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Background: Immunotherapy has become increasingly important in the

perioperative period of non-small-cell lung cancer (NSCLC). In this study, we

intended to develop a mutation-based model to predict the therapeutic

effificacy of immune checkpoint inhibitors (ICIs) in patients with NSCLC.

Methods: Random Forest (RF) classifiers were generated to identify tumor gene

mutated features associated with immunotherapy outcomes. Then the best

classifier with the highest accuracy served for the development of the

predictive model. The correlations of some reported biomarkers with the

model were analyzed, such as TMB, PD-(L)1, KEAP1-driven co-mutations, and

immune subtypes. The training cohort and validation cohorts performed survival

analyses to estimate the predictive efficiency independently.

Results: An 18-gene set was selected using random forest (RF) classififiers. A

predictive model was developed based on the number of mutant genes among

the candidate genes, and patients were divided into theMT group (mutant gene ≥

2) and WT group (mutant gene < 2). The MT group (N = 54) had better overall

survival (OS) compared to the WT group (N = 290); the median OS was not

reached vs. nine months (P < 0.0001, AUC = 0.73). The robust predictive

performance was confifirmed in three validation cohorts, with an AUC of 0.70,

0.57, and 0.64 (P < 0.05). The MT group was characterized by high tumor

neoantigen burden (TNB), increased immune infifiltration cells such as CD8 T and

macrophage cells, and upregulated immune checkpoint molecules, suggesting

potential biological advantages in ICIs therapy.

Conclusions: The predict ive model could precisely predict the

immunotherapeutic efficacy in NSCLC based on the mutant genes within the

model. Furthermore, some immune-related features and cell expression could

support robust efficiency.

KEYWORDS

non-small cell lung cancer, immunotherapy, mutation-based model, immune
features, biomarker
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1 Introduction

With the emergence of immune checkpoint inhibitors (ICIs),

such as programmed cell death protein-1 (PD-1)/programmed cell

death protein-1 ligand (PD-L1) and cytotoxic T lymphocyte-

associated 4 (CTLA-4) inhibitors, immunotherapy has become

one of the most promising treatment strategies for lung cancer,

particularly for advanced and metastatic non-small cell lung cancers

(NSCLC) with no epidermal growth factor receptor (EGFR) or

anaplastic large cell kinase gene (ALK) alterations (NCCN

Guidelines Version 3.2022 Non-Small Cell Lung Cancer, https://

www.nccn.org/). Recently, the amazing breakthrough of

Checkmate-816 (ClinicalTrials.gov number, NCT02998528) phase

3 results showed that neoadjuvant nivolumab plus chemotherapy

resulted in significantly longer event-free survival and a higher

percentage of patients with a pathological complete response (pCR)

than chemotherapy alone (24% vs. 2.4%) (1). Immunotherapy has

become more important in the perioperative period of NSCLC.

Since the FDA approved pembrolizumab for treating tumor

mutational burden-high (TMB-H) patients, TMB became an

indication for cancer therapy for the first time (2). Subsequently,

PD-(L)1 expression, TMB level (TMB-H/TMB-L), and

microsatellite instability/defective mismatch repair (MSI/dMMR)

status helped screen patients for enduring benefits of ICI therapy.

However, the tumor immune microenvironment presents complex

and distinct characteristics in various tumor types. Gu et al.

identified that microenvironments respond differently to ICIs in

different tumors derived from the same cancer cells (3).

Accordingly, a more informative predictive model that integrates

diversity biomarkers associated with immunotherapy outcomes and

resistance in NSCLC is urgently required (4).

Advances in gene sequencing technology, bioinformatics, and

deep learning analysis methods have considerably facilitated the

discovery of clinically meaningful genetic signatures. Furthermore,

with the increasingly abundant tumor sequencing data published in

the literatures and The Cancer Genome Atlas (TCGA) database,

studies in cancer prognosis and therapy-related biomarkers have

been conducted to address crucial clinical questions. Sinha et al.

identified that M1 macrophages and dendritic cells were strongly

correlated with high TMB, which could stratify the immunotherapy

responders well (5). Chen et al. identified that the apolipoprotein B

mRNA editing enzyme, catalytic polypeptide-like (APOBEC)

signature was significantly associated with ICIs therapeutic

efficacy in NSCLC (6). Zhang et al. analyzed the correlation of

single-gene mutation events with PFS data after ICI therapy, and

the mutations that occurred in serine/threonine kinase 11 (STK11)

were found to be related to poorer PFS. In contrast, the mutated

protein tyrosine phosphatase receptor type D (PTPRD) was

associated with better PFS (7). On this basis, we confirmed that

gene mutations might exhibit distinct and complex associations

with immunotherapy response. Zhang et al. emphasized the

interaction effects of co-mutations on ICIs efficacy and

constructed an inter-model as a predictor for ICI therapy (7). In

summary, genetic alterations in tumor cells are always caused by

DNA damage, pathway disorder, and heterogeneous immune

tumor microenvironment (TME). The accumulated abnormal
Frontiers in Oncology 02
somatic mutations could affect tumor susceptibility to ICIs

treatment (8).

