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and associated with worse
survival outcomes in
prostate cancers
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Background: Histone demethylase RIOX2 was cloned as a c-Myc downstream

gene involved in cell proliferation and has been implicated as an oncogenic factor

in multiple tumor types. Its expression profiles and correlation with disease

progression in prostate cancers are unknown.

Methods: Transcriptomic profiles of Jumanji domain-containing protein genes

were assessed using multiple public expression datasets generated from RNA-seq

and cDNA microarray assays. RIOX2 protein expression was assessed using an

immunohistochemistry approach on a tissue section array from benign and

malignant prostate tissues. Gene expression profiles were analyzed using the

bioinformatics software R package. Western blot assay examined androgen

stimulation on RIOX2 protein expression in LNCaP cells.

Results: Among 35 Jumanji domain-containing protein genes, 12 genes were

significantly upregulated in prostate cancers compared to benign compartments.

COX regression analysis identified that the ribosomal oxygenase 2 (RIOX2) gene

was the only one significantly associated with disease-specific survival outcomes

in prostate cancer patients. RIOX2 upregulation was confirmed at the protein levels

using immunohistochemical assays on prostate cancer tissue sections. Meanwhile,

RIOX2 upregulation was associated with clinicopathological features, including

late-stage diseases, adverse Gleason scores, TP53 genemutation, and disease-free

status. In castration-resistant prostate cancers (CRPC), RIOX2 expression was

positively correlated with AR signaling index but negatively correlated with the

neuroendocrinal progression index. However, androgen treatment had no

significant stimulatory effect on RIOX2 expression, indicating a parallel but not a

causative effect of androgen signaling on RIOX2 gene expression. Further analysis

discovered that RIOX2 expression was tightly correlated with its promoter

hypomethylation and MYC gene expression, consistent with the notion that

RIOX2 was a c-Myc target gene.
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Conclusion: The Jumanji domain-containing protein RIOX2 was significantly

overexpressed in prostate cancer, possibly due to c-Myc upregulation. RIOX2

upregulation was identified as an independent prognostic factor for disease-

specific survival.
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Introduction

The Jumanji domain-containing proteins are a family of histone

modification enzymes involved in modulating gene expression

towards cell differentiation, proliferation, and stress response (1, 2).

This family of proteins contains multi-subgroups with various

features of histone modification sites and domain structure

properties (3, 4). Altered expression of these proteins has been

reported in multiple human cancers (1), including prostate cancer

(5–7).

Prostate cancer is a significant health issue in western countries, and

it is the second leading cause of cancer death in American men, behind

only lung cancer (8). About one man in 8 will be diagnosed with prostate

cancer during his lifetime, and about one man in 41 will die of prostate

cancer in the US, according to the ACS website description (www.cancer.

org). Although the 5-year survival rate for localized diseases is about

100%, this rate drops to 30% for metastatic illnesses (9). Metastatic

prostate cancers are initially treated with androgen deprivation therapy

(ADT) because androgen and its cognate androgen receptor (AR) are

critical for prostate cancer growth and progression (10). Castration by

surgery or medical treatment reduces androgen levels, resulting in

prostatic atrophy and prostate cancer regression. Unfortunately,

metastatic prostate cancers often relapse and progress to a stage

termed castration-resistant prostate cancers (CRPC) after 1.5-2 years of

androgen deprivation therapy (11). Current CRPC treatments focus on

suppressing AR activity with antagonists like Enzalutamide/Apalutamide

or reducing androgen production from the adrenal gland and prostate

cancer cells with Abiraterone (12). However, these treatments fail to yield

a meaningful benefit in CRPC patients due to AR gene mutations or

splice variations (i.e., AR-v7) (10), or cross-activation by other cellular

signal pathways, resulting in AR re-activation (13). Therefore, novel

diagnostic and therapeutic strategies are urgently needed to manage

prostate cancers efficiently.

To develop novel strategies for prostate cancer management, we

conducted a series of transcriptomic analyses using public RNA-seq

datasets to explore new prognostic and therapeutic biomarkers (14,

15). Since multiple Jumonji domain-containing proteins were

reported to modulate AR activity in prostate cancers, we analyze

the expression profiles of 35 Jumanji domain-containing genes and

their association with clinicopathological features in this study.

