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Yin and yang roles of B
lymphocytes in solid tumors:
Balance between antitumor
immunity and immune tolerance/
immunosuppression in tumor-
draining lymph nodes

Tomoya Katakai*

Department of Immunology, Niigata University Graduate School of Medical and Dental Sciences,
Niigata, Japan
The role of B cells in antitumor immunity has been reported to be either promotive

or suppressive, but the specific mechanism remains to be comprehensively

understood. However, this complicated situation likely depends on the temporal

and spatial relationship between the developing tumor and B cells that recognize

tumor antigens. Unlike responses against microbial or pathogenic infections,

tumor cells are derived from autologous cells that have mutated and become

aberrant; thus, elimination by the adaptive immune system is essentially inefficient.

If tumor cells can evade immune attack at an early stage, non-destructive

responses, such as tolerance and immunosuppression, are established over time.

In tumor-draining lymph nodes (TDLNs), tumor antigen-reactive B cells potentially

acquire immunoregulatory phenotypes and contribute to an immunosuppressive

microenvironment. Therefore, triggering and enhancing antitumor responses by

immunotherapies require selective control of these regulatory B cell subsets in

TDLNs. In contrast, B cell infiltration and formation of tertiary lymphoid structures

in tumors are positively correlated with therapeutic prognosis, suggesting that

tumor antigen-specific activation of B cells and antibody production are

advantageous for antitumor immunity in mid- to late-stage tumors. Given that

the presence of B cells in tumor tissues may reflect the ongoing antitumor

response in TDLNs, therapeutic induction and enhancement of these

lymphocytes are expected to increase the overall effectiveness of

immunotherapy. Therefore, B cells are promising targets, but the spatiotemporal

balance of the subsets that exhibit opposite characteristics, that is, the protumor or

antitumor state in TDLNs, should be understood, and strategies to separately

control their functions should be developed to maximize the clinical outcome.
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Introduction

Tumorigenesis and immunity are closely linked by nature (1–4).

If the adaptive immune system can efficiently recognize genetic

mutations in tumor cells as target antigens in the same way to

eliminate foreign substances and pathogens, tumor development

can be suppressed. In other words, if the antitumor response is

properly triggered, the tumors can be eliminated before their

appearance. However, the condition of the patient in whom the

tumor has been clinically manifested indicates the outpacing of

tumor growth over antitumor immunity, or unresponsiveness or

suppression of the immune system for some reason. Therefore, the

balance between the protumor and antitumor states in immunity may

be a critical determinant of tumor progression or suppression.

Various immunotherapies to treat tumor by activating the

immune system were attempted in the past without remarkable

progress for a long time (5, 6). However, the situation has changed

with the development of procedures to enhance the antitumor

responses by inhibiting the immune checkpoint molecules, a system

that negatively regulates immunity (7, 8). With this breakthrough,

various improvements have been made and technical progress is

underway (7, 9). However, the overall success rate of immune

checkpoint blockade (ICB) therapy remains insufficient (7, 10–12),

indicating that the fundamental principles have yet to be fully

elucidated. Therefore, there is an urgent need to clarify these

mechanisms to further improve the efficacy of immunotherapy.

B cells are crucial players in the adaptive immune system as

antibody-producing lymphocytes (13), but also play other roles by

presenting antigens to T cells and regulating immune responses via

cytokine production (14, 15). There have been many conflicting

reports on the roles of B cells in various solid tumors; protumor or

antitumor (16–21). The reason is not readily interpretable, but

roughly falls into two categories as follows:
Fron
(A) In transplantable mouse cancer models, the loss/removal of

B cells or their functional inhibition suppresses the tumor

growth (22–33). Thus, B cells exhibit tumor-promoting and

immunosuppressive functions.