We used the random forest classifier to screen the superior gene

feature set, which considered the multiple gene accumulation effects

in tumor cells. Finally, a mutation-based model was proposed to

predict the therapeutic efficacy of ICIs in NSCLC, especially for lung

adenocarcinoma (LUAD) and lung squamous cell carcinoma

(LUSC) patients. The advantage of this tool is that the tumor

immunogenic neoantigen generated from tumor somatic

mutations is more specific for patients with diverse NSCLCs.
2 Results

2.1 Development of a mutation-based
model to predict immunotherapy response
for NSCLC

The training cohort’s somatic mutational profiles of 344

patients with NSCLC were analyzed and sequenced using an

MSK-IMPACT target sequencing panel (9). The mutational

landscape showed that the top five frequently mutated genes were

tumor protein p53 (TP53), Kirsten rat sarcoma viral oncogene

homolog (KRAS), kelch like ECH associated protein 1 (KEAP1),

STK11, and PTPRD (Supplementary Figure 1). Thus, we aimed to

develop a mutation-based model to predict immunotherapeutic

efficacy in NSCLC, and the detailed workflow is shown in Figure 1.

Gene mutations and survival status in the training cohort were

converted to binary variables in advance. The process and result of

feature selection are shown in Figure 2A. With the deletion of

unimportant features, the overall classification accuracy tended to

increase, mainly because eliminating irrelevant and redundant

features improved classifier performance. When the classification

accuracy reached the highest value, it began to show a downward

trend. The combination of 18 genes (Table 1), such as zinc finger

homeobox 3 (ZFHX3) and EPH receptor A5 (EPHA5), achieved the

highest classification accuracy with the least number of variables,

and the accuracy rate reached 73.68% (Figure 2A). These 18 genes

thus served as candidate genes, and the importance score of each

gene is displayed in Figure 2B.

We focused on mutation frequency, count, and the

corresponding sample number of the 18 genes. Firstly, we

compared the predictive ability of the wt group (mutant gene=0),

single mutant group (mutant gene=1), two mutant group (mutant

gene =2), three mutant group (mutant gene=3), etc., until seven

mutant group (mutant gene=7) according to the mutation status of

18 candidate genes (Supplementary Figure 2A). The median OS was

8, 13, and 36 months for wt, Single mutant, and 2 mutant group

respectively, and the 2 mutant group has an elevated median OS

than the other 2 groups. When the mutant gene>2, the OS was not

reached, and the patients’ number dropped significantly. Then,

these results revealed the superior OS advantage of the patients

harboring at least 2 mutant candidate genes when compared with

wt or single mutant group. Thus, the mutation-based predictive

model defined mutant gene≥ 2 as MT group, which could benefit

more from ICIs therapy. Afterward, a mutation-based model was
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determined to discriminate the differential immunotherapy

outcomes in the training cohort. According to the mutation status

of 18 genes, patients with ≥ 2 mutant genes were classified into the

MT group, while those with < 2 mutant genes were in the WT

group. The survival analysis showed that the MT group had better

OS (N = 54, median OS not reached) than the WT group (N = 290,

median OS 9 months, P < 0.0001, hazard ratio (HR) = 4.97, 95% CI

[2.77,8.90]) (Figure 3A), and the AUC value was 0.73

(Supplementary Figure 2B). Then, we explored the mutation

frequency and distribution of these 18 genes in MT group of the

training cohort. The mutation landscape was shown in

Supplementary Figure 2C, which seems dispersed for mutant

genes within samples. Moreover, we analyzed the overlapping

genetic alteration of 18 genes within patients in the MT group

(Supplementary Table 1), and an almost 50% overlapping rate was

seen with no regular combination pattern. We don’t find the typical
Frontiers in Oncology 03
distribution of genetic alteration of these 18 genes in the MT group,

which further prove the predicting ability of the 18-gene model is

the accumulative effect of 18 genes rather than the contribution of

part genes. All the results demonstrated the accurate predicting

performance of our model.

Owing to excellent performance, we further demonstrated the

independent predictive power of the model. Univariate Cox

regression analysis revealed that the drug (PD-1/L1 vs.

combination strategy), TMB level, and our model had a

significant correlation with the hazard ratio (all P < 0.05)

(Figure 3D). In contrast, the TMB level showed weak

performance in the multivariate Cox regression analysis

(Figure 3E). Our model consistently had the lowest P value < 0.001.

Next, a comparative analysis was conducted between the model

and the TMB level. TMB_H group had significantly longer OS

(TMB ≥ 10 mutation/Mb, N = 112, P = 0.0099, median OS 18
FIGURE 1

Workflow of the study.
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months) than the TMB_L group (TMB < 10 mutation/Mb, N = 232,

P = 0.0099, median OS 10 months) (Supplementary Figure 3A), and

the AUC value was 0.56 (Supplementary Figure 3B). The combined

analysis revealed that the long-term survival benefits from

immunotherapy were significantly superior in the MT group

compared to that in the WT group, regardless of TMB level

(Figure 3C). The model based on 18-gene mutation status was

superior to the TMB level in predicting the therapeutic efficacy

of ICIs.

Furthermore, correlation analysis with TMB was conducted,

and the MT group showed a significantly high TMB than those in

the WT group (P<0.001) (Figure 3C). The non-therapy samples

from the southwest hospital clinical (SHC) cohort were also divided

into MT (14/82) and WT (68/82) groups based on the mutation-
Frontiers in Oncology 04
based model, and the TMB of the MT group remained higher than

those of the WT group (P=0.0039) (Figure 3B). In addition, all

patients were microsatellite-stable (MSS), and there were no

differences shown in HLA variability between the MT and WT

groups (Supplementary Figure 3C). Although the lack of therapy

and survival prognosis information, the SHC cohort could reveal

the real-world mutation landscape for NSCLC in the Chinese

(Supplementary Figure 4).
2.2 Association analysis between the
mutation-based model and other
predictive biomarkers of NSCLC

Recently, an increasing number of biomarkers have been

identified to predict the therapeutic efficacy of ICIs in NSCLC,

including KEAP1-driven co-mutation events, DDR (DNA damage

repair) pathway, APOBEC signature, and others (10–13). We

performed the following analyses to verify whether our model

outperformed other predictors and the correlation with these

biomarkers. The mutation data of 344 NSCLC patients from the

training cohort was used for the following correlation analysis.

