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Gliomas are one of the most common primary central nervous system tumors,

and surgical treatment remains the principal role in the management of any

grade of gliomas. In this study, based on the introduction of gliomas, we review

the novel surgical techniques and technologies in support of the extent of

resection to achieve long-term disease control and summarize the findings on

how to keep the balance between cytoreduction and neurological morbidity

from a list of literature searched. With modern neurosurgical techniques, gliomas

resection can be safely performed with low morbidity and extraordinary long-

term functional outcomes.
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Introduction

Gliomas stem from glial cells of the central nervous system (CNS), and they are the most

common primary CNS tumors. According to the 2021 World Health Organization (WHO)

classification of CNS tumors, gliomas are classified as low-grade gliomas (LGGs; WHO

grades I or II) and high-grade gliomas (HGGs; WHO grades III or IV). Supratentorial

gliomas account for approximately 30% of all adult primary intracranial tumors, and more

than 50% of these are high-grade gliomas (HGGs) (1). Several clinical features (both

pathological and non-pathological) determine the grade, with pathological features

including nuclear atypia, mitotic activity, vascular proliferation, necrosis, and so on, and

non-pathological ones including clinical course and treatment outcome (2). Glioma is more

common in whites and blacks, and the incidence of it in men is 1.5 times that in women (3).

China is one of the countries with the largest prevalence and death rates of CNS tumors

(4). Overall incidence rates with adjusted age for all gliomas range from 4.67 to 5.73 per

100,000 persons (5, 6). The median overall survival (OS) times were 78.1, 37.6, and 14.4

months for low-grade gliomas, anaplastic gliomas, and glioblastomas, respectively (7).

Most cases of gliomas are of sporadic onset, although some are related to Mendelian

disorders such as tuberous sclerosis, neurofibromatosis type 1 or type 2, and so on (8).

There are several factors that influence prognosis, including the Karnofsky Performance

Status Scale at diagnosis, histology, and molecular markers. Age and tumor histology have
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1088484/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1088484/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1088484&domain=pdf&date_stamp=2023-03-16
mailto:chen_xuan@jlu.edu.cn
https://doi.org/10.3389/fonc.2023.1088484
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1088484
https://www.frontiersin.org/journals/oncology


Yang et al. 10.3389/fonc.2023.1088484
been identified as primary predictors of patient prognosis (9, 10).

Irradiated brain or scalp in the past may increase the risk of

developing gliomas (11, 12).

Gliomas have variable presenting symptoms depending on

tumor size and location. A systemic review summarizes the

symptom prevalence and concludes several symptoms, of which

the most prevalent ones are seizures, cognitive deficits, drowsiness,

and dysphagia during different phases (13). In these tumors,

seizures are the most common presenting symptom since they

tend to be highly epileptogenic. It is common in low- and high-

grade gliomas. The risk of seizures varies between 60% and 100%

among low-grade gliomas and between 40% and 60% among

glioblastomas (14). Seizure control and decreasing neurocognitive

deficits are the two main purposes for some of the patients

diagnosed with gliomas, which they always pursue.

The principle of surgical treatment of gliomas is necessary to

reduce the mass effect caused by the tumors, maximize the extent of

resection, and in the meantime reduce the damage to the

surrounding tissue structure, especially the gliomas located in the

eloquent area, to protect neurological function. The treatment

procedures are different depending on the grade of the gliomas.

We will introduce LGGs, HGGs, and recurrent gliomas separately.
Low-grade gliomas

LGGs account for up to 15% of all brain tumors in adults (15).

Some volumetric studies support the idea of “extent of resection”

(EOR) to improve survival in patients with LGGs. These ones

illustrated mean survival time variation (61.1 to 90.5 months) with

maximal resection (10, 16, 17). Low-grade gliomas are the most

common and uniformly fatal disease in young adults (mean age 41

years), with survival averaging approximately 7 years (18). EOR is a

statistically significant predictor of overall survival. The data from

these studies emphasize the importance of achieving a complete

resection, cannot be overstated. LGGs have a diverse anatomical,

histopathological, and molecular profile, which reflect the clinical

outcome (19). In addition to affecting overall survival in LGG

patients, the EOR also influences the malignant transformation

rate and seizure-free status (20). A retrospective study including

153 glioma patients followed by “watch and wait” and early surgical

resection, respectively, demonstrated that patients with LGGs who

underwent early surgery had a higher chance of survival, which

suggested that the timing of resection was crucial (21).
High-grade gliomas

For patients with primary HGGs such as glioblastoma,

retrospective analysis from a randomized trial has concluded that

survival and progression-free survival are highly influenced by the

extent of tumor resection; the fact that incomplete resections result in

more rapid neurological deterioration also attests to the importance

of complete resections on progression-free survival (22–24).