(B) In human clinical specimens, B cell infiltration and

formation of lymphoid aggregates containing B cells in

tumor tissues are positively correlated with the prognosis

and therapeutic efficacy (20, 34–48). Therefore, B cells have

tumor suppressive and antitumor functions.
They likely reflect the immunological phases in tumor

progression: early and mid- to late stages of B cell function,

respectively. In addition, the balance between immune tolerance/

suppression and antitumor response in tumor-draining lymph nodes

(TDLNs), where tumor antigens are delivered to induce adaptive

immunity (49–54), is the key to understanding the conflicting roles of

B cells in solid tumors. In this review, I briefly discuss the role of

TDLNs and B cells in tumors, especially focusing on the relationship

between immune tolerance and antitumor response, presenting a

simple model for complex events.
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Induction of antigen-specific adaptive
immune response in tissue-draining
lymph nodes

Most adaptive immune responses against pathogens and foreign

substances are induced in the lymph nodes (LNs), a secondary

lymphoid organ incorporated into the lymphatic system that

collects body fluid (lymph fluid) from peripheral tissues via afferent

lymphatics (55–57). LNs play key roles as strategic sites in the

immune system, where many immune cells, mainly lymphocytes,

accumulate. Given that waste and foreign substances in lymph fluid

are filtered by LNs, it is a rational anatomical site for collecting and

detecting antigens from peripheral tissues to elicit an immune

response (56). LNs are also rich in blood vessels, and lymphocytes

circulating in the blood enter LNs via the specialized vascular

structure, high endothelial venules (57, 58). Lymphocytes stay in

LNs for a certain period and migrate in the interstitial space in search

for antigens, but those that do not encounter antigens leave the organ

via efferent lymphatic vessels and return to the bloodstream (57, 59).

Lymphocytes repeat this cycle for recirculation, visit many LNs, and

patrol throughout the body to search for antigens.

The typical process to induce an adaptive response in LNs begins

with the uptake of foreign antigens by dendritic cells (DCs) in

peripheral tissues which move into the neighboring lymphatic

vessels (Figure 1A) (60–62). During migration toward the tissue-

draining LNs, DCs process engulfed antigens and present them on the

cell surface as a peptide-MHC (pMHC) complex (63, 64). DCs that

reach LNs migrate further into the paracortical T cell area and come

into contact with numerous T cells. When antigen-specific T-cells

recognize pMHC on DCs via the T-cell receptor (TCR), they are

activated to proliferate and differentiate into effector cells (65). In

contrast, some antigens that directly enter the lymphatic vessels and

reach the same LNs are further transported into the follicular B-cell

area via several pathways (66). Antigen-specific B cells are activated

upon binding of antigens by the B-cell receptor (BCR) and uptake

them to display pMHC (13, 14). If activated T cells detect the antigens

presented on B cells, they support and facilitate further B cell

activation to form the germinal center (GC) within the follicles

(67). GC-B cells undergo somatic hypermutation in their

immunoglobulin genes while proliferating aggressively within the

GC, where B cells capable of producing antibodies with a higher

affinity are selected. Immunoglobulin genes also undergo class-switch

recombination, converting the constant region into a different

subclass appropriate for the ongoing response. Activated and

expanding lymphocytes then exit LNs via the efferent lymphatic

vessel and migrate to the original inflammatory site to eradicate

antigens. Most activated T and B cells die by apoptosis when the

response converges, but some fractions survive for a long time as

memory lymphocytes and prepare for the same antigen (68).

Induction of peripheral self-tolerance

The immune system attacks and eliminates non-self-antigens

derived from foreign microorganisms or pathogens, while it must
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establish tolerance and suppress responses to self-antigens of their

own body components. In the primary lymphoid organs, thymus and

bone marrow, central tolerance is formed by the elimination of

lymphocyte clones that recognize the self-antigens during

differentiation (69, 70). However, this process is imperfect and

mature lymphocytes that are potentially reactive to self-components

are inevitably generated at a certain frequency. These autoreactive

clones are in turn suppressed by peripheral tolerance via the

induction of anergy or active suppression by regulatory

lymphocytes in secondary lymphoid organs (Figure 1B).

Anergy is the mechanism by which lymphocytes become

unresponsive to cognate antigens in the absence of adequate co-

stimuli by some molecular patterns of pathogens or cellular damages,

pathogen-associated molecular patterns (PAMPs) or damage-

associated molecular patterns (DAMPs), respectively (71–76). This

means that even if lymphocytes that are reactive to self-antigens are

present, tolerance can be achieved in the absence of infectious or

damage-induced stimuli. Peripheral tolerance to self-antigens is

induced in both T and B cells, albeit to different degrees and by

different mechanisms (77). T cell unresponsiveness is mainly

controlled by tolerogenic DCs (75, 78). Although the mechanism

that induces B cell anergy/tolerance is not well understood, it is

thought to be depending on some antigen structures or the lack of T

cell help, i.e. T cell unresponsiveness (79, 80). Several studies have

reported that anergic B cells show surface characteristics of
Frontiers in Oncology 03
B220+CD93+CD23+IgMlo in mouse and IgD+IgMlo/–CD27– in

human (79, 81, 82).