Among these genes, twelve showed a significant alteration (nine

upregulated and three downregulated) at the mRNA level in

primary prostate cancer tissues compared to benign compartments.

Most significantly, the c-Myc target gene RIOX2 was upregulated and
02
tightly associated with disease progression and patient survival

outcomes, representing a novel prognostic factor in prostate cancer.
Materials and methods

Gene expression profile analysis

Gene expression profiles of 35 Jumanji domain-containing

protein genes at the mRNA level were analyzed using the RNA-seq

dataset obtained from the Cancer Genome Atlas Prostate

Adenocarcinoma project (TCGA-PRAD). There were 499 patients

with primary prostate cancers in this cohort, of which case-matched

benign specimens from the prostate glands were obtained from 52

cases. The RNA-seq data in Fragments Per Kilobase per Million

(FKPM) format were downloaded from the TCGA portal (https://

portal.gdc.cancer.gov) and were then converted to Transcripts Per

Million (TPM) reads format. Finally, the data were presented as log2
[TPM + 1] for analysis. All analyses were conducted using the R-

language package (version 3.6.3) on the bioinformatics platform

(www.xiantao.love). RIOX2 gene expression profile was also

assessed using the MSKCC dataset from 126 prostate cancers (16)

and SU2C/PCF dataset from 429 patients (17) on the cBioportal

platform (www.cbioportal.org).
Kaplan-Meier survival assessments

The association of RIOX2 gene expression with patient survival

outcomes was assessed using the Kaplan-Meier curve approach.

Patients were divided into groups with high or low RIOX2 gene

expression using the minimum p-value strategy (18). The Log-rank

test was utilized to determine the significance of the hazard

ratio (HR).
Immunohistochemistry analysis

RIOX2 prote in expres s ion was as se s sed us ing an

immunohistochemistry (IHC) approach on tissue microarray slides

commercially obtained from Novus Biologicals, LLC (Avenue, CO).

The tissue microarray contained 49 tissue sections derived from

prostate cancer patients, of which there were nine case-matched

pairs of normal and tumor sections. There were two cases of a
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Gleason score of 6 or 10, 15 cases of a Gleason score of 7 or 9, and 6

cases of a Gleason score of 8. The anti-RIOX2 polyclonal antibody

was obtained from Sigma-Aldrich (St Louis, MO) and validated by the

Human Protein Atlas project (HPA008080). The VECTASTAIN Elite

kit (catalog #PK8200) from Vector Labs (Burlingame, CA) was used

to visualize the immunosignal. A semi-quantitative approach was

utilized to analyze the positive immunosignals, as described in our

previous publication (19).
Androgen modulation of RIOX2 expression
in prostate cancer cells

RIOX2 expression in LNCaP cells after androgen stimulation or

deprivation was analyzed using the NCBI GEO datasets (GDS3358,

GDS2728, and GDS3111). For androgen deprivation, LNCaP cells

were cultured in 10% charcoal-stripped fetal bovine serum (cFBS)

(testosterone < 0.03 ng/ml) for up to 48 weeks. RIOX2 gene

expression was assessed using the Affymetrix Human Genome

U133 Plus 2.0 arrays (Affymetrix, Santa Clara, CA), as described in

a previous publication (20). For androgen stimulation, LNCaP cells

were cultured in 8% cFBS for three days and then treated with

dihydrotestosterone (DHT, 10 nM) with or without the AR

antagonist Casodex (10 nM). RIOX2 gene expression was examined

using the Affymetrix Human Genome U133AB platform (21, 22).

To evaluate the androgen effect on RIOX2 expression at the

protein level, LNCaP cells were treated with synthetic androgen

R1881 in 2% cFBS with or without anti-AR drugs Enzalutamide

and Abiraterone. R1881 was obtained from ICN (Aurora, OH) and

dissolved in absolute Ethanol. Enzalutamide and Abiraterone were

purchased from Cayman Chemicals (Ann Arbor, MI) and dissolved

in dimethyl sulfoxide. Total cellular proteins were subjected to SDS-

PAGE electrophoresis, followed by anti-RIOX2 immunoblotting

assay (HPA008080, Sigma-Aldrich Co., St Louis, MO), as described

in our publication (14).
Statistical analysis

RNA-seq data were presented as a Log2 [TPM + 1]) value. Data in

each group were also shown with the MEAN plus/minus the SEM

(standard error of the mean). ANOVA test was used for multiple

group comparisons, and a Student t-test was conducted to determine

the significance of the differences between the two groups. Data

visualization was performed using the R packages (version 3.6.3)