First, KEAP1-driven co-mutations were reported to be correlated

with immunotherapy response in LUAD patients. Co-mutation in at

least two genes among KEAP1, STK11, polybromo-1 (PBRM1), and

SWI/SNF-related, matrix-associated, actin-dependent regulator of

chromatin, subfamily A, member 4 (SMARCA4) was related to a

lack of response to immunotherapy, despite high TMB (14). The

training cohort was used for comparison, and the patients withKEAP1-

driven co-mutation (CO+) (N = 45) were found to have a worse

prognosis than those without KEAP1-driven co-mutation (CO-) (N =

299) (median OS 6months vs. 13months, P = 0.0091, HR = 1.656, 95%

CI [1.14,2.41]) (Supplementary Figure 5A). The AUC value was 0.66

(Supplementary Figure 5B). Then, the CO+ and CO- groups were

compared with our model separately. For CO+ patients, the MT_CO+

subgroup (N = 7) had longer OS than theWT_CO+ subgroup (N = 38)

(median OS not reached vs. four months, P = 0.02, HR = 4.54, 95% CI

[1.08,19.07]) (Figure 4A). Combined with our model, seven patients

achieved good OS despite KEAP1-driven co-mutation. For CO-

patients, the MT_CO- subgroup (N = 47) had significantly better OS

than theWT_CO- subgroup (N = 252) (P < 0.0001, HR = 5.16, 95% CI

[2.72,9.78]) (Figure 4B).

Next, we identified the correlation of the model with a five-gene

signature of the DDR pathway, which has been reported to

positively correlate with ICI therapy benefit. Five candidate genes
A

B

FIGURE 2

Screening feature genes using random forest (RF) algorithm.
(A) Feature combination selection. The combination of 18 genes can
achieve the highest classification accuracy with the least number of
variables. (B) Feature importance of 18 genes.
TABLE 1 List of 18 genes whose mutations could predict immunotherapy outcomes in NSCLC.

Gene Name (% with mutations in the training cohort)

ZFHX3 (8%) NTRK3 (6%) EPHA7 (5%) EPHA5 (8%)

NF2 (3%) ABL1 (2%) MAX (2%) PARP1 (1%)

PAX5 (1%) PGR (4%) FLT3 (3%) MRE11A (2%)

PIK3C3 (4%) INHBA (3%) RET (3%) EPHA3 (11%)

MET (4%) NOTCH1 (4%)
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of the DDR pathway, including mutS homolog 2 (MSH2), mutS

homolog 6 (MSH6), PMS1 homolog 2 (PMS2), Polymerase-epsilon

(POLE), and breast cancer 2 early onset (BRAC2) genes, were

obtained from Conway et al. (10). In the training cohort, patients

with ≥ 1 mutant DDR gene had longer OS (DDR+) (N = 40) than

those with no mutant DDR gene (DDR-) (N = 304) (median OS 21

months vs. 11 months, P = 0.091, HR = 1.48, 95% CI [0.93,2.35])

(Supplementary Figure 5C). The AUC value was 0.58

(Supplementary Figure 5D). Similarly, the DDR+ and DDR-

groups were compared with our model separately. Combined

with our model, the MT_DDR+ subgroup (N = 13) had superior

OS benefits than the WT_DDR+ subgroup (N = 27) (median OS

not reached vs. ten months, P = 0.056, HR = 2.82, 95% CI

[0.94,8.48]) (Figure 4C). For DDR- patients, the MT_DDR-

subgroup (N=41) had better OS than the WT_DDR- subgroup

(N = 263) (median OS not reached vs. nine months, P < 0.0001,

HR = 5.80, 95% CI [2.85,11.78]) (Figure 4D). Compared with our

model, 41 patients with DDR- but in the MT group also had better

survival (Figure 4D); such results could help improve clinical

therapeutic decisions.

Lastly, we explored the correlation of the APOBEC gene

signature with our model. APOBEC-related mutations were
Frontiers in Oncology 05
significantly increased owing to the increased expression of the

APOBEC3B gene, and patients with upregulated APOBEC3B treated

with ICIs had a poor prognosis (13). In the training cohort, patients

with ≥ 1 APOBEC-related gene mutation (APOBEC+) did not have

significant OS benefits compared to those with no APOBEC-related

gene mutations (APOBEC-) (P = 0.67) (Supplementary Figure 6A).

The AUC value was 0.51 (Supplementary Figure 6C). Combined

with our model, patients in the MT group had a significantly better

prognosis than those in the WT group, regardless of the APOBEC

gene mutational status (Supplementary Figure 6B).