Active suppression by regulatory cells occurs when

immunosuppressive lymphocyte subsets are induced in primary and

secondary lymphoid organs or possibly in inflammatory tissues (83,

84). Regulatory lymphocytes suppress immune responses using

various mediators, such as cytokines, cell surface molecules, and

metabolites. Although these cells differentiate under conditions

similar to anergy induction, they appear to be derived from a

fraction of cells that are highly responsive to self-antigens (85, 86).

The best-known regulatory population is regulatory T (Treg) cells,

including naturally occurring Tregs (nTregs) differentiated in the

thymus and induced Tregs (iTregs) differentiated from naive T cells in

peripheral tissues (83, 86). Recently, subsets of B cells with

immunosuppressive functions have also been discovered and are

collectively referred to as regulatory B (Breg) cells (21, 84, 87). The

inhibitory effects of Breg cells on interleukin (IL)-10 production is

well documented, although IL-10-independent processes have also

been suggested. Some reports show that IL-10–producing Breg (B10)

cells exhibit surface markers of CD19+CD5+CD1dhi in mouse and

CD19+CD24hiCD38hi in human (21, 84, 88). These Breg cells may be

important mediators of peripheral tolerance (84). Together, the above

mechanisms for the induction and maintenance of self-tolerance in

secondary lymphoid organs, such as LNs, likely inhibit the responses

to newly emerging antigens.
A B

FIGURE 1

Roles of draining lymph nodes (DLNs) in the induction of adaptive immune response, elimination of foreign antigens, and tolerance to self-antigens.

(A) Foreign antigens ( ) derived from microorganisms or pathogens that entered the body are taken up by dendritic cells (DCs) in peripheral tissues. If

DCs are simultaneously stimulated by pathogen-associated molecular patterns (PAMPs), they acquire immunogenic property and migrate to DLNs via the
lymphatic vessel. In DLNs, DCs further migrate into the paracortex to present antigens for activating T cells. Some of the antigens are also transported
directly by lymph flow to the follicles of DLNs, and B cells that recognize them are activated. Activated lymphocytes are differentiated into effector cells
and exit LNs via the efferent lymphatic vessel, returning to the blood circulation. They eventually infiltrate the site of inflammation and eliminate foreign
antigens. (B) Self antigens (▴) in peripheral tissues are constitutively engulfed by DCs and transported to DLNs. In the absence of PAMP stimuli, DCs
acquire tolerogenic property and induce unresponsive or regulatory function in self-reactive T cells in DLNs. Similarly, regulatory B cells are thought to
be induced when self-reactive B cells recognize the same self-antigens.
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Induction of tumor antigen-specific
adaptive immunity

Tumor cells originally emerged from autologous cells that

acquired abnormal properties by genomic mutations (89). Changes

in the protein sequence encoded by mutant genes create the possibility

of recognition by the adaptive immune system as neoantigens (tumor

antigens) (2, 90–92). These tumor antigens can be detected by

lymphocytes in TDLNs, where lymph fluid drains from the primary

tumor site (Figure 2A) (49–53). However, given that tumor cells in the

early phase carry only a few mutations and differ little from normal

cells, it is practically difficult for adaptive immunity to efficiently detect

such rare tumor antigens. Moreover, in the absence of infection,

lymphocyte clones that can recognize emerging antigens will

inevitably become anergic and tolerized, as tumor cells are almost

identical to normal cells. This may be the reason why, in many

transplantable mouse tumor models, transfectant tumor cells that

express foreign genes (models of newly generated tumor antigens)

are tolerated by the host and are capable of growth.