and GraphPad software (version 9.1.0).
Results

Multiple Jumonji domain-containing
proteins were upregulated in
prostate cancers

We analyzed the expression profiles of 35 Jumanji domain-

containing protein genes in prostate cancers, and the list of genes

was derived from two review articles (1, 2). We conducted two types
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of comparisons, case-matched pair of 52 benign-malignant tissues

and a group cohort (benign vs. malignant) using the TCGA-PRAD

dataset. Our results showed that nine genes were significantly

upregulated, and three genes were significantly downregulated in

both types of comparisons (Figures 1A, B). In contrast, the other 23

genes showed no significant or inconsistent differences between the

two comparisons (Figures S1A-D). ROC analysis revealed that except

for KDM5C (AUC = 0.597), all other genes exhibited a potent AUC

value (> 0.6) in distinguishing malignant tissue from the benign

compartment (Figure 1C). Specifically, the gene HR, a lysine

demethylase and nuclear receptor corepressor, showed an AUC

value of 0.814, representing a potential diagnostic marker for

prostate cancer.
RIOX2 upregulation was an independent
prognostic factor of disease-specific survival

We then analyzed these altered genes’ association with disease-

specific survival outcomes in prostate cancer patients. With five

clinicopathological factors, COX regression analysis revealed that only

RIOX2 upregulation and patient serum PSA level was significantly

associated with disease-specific survival in the univariate test (Table

S1). After eliminating other genes, RIOX2 upregulation showed a

significant association with disease-specific survival in univariate and

multivariate tests (Table 1). These data suggest that RIOX2 is an

independent prognostic factor in prostate cancer, like serum PSA level.

To verify RIOX2 upregulation at the protein level, we conducted an

immunohistochemical assay using a prostate cancer tissue array

containing 40 cases. Of these tissue sections, there were nine case-

matched benign-malignant tissue pairs. As shown in Figure 2, RIOX2

protein immunosignals were significantly increased in malignant tissues

compared to their benign compartments. Semi-quantitative analysis of

the immunosignals revealed a drastic difference in pairwise (Figure 2E)

and group cohort comparisons (Figure 2F). These data indicated that

RIOX2 protein expression was also upregulated in prostate cancers.
RIOX2 expression was associated with
cancer genetic alteration

Genomic alterations in cancer cells include mutations, copy

number variations (CNV), and gene fusions. These alterations

indicate tumor heterogeneity and homogeneity and are important

factors associated with gene expression and cancer progression. We

then examined the genetic alterations of the RIOX2 gene using the

TCGA-PRAD RNA-seq dataset. Among 491 cases, only three (0.6%)

showed genetic deep deletion or amplification. There were 10 cases

with shallow deletion (2%) and 45 with genetic gain (9.16%). Two

patients showed point mutations; one was A344V, and the other had

two simultaneous point mutations, R197H & E447D. Consistently,

RIOX2 mRNA levels were significantly increased along with the

genetic gain and amplification (Figure 3A). Similar results were also

observed from the MSKCC dataset (16); RIOX2 mRNA levels were

significantly higher in prostate cancers with genetic gain (Figure 3B).

In addition, RIOX2 mRNA levels were strongly correlated with the

fraction value of genomic alterations in prostate cancers. Patients with
frontiersin.org
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ETS fusion, ERG-ACGH fusion, and ERG-GEX fusion all showed an

increased level of RIOX2 mRNA (Figures 3C–F).

