, 23 were lost to

follow-up, 22 had a history of radiotherapy, 10 had incomplete

data and19 had poor image quality. These patients were excluded

from the statistical analyses. The remaining 147 patients (113 males

and 34 females; median age, 66 years) met the inclusion criteria. The

number of patients who responded to treatment (CR+PR) was 89,

whereas 58 patients (PD+SD) were nonresponders. The clinical and

dosimetric characteristics of the patients are shown in Table 1.

LASSO regression was used to minimize the dimensionality of

the recovered features, and 7 out of 851 possible radiomics features

were selected to calculate their products with the regression

coefficients using the following equations (Figures 1A, B). Each

patient’s Rad-score was obtained and calculated as follows: Rad-

score=–0.236×Original_firstorder_90Percentile-0.026×Wavelet.

Hll_firstorder_Skewness-0.128×Original_glszm_HighGray

LevelZoneEmphasis+0.19×Wavelet.Lhh_glcm_ClusterShade-

0.046×Wavelet.Hll_glcm_ClusterShade-0.049×Wavelet.Hll_

firstorder_Maximum+0.173×Wavelet.Hhl_glcm_ClusterShade

Figure 2 illustrates the results of using the AUC size of the area

under the ROC curve to measure the prediction performance of the

model. In the training group, the AUC value of radiomics for

predicting esophageal cancer treatment response was 0.76 (95%

confidence interval [CI], 0.67–0.85), with an accuracy of 0.692 (95%

CI, 0.594–0.779), a sensitivity of 80.5%, and a specificity of 61.9%. In

the validation group, the AUC, accuracy, sensitivity, and specificity
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TABLE 1 The clinical and dosimetric characteristics of the patients.

Characteristic Non-response (n=58) Response (n=89) p

Age 67.00 (59.00,73.00) 66.00 (60.00,73.00) 0.899

Gender 0.008*

Female 20 (34.48%) 14 (15.73%)

Male 38 (65.52%) 75 (84.27%)

Tumor location 0.176

Cervical 5 (8.62%) 2 (2.25%)

Upper 12 (20.69%) 17 (19.10%)

Middle 27 (46.55%) 54 (60.67%)

Lower 14 (24.14%) 16 (17.98%)

Histologic grade 0.141

Poor 24 (41.38%) 24 (26.97%)

Moderate 31 (53.45%) 62 (69.66%)

Well 3 (5.17%) 3 (3.37%)

T stage 0.812

T1 2 (3.45%) 1 (1.12%)

T2 11 (18.97%) 18 (20.22%)

T3 30 (51.72%) 44 (49.44%)

T4 15 (25.86%) 26 (29.21%)

N stage 0.373

N0 14 (24.14%) 14 (15.73%)

N1 30 (51.72%) 43 (48.31%)

N2 13 (22.41%) 30 (33.71%)

N3 1 (1.72%) 2 (2.25%)

M stage 0.765

M0 54 (93.10%) 83 (93.26%)

M1 4 (6.90%) 6 (6.74%)

Group stage 0.309

I 2 (3.45%) 0 (0.00%)

II 13 (22.41%) 19 (21.35%)

III 26 (44.83%) 38 (42.70%)

IV 17 (29.31%) 32 (35.96%)

Hypertension 0.865

Yes 6 (10.34%) 10 (11.24%)

No 52 (89.66%) 79 (88.76%)

Smoking history 0.466

Yes 15 (25.86%) 28 (31.46%)

No 43 (74.14%) 61 (68.54%)

Drinking history 0.748

Yes 13 (22.41%) 22 (24.72%)

(Continued)
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TABLE 1 Continued

Characteristic Non-response (n=58) Response (n=89) p

No 45 (77.59%) 67 (75.28%)

Nutrition 0.154

1 18 (31.03%) 35 (39.33%)

2 17 (29.31%) 27 (30.34%)

3 6 (10.34%) 13 (14.61%)

4 13 (22.41%) 7 (7.87%)

5 4 (6.90%) 7 (7.87%)