These biomarkers thus showed enhanced predictive

performance when combined with our model, which could help

more patients attempt immunotherapy. These results indicate that

more attempts are needed from various perspectives to develop

more powerful predictive biomarkers.
2.3 Validation of the
mutation-based model

With the same grouping criteria, validation cohort 1, integrated

from three public NSCLC WES (whole-exome sequencing) cohorts,
D

A B

E

C

FIGURE 3

Development of the mutation-based model. (A) Kaplan-Meier survival analysis for OS between MT group and WT group in the training cohort.
(B, C) TMB analysis between MT group and WT group in SHC cohort and training cohort. (D) Univariate Cox regression analysis of clinical factors and
the model for prognosis after ICIs treatment. (E) Multivariate Cox regression analysis of clinical characteristics and the model for prediction after ICIs
treatment. OS, overall survival; MT group, patients with ≥2 mutant genes; WT group, patients with <2 mutant gene; TMB-H, tumor mutational
burden-high (≥10 mutation/Mb); TMB-L, tumor mutational burden-low (<10 mutation/Mb); ICIs, immune checkpoint inhibitors.
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including 56 patients with NSCLC treated with anti-PD-(L)1 therapy

(15), 75 patients with NSCLC treated with PD-1 plus CTLA-4 blockade

(LUAD only) (16), and 69 patients with NSCLC treated with anti-PD-

(L)1monotherapy at Sun Yat-sen University Cancer Center (SYSUCC)

(17), included 200 ICI-treated patients and was used to validate the

predictive ability of the model. The results showed superior PFS in the

MT group (median PFS 12.4 months) compared with that in the WT

group (P = 0.0075; HR = 1.87, 95% CI [1.17,2.96], median PFS 5.4

months) (Figure 5A), and the AUC value was 0.70 (Supplementary

Figure 7H). Moreover, the subgroups analysis of wt, single, and

compound mutant (mutant gene ≥ 2) group was also conducted in

the validation cohort 1, and the median PFS was 4.3, 8.4, and 12.4

months respectively. The validation data further confirmed the

immunotherapeutic advantage of the NSCLC patients with ≥ 2

mutant model genes.

Additionally, we performed the performance comparison

analysis between two representative NSCLC subtypes in the

training cohort and validation cohort 1. 41 (13.23%) LUAD and 6

LUSC (1.94%) patients fall in the MT group in the training cohort

(Supplementary Figure 7A). For LUAD subtype (N=266), patients

in the MT group had better OS than those in the WT group

(P<0.0001). For LUSC subtype (N=44), patients in the MT group

had better OS than those in the WT group (P<0.0001)

(Supplementary Figure 7B). The subtype analysis further
Frontiers in Oncology 06
confirmed the robustness of the model for predicting

immunotherapy efficiency in the NSCLC. To validate the

robustness of the mutation-based predicting model, the same

comparison analysis was performed in validation cohort 1. There

were 32 LUAD (16.67%) and 3 LUSC (1.56%) patients classified

into the MT group in the validation cohort 1 (Supplementary

Figure 7C). Similar to the training cohort, the LUAD patients in

MT group (N=32) benefit more PFS from ICIs therapy than those

in the WT group (N=132) (P=0.066). For LUSC subtype (N=28),

patients in the MT group (N=3) had longer PFS than those in the

WT group (N=25) (Supplementary Figure 7D). According to the

above results, the proportion of MT and WT group are similar in

the LUADs and LUSCs, which reveals that our mutation-based

model is stable and independent of NSCLC subtypes. These results

indicated the stability and robustness of the model in predicting

immunotherapy efficiency for the different NSCLC subtypes.

Furthermore, we also performed a comparative analysis between

the mutation-based model and TMB, KEAP1-driven co-mutation,

DDR (DNA damage repair) pathway signature in the validation

cohort 1, and the corresponding survival curve and AUC are shown

in Supplementary Figures 7E–H. The AUC of TMB, KEAP1-driven

co-mutation, and DDR were 0.64, 0.54, and 0.51, respectively, which

were all lower than the AUC of the mutation-based model

(AUC=0.7). Finally, the mutation-based model consistently
D

A B

C

FIGURE 4

Association of our model with other reported biomarkers in predicting ICIs responses based on the training cohort. (A) Predicting the performance
of the model in patients with KEAP1-driven co-mutation subgroup (CO+) in the training cohort. (B) Predicting the performance of the model in
patients without KEAP1-driven co-mutation subgroup (CO-) in the training cohort. (C) Predicting the performance of the model in patients with
more than or equal to one of five DDR gene mutations (DDR+) in the training cohort. (D) Predicting the performance of the model in patients with
none of five DDR gene mutations subgroup (DDR-) in the training cohort.
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performed better in predicting the immunotherapeutic efficiency of

the NSCLC patients in the validation cohort 1. As our model showed

a sound and robust predicting power both in the training cohort and

validation cohort 1, we confirmed that it could independently predict

response to immunotherapy.

Furthermore, we hypothesized that the predictive power was

only specific to immunotherapy response in NSCLC rather than

other tumor-related prognoses. Further analyses were explored

using the mutation and mRNA data of non-ICI treatment TCGA

NSCLC patients, including the mutation profile of LUADs and

LUSCs. The results of mutation data analysis showed no significant

PFS difference between the MT and WT groups (P = 1) (Figure 5B).

Furthermore, the RNA-seq data were used to explore the RNA

expression differences of the 18 genes in TCGA NSCLC patients.

There was no difference between the MT and WT groups (P = 0.54)

(Supplementary Figure 8).