One retrospective study on the comparison of “gross total” and

“subtotal” resection data demonstrated that the gross total section
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of HGGs had a greater survival rate for 1 year follow-up, which

decreased to 19% at 2 years, than subtotal resection (25). Some MRI

scans of these patients diagnosed as HGGs always show a

noncontrast-enhancing surrounding abnormality, so the study of

the resection rate on the abnormality’s surroundings remains

unclear. Li reported the results that the group that underwent

gross total resection of ≥53.21% of the surrounding FLAIR

abnormality beyond the 100% contrast-enhancing resection was

associated with a significant prolongation of survival compared

with that following less extensive resection (p <0.001) (26).

In the discussion of the extent and rate of resection, Sanai

reported that for glioblastoma multiforme (GBM), aggressive EOR

equated to improvement in overall survival, even at the highest

levels of resection. A significant survival advantage was seen with as

little as 78% EOR, and stepwise improvement in survival was

evident even in the 95%–100% EOR range (27).
Recurrent gliomas

No matter which classification the recurrent gliomas (LGGs or

HGGs) are, many patients accept repeat resection as a common

treatment option to pursue a good quality of life (28). A significant

benefit had been seen in 52 patients with reoperated LGGs; the

principle of undergoing reoperation demonstrated an overall 10-

year survival rate of 57%; variable prognostic factors such as the use

of upfront radiation and pathology at recurrence influenced the

overall survival rate (29). A large study on recurrent HGGs reported

to date that the median overall survival duration was 19 months

with a median progression-free survival following re-resection of

5.2 months, suggesting that the survival benefit of microsurgical

resection did not diminish despite biological progression (30). At

present, the clinical benefit of reoperation for both recurrent LGGs

and HGGs demonstrates that the extent of resection can be the

strongest predictor of overall survival in each individual patient.

Advances in surgical techniques and neurosurgical tools make

neuro-oncology practice easier, meanwhile improving favorable

outcomes and maximizing cytoreduction for patients with

gliomas. Advanced neurosurgical imaging technologies, including

intraoperative neuronavigation (31, 32), DTI tractography (33),

intraoperat ive MRI (IoMRI) (34, 35) , intraoperat ive

ultrasonography (IoUS) (36, 37), fluorescence-guided surgery (38,

39), intraoperative stimulation mapping (IoSM), the awake

craniotomy (AC) approach (40, 41), augmented reality high-

definition fiber tractography and fluorescein (AR HDFT-F) (42,

43), intraoperative hand-held microscopy, and intraoperative

mutational analysis have improved the complete radiographic

resection rate of gliomas.
Neuronavigation systems

Neuronavigation systems have been widely used in the

operative management of gliomas and offer lots of advantages to

surgeons. Preoperatively precise planning of the craniotomy in real

time and the identification of small intracranial lesions are some of
frontiersin.org

https://www.sciencedirect.com/topics/medicine-and-dentistry/craniotomy
https://doi.org/10.3389/fonc.2023.1088484
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yang et al. 10.3389/fonc.2023.1088484
the principal benefits. In addition to the basic settings, it is also now

possible to add functional MRI (fMRI) and DTI tractography

informat ion as an over lay avai lab le to the surgeon

intraoperatively. fMRI does not rely on the use of radiation; it can

produce images with high spatial resolution by the millimeter and

poor temporal resolution because of a 5-second lag between initial

neural activity and image; it can capture a clear picture of brain

activity picture only if the patient stays still but not moment-to-

moment brain activity. Neuronavigation can generate relationships

between mass lesions and functional areas. A randomized

control led tr ia l on the study of the effect iveness of

neuronavigation demonstrated that the mean amount of residual

tumor tissue was 13.8% for surgery involving neuronavigation

compared with 28.9% for standard surgery, although there was no

rationale for the use of neuronavigation to improve the extent of

tumor resection because of the size or location of the lesion (33).
DTI tractography

DTI is utilized to plan major fibro-parcel pathways in 3D and

keep away from significant white-matter packages. The imagined

white-matter groups are integrated into a 3D model to limit the

level of careful dreariness brought about by disturbance of

significant white-matter packs.