Since the low incidence (< 10%) of RIOX2 genetic gain/amplification

was unlikely a driving cause of RIOX2 upregulation in prostate cancers,

we turned to epigenetic alterations. We examined the promoter

methylation levels within the RIOX2 gene locus. Our results showed

that RIOX2 promoter methylation was significantly lower in cancer
Frontiers in Oncology 04
tissues compared to benign tissues (Figure 3G). A very strong reverse

correlation was noticed between RIOX2 promoter methylation and

mRNA levels in cancer tissues (Figure 3H). Further analysis revealed

that themethylation intensity around the -1127bp region upstream of the

transcription start site (TSS) was significantly correlated with RIOX2

mRNA levels (Figure 3I), indicating a potential mechanism of

epigenetic modification.
A

B

C

FIGURE 1

Multiple Jumanji domain-containing protein genes are upregulated in prostate cancers. (A, B) Gene expression at the mRNA levels was compared between
normal and tumor tissues using the TCGA-PRAD RNA-seq dataset with a case-matched pairwise approach (panel A, n = 52, paired t-test) or group cohort
approach (panel B, normal n = 52; tumor = 499, Wilcoxon rank sum test). The asterisks denote different significance levels, *p < 0.05, **p < 0.01, ***p < 0.001).
(C) ROC analysis was conducted for the altered genes distinguishing normal and tumor tissues.
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FIGURE 2

RIOX2 protein expression is increased in prostate cancer tissues. RIOX2 protein expression was examined in prostate cancer tissues with an IHC
approach, as described in our recent publication (19). Representative microscopic images were shown from selected tissue sections with benign
(A–C) and malignant compartments (A, B, D). Magnification x 200. Semi-quantitative data (MEAN and SEM) of the immunosignals were shown for the
pairwise (E) or group cohort comparison (F). The asterisk indicates a significant difference (Student t-test, **p < 0.01, ****p < 0.0001).
TABLE 1 COX regression analysis of RIOX2 expression with disease-specific survival.

Characteristics Total (n) Univariate analysis HR (95% CI) P value Multivariate analysis HR (95% CI) P value

T stage 490

T2 189 Reference

T3&T4 301 519428284.120 (0.000-Inf) 0.999

N stage 424

NO 346 Reference

N1 78 8.116 (0.736-89.560) 0.087 25.882 (0.984-680.484) 0.051

PSA (ng/ml) 440

<4 413 Reference

>=4 27 32.707 (5.137-208.243) <0.001 27.624 (1.553-491.242) 0.024

Gleason score 497

6&7 293 Reference

8&9&10 204 892211776.881 (0.000-Inf) 0.999

Residual tumor 466

RO 315 Reference

R1&R2 151 5.865 (0.609-56.523) 0.126

RIOX2 497 10.409 (1.778-60.923) 0.009 42.361 (1.055-1700.569) 0.047
F
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FIGURE 3

RIOX2 upregulation is associated with genetic alteration and promoter hypomethylation in prostate cancers. (A) RIOX2 mRNA expression was analyzed
using the TCGA-PRAD RNA-seq dataset coupled with genetic copy number alterations. Case numbers in each group are as follows: deep deletion, 3;
shallow deletion, 10; diploid, 430; gain, 45; amplification, 3. (B) RIOX2 mRNA expression was analyzed using the MSKCC RNA-seq dataset coupled with
genetic copy number alterations. Each group’s case numbers are as follows: shallow deletion, 3; diploid, 118; gain, 5. (C) Spearman correlation analysis
was performed using the TCGA-PRAD dataset between RIOX2 mRNA expression and Fraction Genomic Altered index. (D–F) RIOX2 mRNA expression
levels in the TCGA-PRAD dataset were compared between groups with or without gene fusion features as indicated. The asterisk indicates a significant
difference (Student t-test, *p < 0.05, **p < 0.01, ***p<0.001, ****p < 0.0001). (G) Promoter methylation levels of RIOX2 gene promoter were compared
between benign and malignant prostate tissues using the UALCAN platform. (H, I) Spearman correlation analysis was conducted using the TCGA-PRAD
RNA-seq and DNA methylation HM450 dataset.
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RIOX2 upregulation was associated
with disease progression and
cancer-specific survival