The above analyses indicated that our model had specific

predictive power for the immunotherapy response of patients

with NSCLC rather than for survival prognosis.
Frontiers in Oncology 07
2.4 Robust analysis of the mutation-based
model across pan-cancer cohorts

Extensive validation was conducted using the mutation data of

two pan-cancer cohorts. Validation cohort 2 included 1181 patients

treated with anti-PD-(L)1 therapy (From Samstein cohort, 350

patients with NSCLC, and 130 patients with unknown cancer

were excluded) (9). Validation cohort 3 included 193 patients

treated with anti-PD-(L)1 therapy (15) (From Miao cohort, 56

patients with NSCLC were excluded). Remarkably, the model still

showed good predictive power in validation cohort 2 (P < 0.0001,

HR = 1.88, 95% CI [1.41,2.50]) (Figure 5D). Patients in the MT

group could achieve better outcomes with ICI treatment within

approximately four years. This predictive performance was also

identified in validation cohort 3 (P = 0.021, HR = 0.76, 95% CI

[1.08,2.86]) (Figure 5C). The AUC value in validation cohort 2 and

3 was 0.57 and 0.64, respectively. These results suggested the

model’s robust and universal predictive ability across pan-cancer,

which deserves further exploration in different tumor types.
D

A B

C

FIGURE 5

Validation of the mutation-based model in validation cohorts. (A) Kaplan-Meier survival analysis for PFS between MT group and WT group in the
validation cohort 1. (B) Kaplan-Meier survival analysis for OS between MT group and WT group in the non-immunotherapy TCGA cohorts.
Extension validation of the model in the two independent pan-cancer cohorts. (C) Validation cohort 2 and (D) Validation cohort 3. OS, overall
survival; PFS, progression-free survival.
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2.5 Immune-related features of the MT
group and WT group

Immune-related features analysis was conducted using the

mutation data and mRNA expression data of TCGA-LUAD and

TCGA-LUSC, and grouping criteria for immune subtypes, immune

cell fraction, etc., were referring to the method of original literature.

Thorsson et al. identified six immune subtypes (C1: wound healing,

C2: IFN-g dominant, C3: inflammatory, C4: lymphocyte depleted,

C5: immunologically quiet, and C6: TGF-b dominant), which

defined immune response patterns impacting prognosis (18).

Thus, we explored whether immune subtypes differed between

the two groups (MT and WT). Patients in the MT group

presented a higher percentage of C1 and C2 subtypes compared
Frontiers in Oncology 08
with those in the WT group, while C3, C4, and C6 subtypes were

more enriched in the patients in the WT group (Figure 6A). Also,

we found that LUSCs presented higher C1 and C2 than LUADs,

which was consistent with the study of Thorsson et al. (18). Taken

together, immune subtypes could further reveal the heterogeneous

characteristics of tumors.

To further explore the immune-related features of our model in

NSCLC, we compared the differential immune infiltrating cells in

the immune TME between the MT group and the WT group.

Dendritic resting cells, monocyte cells, memory B cells, mast cells,

and Treg cells were lower in the MT group than in theWT group. In

contrast, CD8 T cells, macrophages cells, plasma cells, and follicular

T cells were enriched in the MT group (Supplementary Figure 9).

Given the above differences in immune subtypes between LUAD
D
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FIGURE 6

Immune-related features of the model in the TCGA cohorts. (A) Distribution difference of five immune subtypes in the TCGA cohorts. (B) M1
macrophage, (C) T.cells.CD8, (D) T.cells.follicular.helper. Comparison analysis of Comparison analysis of TNB among four groups of LUAD_MT,
LUAD_WT, LUSC_MT, and LUSC_WT. (E) SNV, (F) InDel. Immune infiltration analysis revealed four significantly different cells according to the RNA
gene expression data of TCGA among four groups of LUAD_MT, LUAD_WT, LUSC_MT, and LUSC_WT. (G) PDCD1(PD-1) gene and (H) CD274(PD-L1)
gene expression among four groups of LUAD_MT, LUAD_WT, LUSC_MT, and LUSC_WT. (I) Comparison analysis of HRD gene signature score
among four groups of LUAD_MT, LUAD_WT, LUSC_MT, and LUSC_WT. *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001; ****P ≤ 0.001; ns, not significant. LUAD,
lung adenocarcinoma; LUSC, lung squamous cell carcinoma; SNV, single nucleotide variant; InDel, insertion-deletion. PDCD1 gene, coding gene of
PD-1 protein; CD274, coding gene of PD-L1 protein; HRD, Homologous recombination defects.
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and LUSC, differential immune infiltrating cells between LUADs

and LUSCs were analyzed. M1 macrophage (Figure 6B), T.

cells.CD8 (Figure 6C), and T.cells.follicular.helper (Figure 6D)

were significantly more abundant in the MT LUADs (P < 0.01).

UMAP dimensionality reduction was performed to show the

distribution of the different cell types: T cells, macrophage,

epithelial cells, B cells, iPS cells, tissue stem cells, and endothelial

cells (Supplementary Figure 10). Furtherly, we analyzed the

expression profiles of 18 genes in the above cell types. As the

most critical gene in the RF analysis, ZFHX3 is more often

expressed in macrophage and epithelial cells. Other genes showed

significant enrichment in T cells and macrophage cells, except for

EPH receptor A3 (EPHA3), EPHA5, EPH receptor A7 (EPHA7),

and progesterone receptor (PGR) genes, which were hardly

expressed in the above cell types (Supplementary Figure 11).

In summary, immune cells exhibited heterogeneous

immunogenicity in the TME. According to our model, CD8 T

cells, macrophage cells, and helper T cells were the main force

during the response to ICIs. McGrail et al. identified that CD8 T cell

infiltration exhibited a significantly positive correlation with tumor

neoantigen burden (TNB) in LUAD and an opposite pattern in

LUSC (19). Next, we described the potential correlation between

TNB and immunotherapy outcomes. TCGA mutation data (both

SNV (single-nucleotide variant) and InDel (insertion-deletion)

were used for the comparative analyses of the TNB (Figures 6E,

F). Patients in the MT group had a significantly higher TNB in

LUADs and LUSCs than in the WT group. LUADs had a

considerably higher level of TNB than LUSCs.