Therefore, innate immunity that detects some cellular

abnormalities other than antigen recognition plays a key role in the

initial elimination of naturally occurring tumors (49, 93). However,

tumor cells that show abnormalities undergo immunogenic cell death

due to various cellular stresses and release DAMPs (94, 95). This

potentially can lead to elicitation of adaptive immunity specific to

tumor antigens (96). On the other hand, some tumor cells gradually
Frontiers in Oncology 04
gain the ability to suppress the immune system (49, 51, 97, 98). This

creates an immunosuppressive microenvironment in the primary

tumors or TDLNs, leading to accelerated tumor growth. Altogether,

malignant tumors are those that have grown to become clinically

apparent by evading various immune barriers and inhibiting the

immune responses, making it difficult to be attacked by

adaptive immunity.
Role of TDLNs in the formation of an
immunosuppressive environment

Similar to the induction of antitumor adaptive immunity, tumor

antigen-specific immunosuppression/tolerance is also first developed

in TDLNs (Figure 2A) (49–51, 54). In the absence of co-stimulation

by infection or immunogenic cell death, anergic and regulatory

lymphocytes may be induced by tumor antigens, as early cancer

cells are almost identical to normal cells in terms of antigenicity. In

such situations, DCs that have taken up tumor antigens in the

primary tumors become biased toward immunosuppressive and

tolerogenic properties owing to the absence of PAMP and DAMP

stimuli and are involved in the induction of anergy and regulatory

lymphocytes in TDLNs (78, 99) . In addit ion, various

immunosuppressive agents produced from tumor cells flow into

TDLNs via lymphatic vessels, which also suppresses the antitumor

response (97, 100, 101).
A B

FIGURE 2

Roles of tumor-draining lymph nodes (TDLNs) in the suppression and activation of antitumor immune responses. (A) In the early stage, tumor antigens
(△) are transported to TDLNs by DCs that have become tolerogenic in the absence of damage-associated molecular pattern (DAMP) stimuli and induce
lymphocyte anergy and regulatory subsets which create an immunosuppressive environment. Some B cells differentiate into Breg cells, which are
involved in suppressing the antitumor response. (B) In mid- to late-stages of tumor development, an immunosuppressive environment is already formed

in TDLNs. When tumor mutation burden and DAMP stimuli are relatively low, emerging tumor antigens ( ) derived from new mutations are transported

by tolerogenic DCs, and unresponsiveness of lymphocytes in TDLNs is maintained (left). When tumor mutation burden and DAMP stimuli due to

immunogenic cell death are relatively high, the highly mutated tumor antigens ( ) transported by immunogenic DCs can activate the antigen-specific

lymphocytes in TDLNs to some degree (right), and a fraction of activated lymphocytes migrates to infiltrate the tumor or form tertiary lymphoid
structures (TLSs). The efficacy of immune checkpoint blockade (ICB) therapy depends on the extent of the ongoing antitumor response.
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One of the key components responsible for forming an

immunosuppressive environment is Treg cell induction. Several

studies have shown an increase in Treg cells in TDLNs (54, 102–

105). If tumor antigen-specific Treg cells are induced in TDLNs,

cytotoxic T cells and other responses against tumor neoantigens that

are normally induced may be limited (99, 106). These Treg cells in

TDLNs eventually migrate to the tumor, contributing to the

formation of a local immunosuppressive microenvironment (107).

Recent studies have indicated the importance of considering B-

cell functions within TDLNs during tumor development (21, 87).

Although the details remain unclear, tumor antigen-specific B cells in

TDLNs are likely to acquire regulatory properties and contribute to

the formation of an immunosuppressive environment. Tumor-

derived soluble factors and cell fragments, such as exosomes

containing neoantigens, are transported into the follicles of TDLNs,

possibly inducing B-cell anergy/tolerance or Breg cells (100, 108–

111). This event can proceed in parallel with the induction of

tolerance in tumor antigen-specific T cells, and B cells that are

incapable of receiving activation signals from helper T cells may

become Breg cells.
Protumor role of B cells: B
cell-dependent tolerance/
immunosuppression in TDLNs
in early stage tumors

Several studies have suggested that B cells promote tumor

progression in some situations, implying the suppression of

antitumor immune responses (22–29, 31, 33). These findings are

primarily based on the observation that the growth of transplanted

tumor cells is significantly reduced in mice lacking B cells or their

functions. In animal models in which tumor cells are transplantable to

syngeneic hosts, tumor cells are tolerated by the immune system,

probably because they are genetically almost identical to the host.