We analyzed the association of RIOX2 expression with patient

clinicopathological features. Our results showed that higher levels of

RIOX2 expression were seen in patients with late-stage (T4 vs. T2/3,

Figure 4A), higher Gleason scores (8-10 vs. 6-7, Figure 4B), and tumors

with TP53 mutation (Figure 4C). Deceased patients due to prostate

cancer also showed a significantly higher level of RIOX2 mRNA levels

compared to alive patients (Figure 4D). Kaplan-Myer curve analysis

also showed that RIOX2 upregulation was significantly associated with

disease-specific survival outcomes (Figure 4E). However, the

association of RIOX2 expression with progression-free interval was at

the borderline of significance (Log-rank p = 0.054, Figure 4F). However,

after stratification of patients into subgroups, RIOX2 expression was

significantly associated with the progression-free interval in patients

with PSA level below 4 ng/ml (Figure 4G), with residue tumors after
Frontiers in Oncology 07
surgery (Figure 4H), without lymph node invasion (Figure 4I), or with

higher Gleason scores (Figure 4J). ROC analysis indicated that RIOX2

expression is a robust prognostic factor (AUC = 0.88 - 0.971) of disease-

specific survival for 5-10 years (Figure 4K).
RIOX2 expression was positively associated
with AR activity in CRPC patients

The clinical obstacle in managing metastatic prostate cancers is the

castration-resistant progression after androgen deprivation therapy.

Due to the vast implication of androgen receptor antagonists for

castration-resistant prostate cancers (CRPC), neuroendocrinal

progression of prostate cancer (NEPC) emerged as the worst stage of

prostate cancer without means to cure (23, 24). We analyzed RIOX2

expression profiles in CRPC and NEPC specimens using the SU2C/

PCF dataset (17). Our results showed that RIOX2 expression was

significantly correlated with AR score (Figure 5A), an AR signal activity
A B D

E F G

IH J K

C

FIGURE 4

RIOX2 upregulation is associated with disease progression and patients’ survival outcomes in prostate cancers. (A–D) RIOX2 mRNA expression levels
were compared in the TCGA-PRAD dataset between different groups stratified with tumor stage, Gleason scores, TP53 gene mutation status, and patient
survival status as indicated. The asterisks indicate a significant difference (Wilcoxon rank sum test, *p < 0.05; **p < 0.01). Case numbers in each group are
as follows: T2, 189; T3, 292; T4, 11; Gleason scores 6, 46; Gleason scores 7, 247; Gleason scores 8, 64; Gleason scores 9, 138; Gleason scores 10, 4;
TP53 mutant, 38; TP53 wild-type, 295; DSS alive, 492, DSS deceased, 5. (E–J) Kaplan-Meier survival analysis was conducted by stratifying patients using
the minimum p-value approach (18) based on RIOX2 expression levels and clinicopathological features. TMEM158 expression data were extracted from
the TCGA-PRAD RNA-seq dataset and the (K) ROC analysis was conducted using the TCGA-PRAD dataset for the potential of RIOX2 mRNA expression
on patient survival prognosis.
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index (17). Meanwhile, RIOX2 expression was also strongly correlated

with the expression levels of the AR-V7 splicing variant (Figure 5B), a

potent indicator of treatment resistance in CRPC patients (25). In

contrast, a robust reverse correlation was observed between RIOX2

expression and NEPC score (Figure 5C), an index of NEPC progression

(17). Consistently, RIOX2 mRNA levels were significantly lower in

NEPC tumors than in CRPC tumors (Figure 5D).

To determine if RIOX2 expression was directly regulated by the

androgen/AR signal pathway, we analyzed RIOX2 expression in prostate

cancer LNCaP cells after androgen stimulation. As shown in Figures 5E–

G, androgen stimulation up to 16-24 h had no significantly enhancing

effect on RIOX2 expression at the mRNA (Figures 5E, F) and protein

levels (Figure 5G) in LNCaP cells. The AR antagonists, Casodex

(Bicalutamide), Enzalutamide, and Abiraterone, did not significantly

impact RIOX2 expression. Consistently, RIOX2 mRNA expression was

observed in all prostate cancer cell lines with or without AR expression

(Supplemental Figure S2). These data indicated that RIOX2 expression

might not be a direct target gene of the AR signal pathway.
RIOX2 expression was positively correlated
with c-MYC expression