In addition to high T cell infiltration and TNB, the MT group

presented upregulated mRNA expression of PD-1(Figure 6G) and PD-

L1 (Figure 6H) genes. The significant upregulation was only present in

the LUADs; in the LUSCs, the pattern was opposite or non-significant.

Despite this, the results further demonstrated the superior

immunogenicity of the MT group. We also identified a correlation

between interferon-gamma (IFN-g), N6 -methyladenosine (m6A), and

Homologous recombination deficiency (HRD) gene signatures with

our model. Recently, Zhou et al. identified that homologous

recombination (HR) gene deficiency was positively associated with

an improved response to immuno-neoadjuvant treatment in NSCLC

(12). Comparison analysis was conducted, and the HRD score was used

to quantify defects in homologous recombination. The results showed

that theMT group had higher HRD scores than theWT group for both

LUADs and LUSCs (P < 0.01) (Figure 6I). The result indicated that

patients with HRDwere more likely to benefit from immunotherapy in

NSCLC, which was consistent with the findings of previous

studies (12).

IFNg gene signature has been reported to be positively

correlated with ICIs treatment outcomes due to the ability to

activate tumor microenvironment cells such as T cells and

Natural killer (NK) cells (20). The results revealed a significantly

higher IFNg gene signature score in the MT group, specifically in

the LUADs (Supplementary Figure 12A). As for m6A genes, Li et al.

systematically reviewed that m6A modification could affect the

immune response in the TME. Some of the m6A eraser, writer,

and reader genes were positively correlated with the ICIs treatment

outcomes (21). Our results showed that m6A eraser genes had lower
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expression in the MT group than in the WT group, while m6A

writer and reader genes had higher expression in the MT group

(Supplementary Figures 12B–D). Interestingly, the findings showed

an opposite or insignificant correlation in LUSCs, which needs

further confirmation.

Due to the immune advantage in LUADs, we further performed

the pathway enrichment analysis using RNAseq data of the LUADs.

The unsupervised clustering heatmap between the MT and WT

groups is shown in Supplementary Figure 13.
3 Discussion

Biomarker-guided immunotherapy applications warrant precise

stratification of patients using sensitive and specific biomarkers.

NSCLCs with high TMB and TNB tend to benefit from

immunotherapy (6). Furthermore, tumor somatic mutations can

reveal tumor-specific significance, such as tumor progress or

resistance, and indirect effects on the TME, such as immune-

suppressive or immune-supportive effects on tumor cells. Herein,

we developed a mutation-based model to predict immunotherapeutic

efficacy based on long-term survival outcomes of patients with

NSCLC treated with ICIs. The prognosis analysis showed highly

significant differences between MT and WT groups in OS and PFS

outcomes. Some studies have shown that mutations in ZFHX3/

EPHA4/EPHA7 genes are closely related to better response to ICIs

in multiple cancers. These gene mutations were always accompanied

by enhanced infiltration of CD8 T cells and M1 macrophages,

increased TMB level and decreased immune-suppressive regulatory

T cells (Tregs), consistent with our study (22–24). Interestingly,

although not all of the mutant genes have prognostic significance

for ICI treatment in NSCLC, the interactions of these 18 genes are

meaningful for ICI therapy efficacy.

Notably, this is the first study to screen the best classifier capable

of predicting immunotherapy outcomes using the RF algorithm.

The 18-gene set with the least number of variables and the highest

classification accuracy rate was used to develop the model. Then,

comparing the predictive performance of different grouping criteria,

patients who harbor at least 2 mutant candidate genes had the

superior advantage when treated with ICIs, and the mutation-based

model was established. Subsequently, a series of further explorations

were carried out from different perspectives. Univariate and

multivariate Cox regression analyses showed that the model had a

superior predictive power over other factors, such as tumor type,

sex, and TMB. Surprisingly, independent of the TMB level, the MT

group consistently achieved better survival, which revealed the

robust predictive power of our model. Furthermore, the superior

predictive power of our model may explain the effectiveness of

immunotherapy in TMB-L patients with NSCLC. Our model does

not have cutoff value issues, unlike PD-(L)1 and TMB, resulting in

the specific predictive advantage in NSCLC.

Furthermore, the mRNA expression analysis in the TCGA

NSCLC cohort showed no significant difference in the expression

of the 18 genes. Survival prognosis using the mutation data of

TCGA NSCLC revealed no different between the MT and WT

groups. The results indicated that our model had the specific
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predictive power for the immunotherapy response of patients with

NSCLC rather than prognosis biomarkers. Our model

demonstrated robust and universal predictive ability across pan-

cancer, which deserves further exploration in different tumor types.

The AUC value is higher in the training cohort and validation

cohort 1 compared with validation cohorts 2 and 3, which may be

because the mutation-based model is developed specifically for

NSCLC patients. More profound pan-cancer cohorts are needed

to optimize the immunotherapy predicting model. According to the

analysis in our SHC cohort, a positive correlation of the mutation-

based model with TMB also suggests reliable predictive ability in the

Chinese NSCLC cohort.

A growing number of biomarkers are being studied to predict

prognostic significance for immunotherapy in patients with

NSCLC. KEAP1-driven co-mutation events, DDR pathway gene

signature, and APOBEC gene signature were chosen as

representative biomarkers for comparison analysis of predictive

performance. When combined with our model, some patients who

were initially regarded as immunotherapy non-responders could be

reclassified as responders. These results implied synergistic effects of

these immunotherapy-related biomarkers. The reported biomarkers

and our model could complement each other as immunotherapy

biomarkers, which indicates that more attempts are needed from

various perspectives to develop more powerful predictive

biomarkers. On the other hand, by comparing the predicting

performance of TMB, KEAP1-driven co-mutation events, and

DDR pathway gene signature, the mutation-based model revealed

robust predictive ability and outperformed the AUC value both in

the training cohort and validation cohort 1.

