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Introduction: Hepatocellular carcinoma (HCC) is one of the most invasive

cancers with a low 5-year survival rate. Pyroptosis, a specialized form of cell

death, has shown its association with cancer progression. However, its role in the

prognosis of HCC has not been fully understood.

Methods: In our study, clinical information andmRNA expression for 1076 patients

with HCC were obtained from the five public cohorts. Pyroptotic clusters were

generated by unsupervised clustering based on 40 pyroptosis-related genes

(PRGs) in the TCGA and ICGC cohort. A pyroptosis-related signature was

constructed using least absolute shrinkage and selection operator (LASSO)

regression according to differentially expressed genes (DEGs) of pyroptotic

clusters. The signature was then tested in the validation cohorts (GES10142 and

GSE14520) and subsequently validated in the CPTAC cohort (n=159) at bothmRNA

and protein levels. Response to sorafenib was explored in GSE109211.

Results: Three clusters were identified based on the 40 PRGs in the TCGA

cohort. A total of 24 genes were selected based on DEGs of the above three

pyroptotic clusters to construct the pyroptotic risk score. Patients with the high-

risk score showed shorter overall survival (OS) compared to those with the low-

risk score in the training set (P<0.001; HR, 3.06; 95% CI, 2.22-4.24) and the test

set (P=0.008; HR, 1.61; 95% CI, 1.13-2.28). The predictive ability of the risk score

was further confirmed in the CPTAC cohort at both mRNAs (P<0.001; HR, 2.99;

95% CI, 1.67-5.36) and protein levels (P<0.001; HR, 2.97; 95% CI 1.66-5.31). The

expression of the model genes was correlated with immune cell infiltration,

angiogenesis-related genes, and sensitivity to antiangiogenic therapy (P<0.05).
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Discussion: In conclusion, we established a prognostic signature of 24 genes

based on pyroptosis clusters for HCC patients, providing insight into the risk

stratification of HCC.
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Introduction

Worldwide, primary liver cancer is the sixth most prevalent

malignancy and the third leading cause of cancer death, with

approximately 905,677 new cases and 830,180 deaths annually (1).

Hepatocellular carcinoma (HCC) is the most common type of all

primary liver cancer, accounting for 75%–85% of cases (2). At present,

surgical resection is still the most effective treatment for HCC when

diagnosed at an early stage, however, 70% of patients with HCC suffer

recurrence or metastasis within 5 years after surgery (3). Despite

significant advances in comprehensive HCC treatment, such as

surgery, chemotherapy, radiotherapy, targeted therapy, and

immunotherapy, the prognosis of patients with HCC remains poor,

and the 5 years survival rate of HCC is only 5%-30% (4, 5). The poor

prognosis of HCCmay be due to its extreme heterogeneity and limited

molecular treatment targets (6). There is an urgent need to develop

novel prognostic signatures and therapeutic targets to predict survival

and to outline individualized treatment plans for HCC patients.

Pyroptosis is a kind of programmed cell death (PCD) mediated

by the Gasdermin family (GSDMs) including GSDMA, GSDMB,

GSDMC, GSDMD, GSDME, and DFNB59 (7). Upon cleavage by

activated caspase-1/4/5/11 or granzyme proteases, the N-terminal of

GSDMs oligomerizes in membrane form pores and results in cell

membrane rupture (8). Pyroptosis was first discovered to play a

crucial part in fighting against infection (9). Subsequently, emerging

evidence revealed that inflammasome-mediated pyroptosis was

linked to tumor development and immunity (10). Pyroptotic cells

release a large number of immunogenic cellular contents including

damage-associated molecular patterns (DAMPs) and inflammatory

cytokines such as interleukin-1b (IL-1b) and IL-18 and trigger

inflammation, which may remodel the tumor immune

microenvironment (TME) (11). Accumulated evidence indicated

that pyroptosis may play a dual role in the pathogenesis of tumors

and correlated with proliferation, migration, cell cycle, and drug

resistance in multiple types of cancers (12). On one hand, the

multiple inflammatory factors released during pyroptosis are

closely related to tumorigenesis as well as chemotherapeutic

resistance. On the other hand, as a type of cell death, pyroptosis

can inhibit the occurrence and development of tumors and thereby

serve as a potential target in tumor therapy (13). Increasing evidence

has confirmed the important role of pyroptosis in multiple tumors

including HCC (9). GSDME may function as a tumor suppressor

gene in HCC as its expression is significantly lower in HCC cells and

upregulating GSDME expression inhibited cell proliferation. In HCC,

numerous studies have also shown the functions of pyroptosis and
02
the prognostic value of pyroptosis-related genes (PRGs) in HCC

progression (12–16). Hence, PRGs may become the potential

biomarkers to predict the prognosis of HCC and provide guidance

for treatment.