RIOX2 gene was initially reported as a c-Myc downstream target

involved in cell proliferation (26), and c-Myc is a proven oncogene in

prostate cancer (27). Therefore, we examined the correlation of

RIOX2 expression with the MYC family and its related genes.
Frontiers in Oncology 08
Consistent with a previous report (26), a strong positive correlation

was found between RIOX2 expression and c-Myc (Figure 6A), L-Myc

(Figure 6B), and Myc binding proteins (Figures 6C, D), while only a

moderate correlation was noticed between RIOX2 expression and

Myc associated factor-X (Figure 6E). In contrast, RIOX2 expression

was not correlated with N-Myc (Figure 6F) and MYCBP-associated

protein (Figure 6G). Interestingly, among these Myc family members,

only c-Myc was significantly upregulated in prostate cancers

compared to benign compartments (Figures 6J, K), suggesting that

c-Myc is potentially a major regulator of RIOX2 expression in

prostate cancer.

Recent reports showed that RIOX2 expression in human cancers

was also modulated by zinc finger proteins ZNF143 (28) and IKZF1

(29) in liver cancers. We conducted a Spearman correlation analysis

and found that RIOX2 expression was strongly correlated with

ZNF143 expression (Figure 6H) while moderately with IKZF1

expression (Figure 6I) in prostate cancers. However, both ZNF143

and IKZF1 expression had no significant differences between

malignant and benign tissues in prostate cancers (Figures 6J, K).

These data suggest that ZNF143 or IKZF1 is unlikely an upstream

modulator for RIOX2 upregulation in prostate cancer.
Discussion

This study showed that 12 out of 35 Jumanji domain-containing

protein genes were significantly altered at the mRNA level in primary
A B D

E F G

C

FIGURE 5

RIOX2 upregulation is associated with AR signaling activity in CRPC cancers. (A–C) Spearman correlation analysis was conducted between RIOX2
expression levels and AR signaling activity index, AR-V7 splicing, and NEPC index using the SU2C/PCF Dream Team RNA-seq dataset (17). (D) RIOX2
mRNA expression levels were compared between CRPC and NEPC tissues using the SU2C/PCF dataset. The asterisks indicate a significant difference
(Student t-test, ****p < 0.0001). Case numbers: CRPC, 210; NEPC, 22. (E, F) RIOX2 mRNA expression data were extracted from NCBI GDS2782 (22) and
GDS3111 (21). LNCaP cells were stimulated with dihydrotestosterone (DHT, 10 nM) with or without the AR antagonist Casodex (10 mM) in 8% cFBS-
containing culture media. RIOX2 gene expression was examined using the Affymetrix Human Genome U133AB platform (21, 22). (G) LNCaP cells were
treated with R1881 (1.0 nM) in 2% cFBS with or without Enzalutamide or Abiraterone (10 mM) overnight. RIOX2 protein expression was assessed in
western blot assay (14). Actin blot served as a protein loading control. ns, none significance.
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prostate cancer tissues compared to the benign compartment. Among

these 12 genes, only RIOX2 upregulation was tightly associated with

tumor stage, Gleason score, TP53 gene mutation, and disease-specific

survival in prostate cancer patients. Further analyses revealed that

RIOX2 expression was correlated with its genetic gain/amplification

and promoter hypomethylation, as well as fusion events of ETS and

ERG genes. In CRPC patients, RIOX2 expression was positively

correlated with the AR activity score and AR-V7 expression levels

but negatively correlated with the NEPC score. Indeed, RIOX2

expression levels were significantly reduced in NEPC tumors

compared to CRPC tumors. However, androgen stimulation had no

significant enhancing effect on RIOX2 expression at both the mRNA

and protein levels. These data suggest that RIOX2 was upregulated in
Frontiers in Oncology 09
prostate cancers and that its upregulation was associated with disease

progression and cancer survival in parallel to AR activity levels.

Over the last two decades, genetic and epigenetic alterations have

been identified as oncogenic drivers to modulate AR-dependent cistrome

reprogramming during prostate cancer development, progression, and

treatment resistance (30–32). Several epigenetic modifiers were identified

as prostate cancer biomarkers, including histone demethylases (33).