Moreover, the elevated signature scores of HRD genes, IFN-g
genes, and the m6A genes also denoted an immune-responsive

feature of the MT LUADs. For LUSCs, the correlation seemed

ambiguous. A series of differences may be caused by an unbalanced

sample number of LUADs and LUSCs, and most NSCLC samples

were LUAD in the cohorts. However, the detailed performance

comparison between these two representative NSCLC subtypes in

the training and validation cohort1 indicated the accurate and

robust predictive ability of the mutation-based model for ICIs

therapeutic efficiency in the NSCLC.

Crucially, somatic mutations were recurrently identified to

correlate with the impact on the immune response by affecting

immune-related cells in the TME (18). According to our model,

CD8 T cells, macrophage cells, and helper T cells were the main

force during the response to ICIs. McGrail et al. identified that CD8

T cell infiltration exhibited a significantly positive correlation with

TNB in LUAD and an opposite pattern in LUSC (19). The MT

group showed increased TNB, increased immune infiltrating cells,

and upregulated checkpoint molecules, which suggested noticeable

immune-supportive features (25). A high level of M1 macrophage

cells has been reported to be positively correlated with TMB-H,

mainly because M1 macrophages can provide an anti-tumor

environment by fostering an inflammation response against

tumor-activating CD8 T cells (5). Follicular helper T cells were

identified as positively correlated with increased B cell activation
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tumor response to immunotherapy (26). Single-cell RNA

sequencing analysis revealed the expression distribution in

different cell types, and most of the model genes were enriched in

T cells, macrophage cells, and B cells. Thus, the 18 genes may affect

the TME by recruiting immune-activated cells and neoantigens to

respond ICIs well in NSCLC. Pathway analysis showed significant

enrichment of transcription factors, cell cycle pathway, HR

pathway, MMR pathway, and DNA replication pathway in the

MT group. Some previous studies confirmed that deficiencies in the

DDR pathway are closely related to immunotherapy outcomes (27).

The cell cycle pathway is positively associated with increased TMB

and response to PD-L1 blockade (28). According to our study, gene

alterations in tumor cells could affect the heterogeneous expression

of immune cells and interactions in the TME, consequently leading

to different outcomes for ICI treatments.

Although our model shows an advantage over some reported

predictive biomarkers, algorithms and sample size differences may

have affected the analyses. However, it still opens a new option of

combining the model with previously identified biomarkers to

develop a better ICI therapeutic efficacy predictor.

With the rapid development of next-generation sequencing

(NGS) technology and improved bioinformatic analysis methods,

tumor treatment has become a more distinct era, which aims to help

more patients survive longer with fewer adverse effects. Fortunately,

our model could predict the long-term survival of patients with

NSCLC treated with immunotherapy. The number of mutant genes

within the model is the only evaluation criterion that could be easily

applied in clinical and commercial detection. The results have

strengthened our confidence that our model could select patients

with NSCLC who could benefit from immunotherapy.
4 Material and methods

4.1 Data source

The training cohort included 344 patients with NSCLC treated

with ICIs (Immunotherapy, MSKCC, Nat Genet 2019) (9).

Validation cohort 1 was integrated from three public cohorts

sequenced by the WES, including 56 patients with NSCLC treated

with anti-PD-(L)1 therapy (15), 75 patients with NSCLC treated

with PD-1 plus CTLA-4 blockade (LUAD only) (16), and 69

patients with NSCLC treated with anti-PD-(L)1 monotherapy at

Sun Yat-sen University Cancer Center (SYSUCC) (17). Validation

cohort 2 was a pan-cancer cohort including 1181 patients treated

with anti-PD-(L)1 therapy (From Samstein cohort, 350 patients

with NSCLC, and 130 patients with unknown cancer were

excluded) (9). Validation cohort 3 was also a pan-cancer cohort

including 193 patients treated with anti-PD-(L)1 therapy (15)

(From Miao cohort, 56 patients with NSCLC were excluded).

Both training and validation cohorts were selected based on the

following criteria: (i) patients with no mutation information were

excluded; (ii) synonymous mutation, copy number variation, and
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fusion genes were excluded; (iii) genes were mutated in at least three

samples. In addition, data from non-ICI treatment TCGA NSCLC

cohorts were used for further exploration, including RNA-seq data

downloaded from UCSC Xena (University of California Santa

Cruz) (https://xenabrowser.net/datapages/), immune subtype data

along with survival data acquired from Thorsson et al. (18), and

mutation data obtained from Ellrott et al. (29). In addition, six

single-cell RNA sequencing data of LUAD patients from Bischoff,

P., et al. (30) were included to reveal the gene expression features in

different cell types (30). In addition, a retrospective southwest

hospital clinical (SHC) cohort, with 82 lung cancer patients, was

utilized to analyze the correlation between the predictive model and

TMB. Of these, 77 were NSCLC, and the remaining were primary

lung cancer. Survival data could not be acquired because of the loss

of follow-up after surgery. All the samples were collected in the

Southwest Hospital, and multiple gene panel target sequencing was

conducted. The detailed clinical characteristics of patients in the

training cohort, validation cohort 1-3, TCGA cohort, and SHC

cohort are summarized in Supplementary Tables 2–7. The detailed

mutations data of SHC cohort are listed in Supplementary Table 8.
4.2 Next-generation sequencing and
mutation analysis