Thickness 1.35 (1.19,1.60) 1.50 (1.17,1.90) 0.048*

Length 5.50 (4.50,7.00) 5.90 (4.50,7.00) 0.959

BMI 22.00 (19.59,23.42) 21.50 (19.80,23.30) 0.834

Dose 60.00 (60.00,60.00) 60.00 (60.00,60.00) 0.650

Frequency 30.00 (28.00,30.00) 30.00 (28.70,30.00) 0.718

Divided dose 2.00 (2.00,2.13) 2.00 (2.00,2.00) 0.352

PTV

Dmin (Gy) 5400.00 (4952.10,5601.20) 5306.00 (4786.50,5596.50) 0.660

Dmax (Gy) 6636.00 (6518.50,6722.50) 6599.00 (6478.90,6757.90) 0.641

Dmean (Gy) 6252.25 (6203.85,6293.10) 6228.00 (6167.00,6286.60) 0.374

V90 (%) 99.99 (99.86, 100.00) 99.99 (99.86, 100.00) 0.815

V93 (%) 99.78 (99.45, 99.99) 99.86 (99.44, 99.99) 0.837

V95 (%) 99.43 (99.14, 99.71) 99.57 (98.99, 99.87) 0.576

Lung

Dmean (Gy) 1169.00 (1047.85,1366.30) 1200.00 (1007.10,1341.30) 0.984

V5 (%) 53.52 (48.52, 58.63) 51.72 (44.51, 58.68) 0.429

V10 (%) 37.41 (34.60, 41.99) 38.51 (33.31, 41.38) 0.967

V20 (%) 21.41 (18.81, 27.59) 23.04 (19.82, 26.05) 0.898

V30 (%) 11.49 (8.04, 14.55) 12.45 (8.22, 14.82) 0.756

V40 (%) 5.68 (3.88, 8.34) 5.94 (3.52, 8.37) 0.997

Heart

Dmean (Gy) 2748.00 (1640.10,3255.50) 2598.00 (1108.20,3190.70) 0.234

V5 (%) 92.89 (57.94, 98.43) 87.07 (38.63, 97.13) 0.134

V10 (%) 79.00 (48.04, 91.82) 75.95 (32.61, 89.80) 0.242

V15 (%) 69.00 (41.20, 83.75) 62.35 (24.00, 80.68) 0.203

V20 (%) 61.52 (36.47, 74.22) 53.89 (19.91, 73.42) 0.241

V25 (%) 54.67 (27.72, 66.24) 46.25 (17.49, 64.02) 0.229

V30 (%) 43.34 (21.91, 55.79) 39.34 (14.13, 50.50) 0.161

V40 (%) 24.34 (12.63, 39.00) 20.31 (7.47, 32.04) 0.210

V50 (%) 10.34 (4.52, 14.97) 7.47 (2.51, 14.51) 0.189

V60 (%) 1.60 (0.00, 4.03) 1.29 (0.00, 3.99) 0.564

(Continued)
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were 0.73 (95% CI, 0.58–0.88), 0.721 (95% CI, 0.563–0.846), 88.2%,

and 61.5%, respectively. The Delong test revealed no statistically

significant difference between the effectiveness of the two

groups (p>0.05).

The clinical and dosimetric parameters related to treatment

response in the training group were determined by univariate and
Frontiers in Oncology 06
multivariate logistic regression analyses. Sex and esophageal

carcinoma thickness were substantially associated with treatment

response among clinical characteristics, as shown by univariate

logistic regression analysis. However, none of the dosimetric

variables were related to treatment response (Table 2). Hence,

sex, esophageal cancer thickness, and Rad-score were
TABLE 1 Continued

Characteristic Non-response (n=58) Response (n=89) p

Spinal Cord

Dmax (Gy) 4421.00 (4338.85,4531.00) 4421.00 (4338.60,4521.50) 0.855

Dmean (Gy) 2418.5 (1910.75,2920.75) 2295 (1816.01,2725.60) 0.301
*p<0.05.
A B

FIGURE 1

Selection of radiomics features for predicting response using the least absolute shrinkage and selection operator (LASSO) logistic regression model.
(A) LASSO coefficient profiles of the radiomics features. (B) The cross-validation curve.
A B

FIGURE 2

Receiver operating characteristic (ROC) curve comparison of combined and radiomics and clinical models. (A) ROC curve in the training set.
(B) ROC curve in the validation set.
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TABLE 2 Univariate and Multivariate logistic regression analysis in the training set.