Nevertheless, some perioperative trials about the effect of DTI

neuronavigation on reducing morbidity did not show clear evidence

because of tumor infiltration and edema (31, 44, 45). Given the

insufficient approximation of functional sites, DTI itself cannot be

used as a tool for surgical decision-making. Diffusion-weighted MRI

as a novel technique is being used to overcome the previous issue of

accurately mapping peritumoral edema tissue (46).
Intraoperative MRI

Intraoperative MRI (IoMRI) changes the way we deal with

gliomas. IoMRI not only helps us to solve the problem of brain

shift but also assists the neurosurgeon to highlight the tumor

remnants and reach a higher EOR. In one prospective study

including 100 adult patients operated on for gliomas using IoMRI

with neuronavigation, Leroy reported that the median EOR was

100% whatever the type of glioma and location. It was only in the

insula area that residue levels were higher. There was no difference

between LGGs and HGGs in the median KPS at different follow-up

times after surgery. “Staged volume” surgery was also introduced by

him to ensure a high level of security for the surgeon and low

morbidity for the patients (47). Several other nonrandomized studies

also indicate that IoMRI can increase the resection rate of LGGs and

HGGs, preserve neurofunction, and prolong patient survival (48–50).
Intraoperative ultrasound

Intraoperative ultrasound (IoUS) is an affordable tool that can

be easily incorporated into existing infrastructure and operative
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workflows. IoUS has dramatically evolved with well-integrated

navigation tools and improvements in image quality compared

with the previous artifact-prone image quality of ultrasound (51).

However, it is difficult to detect residuals below 1 cm in diameter

when using IoUS (52), and the cone-shaped field of view can

sometimes make it hard to see the lesion.
Fluorescence-guided surgery

Recently, intraoperative fluorescence surgery using 5-

aminolevulinic acid (5-ALA) has been widely adopted (22, 53). 5-

ALA as a prodrug to heme can be converted to protoporphyrin IX

(PpIX), and PpIX can be accumulated preferentially in tumor cells

and epithelial tissues when 5-ALA is administered through the

intact blood–brain barrier (BBB) (53, 54). The properties of PpIX,

which emits fluorescence of red-violet light, have been used for the

detection of tumor tissues during glioma resection (38, 39).

The sensitivity of 5-ALA to gliomas has been demonstrated up

to 95% in one study as a growing technology (55). Specificity for 5-

ALA in predicting malignant tissues has a wide degree of variance,

and in most studies it can be above 70% (56–58). The visible

fluorescence varies depending on the grade of glioma, which is

95.4% in glioblastomas compared with 24.1%–26.3% in grade I and

II gliomas (59). Alessandro reported the resection outcome guided

by 5-ALA fluorescence: overall gross total resection of >98% was

achieved in 93% of HGG patients, and the boundaries offluorescent

tissue exceeded those of tumoral tissue by neuronavigation in 43%

of the patients (60).

Intraoperative 5-ALA fluorescence is ineffective at guiding

LGGs because they do not produce a level of fluorescence that is

visible to the naked eye (38). Hence, the approaches of

intraoperative confocal microscopy have been developed and used

to visualize 5-ALA-based tumor fluorescence in LGGs when

exposed to resection procedures. With this microscopy, PpIX

fluorescence has been detected in cellular infiltration identified at

the tumor margins of WHO grade I and II gliomas (61).
Intraoperative stimulation mapping
and awake craniotomy approach

Because it allows for a more precise identification of functional

areas (especially in the dominant hemisphere), intraoperative

stimulation (IS) mapping has emerged as the standard treatment of

choice for eloquent tumors. This allows surgeons to achieve higher

extents of resection (EOR) and reduce postoperative morbidity.

This technique involves electrical stimulation to depolarize a

focal area of the functional cortex. An electrode precisely stimulates

the focal neurons to depolarize, passes the signal within the area of

interest, and causes local excitation, inhibition, or perhaps diffusion

to distant areas (40). The whole procedure can be monitored by an

electrophysiologist if the patient is performing a motor or language

task. With the help of a bipolar probe, the neurosurgeon can

perform more precise mapping.
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Sometimes the nidus of gliomas is located within functional

cortical areas of the brain. Neurosurgeons cannot use the classic

anatomy of the central nervous system (CNS) to predict functional

areas (such as language or motor sites) because of individual cortical

heterogeneity (62, 63). The mass effects of gliomas can distort the

topography of the brain, and the brain’s plasticity can cause

functional networks to be rearranged (64).