Genomic profiling was performed on tumor tissues and

matched peripheral blood samples. First, we used the Maxwell

RSC FFPE Plus DNA Kit (Promega, Cat no.AS1720) to extract

DNA from tumor specimens and blood, respectively. Then, 100ng

gDNA was sheared to target 200 bp fragment sizes with a Covaris

E210 system (Covaris, Inc.). Next-generation sequencing of gDNA

was performed, in which KAPA HyperPrep Kit (Roche,

07962312001) and Agilent SureSelect XT kit (Agilent, G9702C)

were used to construct the NGS library. The prepared library was

quantified using the Qubit 3.0 Fluorometer (Life Technologies,

Inc.), and quality and fragment size were measured with an

Agilent 2100 Bioanalyzer (Agilent Technologies, Inc.). Samples

underwent paired-end sequencing on an Illumina NovaSeq 6000

platform (Illumina Inc) with a 150-bp read length.
4.3 Data processing

Burrows-Wheeler Aligner (BWA version 0.7.11) alignment

algorithm was used to align the human reference genome (UCSC

hg19). Next, Genome Analysis Toolkit (GATK, version 3.6) (31)

module IndelRealigner and VarScan software were used to call

somatic mutations (31, 32), and ANNOVAR annotated all variants.

The following filtering criteria were applied to the mutation candidates

to identify SNVs and Indels: (a) variants within intron were deleted; (b)

mutations reported in more than 1% of the population in the 1000

Genomes Project (1000gAUG_2015ALL); (c) Mutations were then

filtered against common single nucleotide polymorphisms (SNPs)

found in dbSNP (http://www.ncbi.nlm.nih.gov/SNP); (d)
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synonymous variants were excluded; (e) variants with less than 50

supporting reads were removed.
4.4 Genomic biomarkers analysis

Tumor tissue MSI status was determined byMSIsensor software

(33) in the form of an MSI score. TMB was determined by using the

number of all nonsynonymous mutations and indels per megabase

of the genome examined. The cut-off value for TMB-high and

TMB-low was defined as 10 mutations/Mb.
4.5 Feature importance ranking using
random forest algorithm

A random forest (RF) (33) classifier was applied to the training

cohort to explore the most critical mutant genes associated with the

overall survival of ICI-treated NSCLC patients. We used the

variable importance measure of the RF algorithm to rank gene

features. Scikit-learn, a Python machine-learning library, was used

to find the feature gene. Then, the sequential backward search (SBS)

method was used to remove several features with minor importance

scores from the feature set during each iteration. The classification

accuracy was calculated after each round of screening to find the

best subset of features in time.

In the training process, we adopted 10-fold cross-validation and

considered the average classification accuracy rate as a measure to

ensure the stability of the experimental results. At the beginning of

filtering, the step size was relatively large due to many features.

When there were 400 features, the step size was 100. Gradually, as

the number of features decreased, the step size dropped to 50 and

20. Lastly, when there were only 50 genes left, the step size was

reduced to 1 until the end of the experiment. Finally, a feature gene

set with the least number of variables and the highest classification

accuracy rate was obtained to develop a predictive model.
4.6 Mutation-based model development
and validation

Univariate and multivariate Cox regression methods were used

to compare clinical factors and predictive models. Based on the

selected gene features, patients were divided into the mutation-type

(MT) group (mutant gene ≥ 2) and wild-type (WT) group (mutant

gene < 2). The same grouping criteria and analysis methods were

applied for the validation cohorts.
4.7 Immunogenomic feature evaluation

Immunogenomic features were obtained from a previous pan-

cancer immune landscape project performed by Thorsson et al.

(18). In brief, TNB (tumor neoantigen burden) was defined as a
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critical target of anti-tumor immunity and calculated by the

NetMHCpan algorithm (34). HRD score was used to evaluate the

deficit by summation of loss of heterozygosity (LOH), large-scale

transitions (LST), and genomic instability scores (GIS) (35). The

relative abundance of 22 immune cell types was estimated by the

CIBERSORT algorithm (36).
4.8 Single-cell RNA sequencing analysis

Six single-cell RNA sequencing data of LUAD from the Bischoff

cohort were enrolled to analyze the expression features of 18 model

genes in the TME. The scRNAseq expression matrix was processed

with R package “Seurat”. UMAP reduction was used for cluster

visualization, and the “SingleR” package was used for cluster

annotation. “FeaturePlot” and “VlnPlot” were used to visualize

gene expression.
4.9 ssGSEA and differential analysis

The single-sample enrichment score of Kyoto Encyclopedia of

Genes and Genomes (KEGG) pathways, IFN-g pathway markers

(20), and m6A regulators (37) were calculated by single-sample

gene set enrichment analysis (ssGSEA) algorithm using the R

package ‘GSVA’ (38). Pathway differential analysis was conducted

using R package ‘limma’ with a Benjamini-Hochberg (BH)

corrected p-value threshold of 0.01 and visualized by R package

‘pheatmap’ (39).
4.10 APOBEC mutational signature
score calculation

APOBEC enrichment score was calculated using the R package

‘maftools’ and survival difference was compared with the log-

rank test.
4.11 Statistical analysis

Survival curves were compared using the Kaplan-Meier (KM)

method. Model receiver operating characteristic (ROC) curves were

analyzed, and the predictive performance was evaluated using the

area under the ROC curve (AUC) value. Statistical difference

between the two groups was analyzed using the Wilcoxon test,

and a P value < 0.05 was considered statistically significant. R

software (4.1.2) was applied to carry out all statistical analyses.
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