Variable Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Age 0.985 (0.940, 1.032) 0.516

Gender 2.727 (1.098, 6.771) 0.031* 2.028 (0.705,5.838) 0.189

Tumor location 1.392 (0.823, 2.354) 0.217

Histologic grade 1.523 (0.707, 3.278) 0.282

T stage 1.278 (0.726, 2.251) 0.395

N stage 1.302 (0.759, 2.234) 0.338

M stage 0.633 (0.121, 3.301) 0.588

Group stage 1.291 (0.761, 2.189) 0.343

Treatment 1.599 (0.522, 4.898) 0.411

Hypertension 1.156 (0.316, 4.229) 0.826

Smoking history 1.442 (0.593, 3.506) 0.420

Drinking history 1.404 (0.539, 3.661) 0.487

Nutrition 0.879 (0.648, 1.191) 0.405

Medication 1.490 (0.831, 2.674) 0.181

Thickness 2.419 (1.101, 5.317) 0.028* 2.033 (0.877,4.713) 0.098

Length 0.972 (0.804, 1.176) 0.772

BMI 1.001 (0.880, 1.139) 0.985

Dose 0.984 (0.885, 1.094) 0.768

Frequency 1.027 (0.811, 1.301) 0.824

Divided dose 0.150 (0.001,21.467) 0.454

PTV_Dmin 1.000 (1.000, 1.000) 0.576

PTV_Dmax 1.000 (0.999, 1.000) 0.530

PTV_Dmean 1.000 (0.999, 1.000) 0.452

PTV_V90 0.361 (0.039, 3.386) 0.373

PTV_V93 0.826 (0.294, 2.317) 0.716

PTV_V95 1.177 (0.553, 2.507) 0.672

Lung_V5 0.981 (0.943, 1.020) 0.325

Lung_V10 1.000 (0.946, 1.056) 0.991

Lung_V20 0.999 (0.931, 1.072) 0.977

Lung_V30 0.995 (0.975, 1.015) 0.617

Lung_V40 1.005 (0.970, 1.041) 0.772

Lung_Dmean 1.000 (0.999, 1.001) 0.979

Heart_V5 0.992 (0.979, 1.005) 0.236

Heart_V10 1.001 (0.998, 1.004) 0.572

Heart_V15 0.993 (0.980, 1.007) 0.325

Heart_V20 0.993 (0.979, 1.007) 0.334

Heart_V25 0.993 (0.977, 1.009) 0.368

Heart_V30 0.990 (0.973, 1.008) 0.265

(Continued)
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incorporated into the multivariate logistic analysis to construct a

combined model.

Based on the results of the multivariate analysis, a combine

model is finally demonstrated through a nomogram (Figure 3), The

risk ratio and significance of each variable in the multivariate

combined model are shown in Supplementary Table 1, and the

outcomes are presented in Figure 2. In the training group, the AUC,

accuracy, sensitivity, and specificity for the combined model were

0.78 (95% CI, 0.69–0.87), 0.673 (95% CI, 0.574–0.762), 96.7%, and

54.8%, respectively. In the validation group, the AUC, accuracy,

sensitivity, and specificity were 0.79 (95% CI, 0.65–0.93), 0.651

(95% CI, 0.491–0.790), 92.3%, and 53.3%, respectively. The

performance metrics of radiomics, clinics, and combined models

are displayed in Table 3.The AUC of combined model was higher

than that of the clinical model, indicating that the combined model

achieved considerably better discrimination capability than clinical

model(DeLong’s test, p < 0.001).However, there was no significant

difference between the combined and the radiomics model

(p=0.772) and between the radiomics and the clinical

model (p=0.133).

Using decision curves to analyze the influence of the model on

clinical treatment decisions, the clinical model (without Rad-score)

or the combined model (with Rad-score) outperformed “all

treatment” or “no treatment” when the risk threshold was greater
Frontiers in Oncology 08
than 10%, and the combined model had greater predictive power

than the clinical model when the threshold was more significant

than 23% (Figure 4).
4 Discussion

In this study, radiomics features of localized CT images of

patients before radiotherapy were extracted, and the optimal seven

features were screened out, combined with clinical features to

construct a model of the treatment response of patients receiving

radiotherapy, which can provide a cost-effective and noninvasive

method for predicting the efficacy of radiotherapy.