A meta-analysis of IoSM enrolled patients diagnosed with

supratentorial gliomas; the result showed that the gross total

resections were 75% of the patients whose resection was guided by

IoSM, compared with 58% of the patients without intraoperative

mapping; the IoSM did not influence the extent of the resection

(65). Another meta-analysis shared similar results, especially the

outcome of delayed severe deficits, which demonstrated a lower

incidence (3.4%) in patients with IoSM significantly (63), and the

deficits were always transient because of brain structures adjacent to

the resection cavity. The use of IoSM during resection surgery reduces

late, severe neurological deficits (65). The recommendation for awake

craniotomy (AC) guided surgery is for gliomas affecting the dominant

mid-to-posterior frontal, temporal, and mid-to-anterior parietal lobes.

AC techniques can monitor more complex cognitive functions such as

spatial and emotional recognition more effectively (41).

Based on some experience, the maximum duration that patients

can stay conscious and complete mapping tasks is about 1 h. During

this period there are several task series for IoSM, such as language

tasks (the major tasks are number counting and picture naming)

and non-language tasks (vision and other higher cognitive functions

include calculation, working memory, and music) (66, 67). When

tumors are near language or motor networks, it is recommended

that direct cortical stimulation be used to help preserve function in

appropriately selected patients. This often involves proceeding with

an awake craniotomy, for which technical nuances and anesthesia

considerations have been previously reported (68). If the gliomas

are located within the area associated with severe complications, the

rate of permanent complications will be about 10% with the use of

AC mapping techniques (69).

A random-effects meta-analysis showed that AC (90.1%) had a

higher mean EOR than general anesthesia (GA) (81.7%), which was

found to be the case (p = 0.06). For analysis, neurological deficits

were divided according to their severity and timing. Early

neurological deficits, late neurological deficits, and non-severe and

severe morbidity were not significantly different between patients

who underwent AC and GA, respectively. The results suggested that

IoSM when resecting gliomas located in the eloquent area can be

carried out safely and effectively with AC (70).

Other adjunct IoSM methods

There are some other adjunct IoSM methods. Functional MRI

(fMRI) mainly provides vital information regarding the location of

sensory and motor pathways, but it is unable to map language sites

(71). Somatosensory-evoked potential (SSEP) phase-reversal

techniques can be used to identify the location of the primary
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the primary somatosensory cortex (72).
Augmented reality high-definition
fiber tractography and fluorescein

As with simulating three-dimensional virtual objects with real

objects, the application of augmented reality (AR) in neurosurgery

has the potential to change the way neurosurgeons plan and

perform surgical procedures. The AR neuronavigation system has

been used in surgical planning (73), integrating MR or CT images

into the surgical field (74). López et al., in a review, illustrated that as

the second most frequent use in brain tumors, AR enabled the

neurosurgeon to locate the fiber tracts and guide resection (42). It

can improve intraoperative safety. It facilitates and simplifies the

selective anatomy of the lesion and adjacent structures, although

there is no established method for precise measurement of 3D error

and bias in deep injuries.

DTI high-definition fiber tractography (HDFT) has been tested

as a useful tool for glioma resection planning and assessment of

postoperative connectivity of the fiber tracts (43). Sodium

fluorescein (F) has been used as a fluorescent dye in HGGs to

increase the EOR (75). Although there is still a wide range of

limitations, there are several studies about the combined utility of

AR and HDFT-F. AR HDFT-F improves the neurosurgeon’s

intraoperative spatial location and allows for differential

visualization of each tract as needed. Luzzi (1) enrolled 117

patients newly diagnosed as supratentorial HGGs, of whom 54

underwent surgery with the AR HDFT-F technique and 63 with

conventional neuronavigation surgery. The results suggested that

the AR HDFT-F group had a higher extent of resection and longer

progression-free survival, although there was no significant

difference in complication rates between the two groups. Surgery

with AR HDFT-F is regarded as a safe and effective procedure for

patients’ neurofunction recovery. However, the present procedures

involve only GA patients, and the whole process is still limited by

the DTI’s only supply of anatomical information (76).