However, changes that occur in TDLNs upon tumor formation will

reflect, to some extent, the response to spontaneously developed

tumors (112, 113). Inhibition of tumor growth is observed in B

cell-deficient mice, such as µMT and JH-/- mice, or by eliminating B

cells via antibody administration (22, 24, 26, 28, 29, 31). In some

cases, the loss of B cells enhances the influence of chemotherapy (23,

27, 30). These results suggest that the presence of B cells decreases the

antitumor response. Notably, inhibition of tumor growth is also

observed in BCR transgenic mice, such as MD4, in which the

antigen specificity of B cells is fixed to a foreign antigen (28, 32). B

cells in these mice lack diversity in terms of antigen specificity,

meaning that tumor growth is inhibited in the absence of B cell

reactivity to tumor antigens. This, in turn, indicates that

immunosuppression by B cells is tumor-antigen-specific. It is

assumed that inhibitory subsets, such as Breg cells, and their IL-10

production are important for the formation of an immunosuppressive

environment (21, 87). Notably, recent reports showed that g-
aminobutyric acid (GABA) (31) and IL-35 (33) produced by B cells

also exert protumor effects.

These studies suggest the induction of tolerance and/or regulatory

subsets in tumor antigen-specific B cells in TDLNs during the early
Frontiers in Oncology 05
stages of tumor cell engraftment (Figure 2A). Lack of B cells or limited

antigen specificity likely prevent the suppressive functions of B cells,

leading to enhanced antitumor responses and decreased tumor

growth. In fact, B cell-deficient mice show infiltration of cytotoxic

T cells in tumors and increased cytolytic activity (24, 26, 27, 31).

Therefore, it is speculated that during the early phase of tumor

growth, B cells in TDLNs acquire immunosuppressive and

protumor functions.

Since the absence of B cells promotes tumor growth in some

mouse models (114, 115), B cells may exhibit antitumor effects

depending on the tumor type or experimental condition. Moreover,

genetic B cell deficiency may not properly represent the physiological

role of B cells since the entire immune system is largely affected by the

complete absence of B cells.
Antitumor role of B cells: correlation
between B-cell infiltration in tumors
and the prognosis/treatment efficacy
for mid- and late-stage tumors

Unlike inbred laboratory animals, which have a uniform genetic

background and are maintained in a constant environment free of

specific pathogens, humans are genetically and environmentally

diverse, causing tumors to develop with varying age of onset,

primary organ, subclassification/composition, and mutation burden.

This results in a large set of clinical specimens or an epidemiological

database with an assembly of countless different conditions that can

be analyzed by focusing on a specific factor. Recently, remarkable

progress has been made in the pathological examination of tumor

tissues from large cohorts of clinical specimens, especially using

computer-based analysis of digital images for the quantification of

multiple parameters (116, 117). By coupling histopathological

information with gene expression profiles, more powerful and

multifaceted evaluations are possible (118).

Numerous histopathological analyses in a variety of solid tumors

revealed that the degree of immune cell infiltration into tumor tissues,

especially B cells and plasma cells (tumor-infiltrating B cells: TIBs), is

significantly correlated with prognosis and therapeutic efficacy (18,

20, 34–48). The correlation with the efficiency of ICB therapy has

attracted much attention (38, 40–42, 115, 119). TIBs include cells that

exhibit characteristics of various differentiation stages and activation

status, but activated or memory-like phenotypes are often abundant

in association with a favorable prognosis and responsiveness to ICB

therapy (18, 19, 35, 38, 40, 44, 45, 120, 121). Antibodies produced by B

cells are possibly involved in the elimination of cancer cells via several

mechanisms, suggesting that B cells can contribute to antitumor

responses (19, 43, 47, 122, 123). B cells may also participate in

tumoricidal responses through presentation of tumor antigens to T

cells and antibody-dependent cytotoxicity in local tumor tissues. The

presence of follicular helper T (Tfh) cells and the expression of C-X-C

motif chemokine ligand 13 (CXCL13), a B cell-attracting chemokine,

in tumor tissues are correlated with prognosis (18, 46, 124–127),

suggesting that these are tightly linked with local B cell function.