In the present study, two clinical factors, esophageal carcinoma

thickness and sex, were substantially associated with treatment

response. Previous studies have demonstrated the predictive

usefulness of esophageal carcinoma thickness in determining

preoperative treatment response (16, 17). According to Zhang

et al., esophageal cancer thickness as a single predictor can

evaluate survival and efficacy of preoperative chemotherapy (18).

The limited value of thickness measurement on CT may be

attributed to the swelling effect of necrotic and fibrotic tissues

following radiation, resulting in persistent imaging abnormalities.

Radiomics augments standard imaging parameters. It recognizes

intra-tissue heterogeneity, hence increasing the predictive accuracy

of the model for tumor response. According to a previous study on

esophageal cancer, women are more likely to present with pCR and

have higher survival rates than men (19, 20). In contrast, the results

of the current study were different, possibly due to the small number

of women with esophageal cancer in the study population, which

led to unusual experimental results. Dosimetric measures were not

altered significantly when the treatment response was reversed. Jin

et al. obtained similar results using a dosimetric model to evaluate

treatment response in esophageal cancer after radiotherapy (21).

The obtained dosimetric parameters may be 3D dose distributions,

which describe the volume of irradiation received by an organ at a

provided dose. There is a loss of spatial link information

between voxels.

Several studies have demonstrated the use of radiomics, an

emerging image analysis technique, to predict the efficacy of

radiation in patients with esophageal cancer. Murakami et al.
TABLE 2 Continued

Variable Univariate analysis Multivariate analysis

OR (95%CI) p OR (95%CI) p

Heart_V40 0.992 (0.970, 1.014) 0.465

Heart_V50 0.985 (0.944, 1.027) 0.469

Heart_V60 1.023 (0.902, 1.162) 0.720

Heart_Dmean 1.000 (0.999, 1.000) 0.318

Spinal_Cord_Dmax 1.001 (0.999, 1.002) 0.292

Spinal_Cord_Dmean 1.000 (0.999, 1.000) 0.538

Rad-score 18.861 (4.718,75.403) <0.01* 15.326 (3.687,63.693) <0.01*
frontie
*p<0.05.
FIGURE 3

Predictive nomogram combined Rad-score, sex, and esophageal
cancer thickness.
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retrieved 22 radiomics variables for LASSO regression analysis from

positron emission tomography (PET)/CT images of 98 patients

with esophageal cancer treated with nCRT. Using a neural network

classifier, they developed a prediction model with accuracy,

sensitivity, and specificity of 89.6%, 92.7%, and 89.5%,

respectively (22). Hou et al. extracted 138 radiomics features from

the pre-therapy T2-weighted (T2W)- and spectral attenuated

inversion recovery (SPAIR) T2W-magnetic resonance imaging

(MRI) sequences of 68 patients with esophageal squamous

carcinoma, which could distinguish between CR and stable

lesions, partial remission and stable lesions, and reactive and non-

reactive lesions by 26, 17, and 33 features, respectively, and used

artificial neural networks (ANNs) and support vector machine

(SVM) to construct predictive models. The performance of the

SPAIR T2W-MRI model was superior to that of the T2W sequence

(SVM, 0.929; ANN, 0.883) (23). However, these earlier studies

rarely incorporated several elements, such as dosimetric

parameters, into model projections. In some of these studies,

patients received nCRT, with significantly lower treatment doses

than radical radiotherapy. In this study, dosimetric, clinical, and

other multiple factors were considered, and the LASSO regression

method was used to construct a model for predicting treatment

response after radiotherapy in patients with esophageal cancer, with

a maximum sensitivity of 96.7% and a maximum AUC of 0.79,

indicating that the prediction model has a high level of confidence

in identifying treatment response. Yip et al. predicted the treatment
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response of patients with esophageal cancer based on PET/CT