KDM1A was the first one reported to enhance AR signal activity (34),

followed by KDM4C (35, 36) and KDM3A (37). Other histone

demethylases, such as KDM3A (38, 39), KDM4A, KDM4D (40),

KDM4B (41, 42), KDM7A (43), and JMJD6 (44), were also shown to

enhance AR signal activity and to increase AR-v7 expression. In addition,

several histone demethylases showed gene upregulation in prostate
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FIGURE 6

RIOX2 expression is correlated with MYC family genes in prostate cancer. (A–I) Spearman correlation analysis was conducted between RIOX2 and MYC
family genes using the TCGA-PRAD RNA-seq dataset. Spearman r > +/- 0.3 was considered a strong correlation. (J, K) Gene expression levels of MYC
family genes were extracted from the TCGA-PRAD RNA-seq dataset. Two types of comparison were conducted, case-matched pairwise (J) and group
cohort (panel K) comparisons. The asterisk indicates a significant difference compared to the normal group (*p < 0.05, **p < 0.01, ***p < 0.001). ns, no
significance. Case numbers: Normal tissues, 52; Tumors, 499.
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cancer tissues, including KDM1A (45), KDM3A and KDM4C (7),

KDM4A (46), KDM4B (47), KDM5B (6), KDM5C (48), KDM6B (5,

49), KDM7A (43), and PHF8 (50), Among these upregulated genes,

KDM4B expression was shown to correlate with patient overall survival

outcomes, while KDM1A, KDM5C and KDM6B were shown to be

associated with progression-free survival (45, 47–49).

In our analysis, twelve histone demethylases showed gene upregulation

in prostate cancers, of which six (KDM1A, KDM4B, KDM5B, KDM5C,

KDM7A, and PHF8) were in line with previous reports. Other six genes,

including upregulated JARID2, JMJD4, and RIOX2, as well as

downregulated HIF1AN, HR, and UTY were not reported in prostate

cancers so far. COX regression analysis with multiple variates, including

clinicopathological factors, revealed that only RIOX2 upregulation was

significantly correlated with disease-specific survival in prostate cancer

patients. ROC analysis indicated that RIOX2 upregulation is a strong

prognostic predictor of ten-year disease-specific survival (AUC = 0.971).

These results suggest that RIOX2 overexpression is a strong and

independent prognostic factor for prostate cancer patients.

RIOX2 gene was initially discovered as a c-MYC downstream gene.

Our analysis also confirmed this notion with convincing data that

RIOX2 expression was tightly correlated with MYC family genes with a

Spearman’s r higher than 0.4, including MYCBP2 (r = 0.552), MYCBP

(r = 0.537), and c-MYC (r = 0.441). However, only c-MYC gene

expression was significantly increased in prostate cancer tissues. These

data indicated that c-Myc might be the significant factor in RIOX2

upregulation in prostate cancer. Further analysis discovered that

RIOX2 expression was correlated with its promoter hypomethylation

in prostate cancers, indicating an epigenetic mechanism involved in

RIOX2 upregulation. In addition, RIOX2 expression was found to

strongly correlate with ZNF143, which was previously shown to

enhance RIOX2 gene expression in liver cancer cells (28). However,

ZNF143 expression was not significantly altered in prostate cancer

tissues, indicating it is unlikely a causative factor of RIOX2 upregulation

in prostate cancer.
Conclusion

We conducted a comprehensive transcriptomic analysis of 35

histone demethylases in prostate cancer and identified RIOX2 as a

potent prognostic factor for disease-specific survival in prostate cancers.

Further investigation is needed to understand its causative role in

prostate cancer progression and its therapeutic value as a drug target.
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SUPPLEMENTARY FIGURE 1

RIOX2 expression data in normal and malignant prostate tissues were extracted
from the TCGA-PRAD dataset for two types of comparison, case-matched

pairwise (panels A & C) and group cohort (panels B & D). Wilcoxon rank sum test,
*p < 0.05; **p < 0.01; ***p < 0.001; ns, no significance.

SUPPLEMENTARY FIGURE 2

RIOX2 expression in normal and malignant prostate cell lines were extracted

from the Cancer Cell Line Encyclopedia datasets (51, 52) downloaded from the
cBioportal platform. Relative RIOX2 mRNA expression compared to the benign

PRECLH cell line was shown after normalized with ACTB expression level.

SUPPLEMENTARY TABLE 1

COX aggression analysis of twelve Jumanji domain-containing protein genes
with disease-specific survival outcomes.
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