There are some other intraoperative tools that have been

described to achieve maximal tumor resection, and most of them

are still in debate.

(1) Intraoperative hand-held microscopy

This is a technique in which a single optical fiber combined with

miniaturized scanning and optical systems supplies high-resolution

images (77). It can solve problems at the cellular level. The histological

characteristics of gliomas, meningiomas, and central neurocytomas

have been distinguished by intraoperative confocal microscopy to

visualize fluorescein (78). Further study is needed to determine

whether this technique can be used to complement resection

procedures and conventional neuropathological diagnostic techniques.

(2) Intraoperative mutational analysis

The analysis can be used in real time to theoretically determine the

true tumor margins. All these methods include genotyping for known
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tumor mutations using PCR-based approaches, such as isocitrate

dehydrogenase 1 or 2 (IDH1/2) aberrations (79); mass spectroscopy

based on defined tumor spectral profiles, which is similar to magnetic

resonance spectroscopy techniques (80); All these methods need to be

further tested for specificity and sensitivity in resectioning gliomas.
Conclusions

Preoperative (such as neuronavigation systems and DTI

tractography) and intraoperative (including IoMRI, IoUS,

fluorescence-guided surgery, IoSM and AC approaches, AR HDFT-F,

intraoperative hand-held microscopy, and mutational analysis) surgical

options for gliomas therapy supply a lot of choices for neurosurgeons to

improve the greater extent of resections of any grade of gliomas

(Table 1). The neuronavigation system is always used for

preoperatively precise planning. DTI tractography can plan surgical

fibro-parcel pathways, keeping away from significant white-matter

packages. IoMRI can solve the intraoperative brain shift. IoUS can be

easily incorporated into operations to detect residuals above 1 cm in

diameter. Fluorescence-guided surgery can detect the tumors in HGGs

and LGGs with confocal microscopy and fluorescence. IoSM and AC

approaches can be used for gliomas located in the eloquent area. AR

HDFT-F can improve intraoperative spatial location and allow for

differential visualization of each tract. As themethods need to be further

tested, intraoperative hand-held microscopy and mutational analysis

also provide the methods for glioma resection. The development of

surgical techniques has changed the principles of gliomas and

characterized them as accurate, effective, and real-time to maximize

tumor resection, preserve neurological function of the eloquent area

near the lesion, decrease morbidity, and improve outcomes.
Frontiers in Oncology 05
Author contributions

XC is the corresponding author, and he designed the content.

ZY works on the analysis selected data and wrote the manuscript.

CZ, SZ, JP, and YZ are responsible for collecting the papers focused

on the surgical treatment of the gliomas from hundreds of papers.

All authors contributed to the article and approved the

submitted version.
Funding

This study was supported by Jiapeng Medical Nutrition

Technology (Jilin) Co., Ltd (grant no. 3R2220793428).
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.
TABLE 1 Perioperative treatment options.

Timepoint Techniques Advantages

Preoperative Neuronavigation systems (1) preoperative precise planning of the craniotomy in real time and the identification
of small intracranial lesions.
(2) can add functional MRI and DTI tractography information intraoperatively.

Preoperative DTI tractography Plan major fibro-parcel pathways in 3D and keeping away from significant white-
matter packages.

Intraoperative Intraoperative MRI (IoMRI) Solve the problem of the brain shift and increase the rate of EOR.

Intraoperative Intraoperative ultrasound (IoUS) The tool that can be easily incorporated into operative workflow to detect the residual
above 1cm in diameter.

Intraoperative Fluorescence-guided surgery (1) fluorescence of red-violet light: for the detection of tumor tissues during HGGs
resection.
(2) intraoperative confocal microscopy with fluorescence: for LGGs.

Intraoperative Intraoperative Stimulation Mapping (IoSM) and Awake
craniotomy (AC) approach

Resect gliomas located in the eloquent area can be carried out safely and effectively.

Intraoperative Augmented reality high-definition fiber tractography and
fluorescein (AR HDFT-F)

Improve intraoperative spatial location and allow for differential visualization of each
tract.

Intraoperative Intraoperative hand-held microscopy Solve problems at cellular resolution with a single optical fiber.

Intraoperative Intraoperative mutational analysis Genotyping and mass spectroscopy in real time to determine the true tumor margins.
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