utilizing a radiomics approach. They showed high sensitivity

(81%) and specificity (82%) (24), which are comparable to the

current study’s findings. Luo et al. studied baseline CT images of

226 patients receiving nCRT for esophageal cancer, and LASSO was

used to build Rad-score for seven radiomics features. Combining

the radiomics labels with clinical staging, nomograms were created

to predict CR, with AUCs of 0.844 and 0.807 for the training and

validation groups, respectively. The prediction algorithm based on

the nomogram outperformed clinical staging (25). The predictive

performance of the combined model was similarly superior to that

of the only radiomics model in this study.
Currently, CT-based radiomics characteristics consist primarily

of geometric, morphological, textural, and intensity-based histogram

characteristics. Textural characteristics are a standard way to assess

tumor heterogeneity (26). Yip et al. studied PET/CT images of 31

patients with esophageal cancer before and after nCRT and reported

that the grayscale histogram standard deviation (histogram SD)

characteristics of tumors before and after therapy were related to

tumor regression grade (27). In addition, another study conducted by

Yip et al. extracted radiomics features that responded to patient

heterogeneity in CT radiomics before and after radiotherapy, such as

entropy, homogeneity, mean gray intensity, kurtosis, and standard

deviation of the histogram. After comparing the changes in these

texture features with patient survival, they discovered that entropy,

homogeneity, and skewness predicted patient survival after treatment

(28). Nakajo et al. extracted textural features from PET/CT scans of

52 patients with esophageal cancer receiving concurrent radiation.

They concluded that texture-related characteristics could predict

clinical response (29). The preceding study suggests that we can

analyze the heterogeneous information of esophageal cancers based

on the radiomics features of pretreatment CT and then develop a

model to predict the efficacy of radiation in patients. In the present

study, we discovered that the 90th percentile of the first-order

statistical parameters may differentiate between responders and

nonresponders.Texture features reflect the spatial distribution of

pixels within the tumor (26), and the spatial distribution of pixels

is more irregular in heterogeneous tumor pictures. The two-

dimensional gray area size matrix’s large area dominance feature

(glszm HighGrayLevelZoneEmphasis) indicates more related areas in

the image, indicating a coarser texture, and treatment responses can

be classed accordingly. Additionally, the Gabor wavelet transform

was employed to extract additional features. As a short-time Fourier
TABLE 3 Predictive performance of radiomics, clinics, and combined models.

Model
Training set (n=104) Test set (n=43)

AUC (95%CI) Accuracy Sensitivity Specificity AUC (95%CI) ACC Sensitivity Specificity

Radiomics
0.76

(0.67-0.85)
0.692

(0.594-0.779)
80.5% 61.9%

0.73
(0.58-0.88)

0.721
(0.563-0.846)

88.2% 61.5%

Clinics
0.65

(0.54-0.76)
0.683

(0.584-0.771)
67.4% 72.2%

0.60
(0.42-0.78)

0.628
(0.467-0.770)

63.9% 57.1%

Combine
0.78

(0.69-0.87)
0.673

(0.574-0.762)
96.7% 54.8%

0.79
(0.65-0.93)

0.651
(0.491-0.790)

92.3% 53.3%
FIGURE 4

Decision curve analysis for the combined and clinical models.
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transform, Gabor wavelet transformations can deconstruct a picture

into its component frequencies and directions (30). This study also

demonstrates that Wavelet.Hll firstorder Skewness, Wavelet.Lhh

glcm ClusterShade, Wavelet.Hll glcm ClusterShade, Wavelet.Hll

firstorder Maximum, and Wavelet.Hhl glcm ClusterShade may

discriminate the treatment response.

This study has some limitations. First, this study lacked

multicenter validation and was conducted at a single institution.

Nonetheless, the data in this study were obtained from a single CT

scanner, which ensures equal scanning parameters and eliminates

the influence of multiple devices and scanning parameters on

picture characteristics. Second, a previous study showed that

genes such as CXCR-2 and cyclin D1 are closely related with the

prognosis of tumors (31). The incorporation of genetic

characteristics into the radiomics model is vital.
5 Conclusion

In this study, a noninvasive, comprehensive, and individualized

radiotherapy efficacy prediction model was developed by

retrospectively analyzing the radiomics features of pre-radiotherapy

CT images of patients with esophageal cancer. Validation and model

evaluation were also performed. The model integrated radiomics

features and clinical factors with good predictive accuracy, providing

a cost-effective and simple evaluation technique for determining the

effectiveness of radiation for esophageal cancer.
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