Closely associated with TIBs in tumors, the formation of tertiary

lymphoid structures (TLSs) or lymphocyte clusters within or adjacent
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to tumor tissues is correlated with prognosis and therapeutic efficacy

(18, 40, 42, 45, 47, 118, 128, 129). TLSs are ectopic lymphocyte

accumulations with tissue structures resembling LNs, which can be

regarded as an aggregate of activated lymphocytes often induced by

chronic inflammation (130). The formation of follicle-like structures

with dense B cell accumulation is a remarkable indicator of TLSs;

thus, the presence of TLS is synonymous with large-scale B cell

infiltration. In these organized lymphoid structures, an environment

that facilitates antitumor immunity, including B cell activation,

antibody production, and activation of cytotoxic T cells via tumor-

antigen presentation is formed (118, 129).

In addition to TIBs, active infiltration of other effector

lymphocytes into the primary tumor should reflect an already

present antitumor response in TDLNs (Figure 2B). Although

insufficient to eliminate the tumor, the immune system is not

completely suppressed, and a fraction of lymphocytes that have

been activated in TDLNs can migrate and infiltrate the tumor. The

differences in the intensity of lymphocyte infiltration are presumed to

vary depending on genetic diversity and environmental factors (4,

92); the greater the lymphocyte infiltration into the tumor, the

stronger is the ongoing antitumor response. Thus, it makes sense

that lymphocyte infiltration in tumors is closely related to prognosis

and response to ICB therapy. If a stronger antitumor response is

already present, the patient would be more sensitive to ICB therapy

due to the efficient activation of effector cytotoxic T cells, resulting in

tumor suppression.

Taken together, the infiltration of B cells into tumors is a good

indicator of ongoing antitumor immunity. If the balance between

tolerance/immunosuppression and antitumor response in TDLNs is

skewed toward the antitumor side, the degree of B cell tolerance/

regulatory axis is weakened, resulting in more activated B cells

entering the tumor lesion. If B cell activation or antibody

production is linked to tumor suppression, it may directly correlate

with prognosis after ICB therapy.
Concluding remarks

Considering the dynamic behavior of B cells in TDLNs and tumor

sites, the seemingly conflicting roles of B cells in various tumors can

be regarded as reflections of the different phases of tumor progression

as follows:
Fron
(A) Protumor/immunoregulatory B cell functions are linked to

the induction of tolerance and an immunosuppressive

environment in early stage TDLNs.

(B) Antitumor/tumor-suppressive B cell functions are linked to

the degree of antitumor immune response in mid- and late-

stage TDLNs.
In the protumor functions of B cells as (A), the findings from

genetically engineered animal models, in which the genetic

background and environmental factors are homogeneous, represent

the specific function of B cells in certain tumors. At present, it is

difficult and risky to simply apply this knowledge to diverse human

population for diagnostic and therapeutic purposes, such as for

systemic B cell depletion. However, since B cells seem to contribute
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to the establishment of an immunosuppressive environment, it may

be useful to combine ICB therapy with specifically targeting

immunoregulatory B cells in the future.

The antitumor role of B cells (B) is extremely useful for diagnosis,

therapeutic decisions, and prognosis prediction based on biopsies

from patients, especially as promising information for the choice of

immunotherapy, such as ICB. However, patients with low infiltration

of B cells and other lymphocytes into the tumor have not yet

overcome their insensitivity to immunotherapy. Various novel

strategies currently underway to activate the antitumor immunity

will provide more insights (9).

In any case, it should be noted that TDLNs play critical roles.

TDLNs act as a reservoir of activatable lymphocytes that can

potentially become effectors of antitumor response, making them a

critical target for ICB therapy (110, 131–138). Therefore, careful

decision is required for the removal of TDLNs or LN dissection. In

addition, it is important to develop a rapid and simple method for

determining the immune status of TDLNs in advance. The key point

is how to appropriately restore or reactivate TDLNs from an

immunosuppressive state. In the presence of TDLNs, the induction

of immunogenic cell death in tumors, in addition to ICB therapy, may

be the most effective (1, 95, 138–140). Manipulations that locally

affect the primary tumors and TDLNs, e.g. intratumor or topical

administration or treatment of therapeutic agents, are promising

strategies for reducing the systemic adverse effects, while

maximizing the therapeutic efficiency (132, 133, 138, 140–142).

More detailed understanding of the spatiotemporal behavior of B

cells in the context of the primary tumor–TDLN axis is required.
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