Considering that pyroptosis participates in the tumor

pathogenesis and its role in the prognosis of HCC has not been

fully understood, we performed a systemic analysis of PRGs in HCC

and constructed a 24 PRG-related risk model to predict the prognosis

of HCC based on differentially expressed genes (DEGs) of three

pyroptotic clusters in the TCGA and ICGC training cohorts. The

signature performed well in predicting HCC prognosis in the GEO

validation datasets and the CPTAC cohort. And we also compared

the molecular mechanisms in immunity and angiogenesis between

the high- and low-risk groups. The predictive ability of the risk score

was further confirmed at the protein level in CPTAC. These findings

may provide novel insights into the prognosis and treatment of HCC.
Patients and methods

Data acquisition

Pyroptosis-related genes (PRGs) were obtained from msigdb

(https://www.gsea-msigdb.org/) (Supplementary Table 1). The

clinical and mRNA expression data in the training cohort are

downloaded from The Cancer Genome Atlas (TCGA) and

International Cancer Genome Consortium (ICGC) (https://

xenabrowser.net/datapages/; https://dcc.icgc.org/), respectively. The

validation cohorts including GSE10142 and GSE14520 datasets were

downloaded from https://www.ncbi.nlm.nih.gov/geo/. Batch effects

were removed with the R package (sva), and batch-removed results

were shown in Supplementary Figures 1A, B. The CPTAC cohort was

download from https://www.biosino.org/node/project/detail/

OEP000321, and transcriptome and proteome were used in this

study and the clinical information of patients is presented in

Supplementary Table 2. The treatment cohort GSE109211 for

sorafenib was also downloaded from the GEO database.
Generation of PRGs-related risk model

Unsupervised clustering analysis based on 40 PRGs was done in

the R package ConsensusClusterPlus (17). Differentially expressed

genes (DEGs) analysis was identified with fold change>2 and

p<0.05 using R package edgeR (18).
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DEGs significantly associated with survival were analyzed using

Cox regression of the R packages survminer and survival (19, 20).

The R package glmnet was used to construct the risk model (21).

In the LASSO regression, a 5-cross-validation model with

binomial deviance minimization criteria was implemented in the

training set. The lambda with min was used for feature selection.

Based on the selected gene markers, the predicted probability of

each patient could be calculated using the following formula:

Predicted probability  ¼on
i (Expi*Coefi)

where n is the number of genes, Expi is the value of each gene,

and Coefi is the estimated regression coefficient of the

selected genes.

The median value was used to divide patients into the high-risk

and low-risk groups. The 1-, 2- and 3-year ROC curves and the

ROC curves compared to predict the survival status with the R

package survivalROC (22).
Validation of the PRGs-related risk model

The prognostic performance of the PRG-related risk model was

further validated in the external validation cohort (GSE10142 and

GSE14520 datasets) and the CPTAC dataset. Patients are stratified

into low- and high-risk groups using the median value as the cutoff.

The independent prognostic value of the PRGs-related risk score

was assessed using univariable and multivariable analysis,

respectively. The clinical information of GSE10142 other than

overall survival (OS) could not be downloaded from the public

database, so the independence test of the risk score was not

performed in GSE10142. The prediction efficiency of the

nomogram was evaluated by calibration curves.
Statistical analysis

Continuous variables were compared by Mann-Whitney U test or

Kruskal-Wallis H-test and categorical variables were compared by Chi-

Squared test or Fisher exact test. Principal Components Analysis

(PCA) was performed by R package FactoMineR. Survival was

estimated by Kaplan-Meier curves, with the p determined by a log-

rank test. CIBERSORT (https://cibersort.stanford.edu/) was used to

estimate the infiltration of immune cells based on mRNA data. KEGG

(Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of

genes with DEGs and Gene Set Enrichment Analysis (GSEA) were

performed using R package clusterProfiler. The non-supervised

clustering of mRNA data was performed by the k-means method (R

package, ConsensusClusterPlus). The area under curve (AUC) and

95% confidence interval (CI) were generated to evaluate the model

performance. Immunohistochemical data of the proteins were

downloaded from the Human Protein Atlas (HPA) database

(https://www.proteinatlas.org/). Drug susceptibility prediction was

performed by R package oncoPredict. The correlation between risk

score and immune cells was evaluated using person correlation. P<0.05

was considered to be statistically significant and all p were two-sided.

All the statistical tests were performed using R software, version 4.0.1

(R Foundation for Statistical Computing Vienna, Austria).
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Results

The characteristics of pyroptosis-
related genes

The 40 core genes that regulate or mediate pyroptosis signaling

have been identified previously (23) and were available in the

Molecular Signatures Database (MSigDB) (Supplemental Table 1).

Gene mutations of pyroptosis-related genes (PRGs) occurred in the

majority of hepatocellular carcinoma samples (54.4%) (Figure 1A),

implying a potential role of PRGs in tumorigenesis and development

of HCC. The TP53 gene was the most commonly mutated (30%),

whereas mutations in other genes (DHX9, GSDMC, etc.) were less

frequent. Frameshift deletions were the most common type of

mutation, followed by frameshift insertions and missense

mutations. Moreover, most PRGs had CNV gain or loss

(Figure 1B). GSDMC was the most amplified gene with a frequency

of 14.8% in HCC patients, in contrast,HMGB1 had the highest CNV

loss with a frequency of 11.6%. In addition, the mRNA expression of

77.5% (31/40) PRGs was significantly different between tumor and

normal tissues (Figure 1C). Most of PRGs displayed higher

expression levels in tumor samples compared with normal controls

except for AIM2, IL1B, and NLRC4, of which the mRNA expression

was decreased in tumor samples. Meanwhile, PCA based on the

mRNA expression of PRGs could well differentiate HCC samples

from normal samples (Figure 1D), suggesting the abnormal

expression of PRGs in hepatocellular carcinoma.
Identification of pyroptotic clusters

To investigate the role of pyroptosis signaling in HCC, we

further explored the role of PRGs in the prognosis of patients with

HCC depending on different transcriptomic patterns. After

eliminating the batch effect, two datasets derived from TCGA and

ICGC were grouped as the training cohort. The patient

characteristics were depicted in Supplementary Table 2.

Unsupervised hierarchical clustering of transcriptome profiles of

40 PRGs identified three clusters (Figure 2A) in the training cohort.

As delineated in the heatmap (Figure 2B), ranging from the cluster 1

to 3, the mRNA expression of PRGs was gradually increased. The

principal components analysis also depicted the difference between

the three clusters (Figure 2C). Gene Set Enrichment Analysis

(GSEA) analysis on the signatures of cancer hallmarks confirmed

that adipogenesis and oxidative phosphorylation were enriched in

the cluster 1 but TNF-a signaling via NF-KB and WNT beta-

catenin signaling were enriched in the cluster 2; conversely, the

cluster 3 was characterized by genes in interferon-alpha response

signaling (Figure 2D). Survival analysis found significant survival

differences among the three clusters (log-rank p for trend = 0.004

Figure 2E). The cluster 2 exhibited shorter OS compared to the

cluster 1 (p=0.003; HR, 1.74; 95% CI 1.26-2.39, Figure 2E). A two-

by-two comparison of differentially expressed gene (DEG) analysis

was performed and a total of 318 overlapped genes were found

among the three pairs (Figure 2F). KEGG functional enrichment

analysis was performed on the 318 overlapped DEGs, and
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significant pathways were partially presented in Figure 2G, such as

the HIF-1 signaling pathway, natural killer cell-mediated

cytotoxicity, and PPAR signaling pathway. Altogether, these

results suggested that PRGs might play an important role in the

prognosis of HCC.
Construction and verification of the
prognostic signature

To specifically identify the prognosis-related core genes, a

prognostic risk model for HCC was constructed based on DEGs

using the LASSO regression method. We first selected 211

candidate genes which both existed in the training (TCGA and

ICGC) and the validation cohorts (GSE14520 and GSE10143,

Figure 3A). Among these genes, totally 68 genes were significant

associated with OS by Cox proportional regression, and then a 24-

gene risk model was constructed by LASSO regression (Figures 3B,

C). Risk score = CYP2A6*(0.054) + PPT1*(0.4319) + G6PD*

(0.6332) + CD97*(1.3631) + LGALS9*(-0.5509) + S100A9*

(0.1446) + SEC14L2*(-0.2186) + NFE2L3*(0.0596) + FABP3*

(-0.1861) + CD2*(-0.7902) + BATF*(0.7061) + PON1*(-0.336) +

FMO3*(-0.3352) + CSF1*(0.2407) + CYP4A11*(0.1653) + ATP2A3*

(-5.13) +MUC1*(-0.0063) + LAIR1*(-1.5441) + ATP1B3*(1.2079) +

AZGP1*(0.0064) + NCF2*(1.0057) + CYP2C9*(-0.1876) +

TMSB10*(-0.0666) + TACC3*(1.2139). Patients were divided into

the high- and low-risk groups according to the median value of risk
Frontiers in Oncology 04
score. The transcriptomic profile of the selected 24 genes in the

training set is illustrated in Figure 3D. Patients in the high-risk

group had shorter OS compared with those in the low-risk group

(HR=3.06, 95% CI 2.22-4.24, p<0.001, Figure 3E), and AUC value of

2-year survival was 0.77 in the training cohort (Figure 3F).

We further tested whether the risk score was an independent

prognostic factor of HCC. In the univariable analysis, besides risk

score, several other variables such as TNM stage, HBV or HCV

infection, and TMB were also associated with the OS with HRs (95%

CI) of 2.57 (1.90-3.47), 2.49 (1.82-3.40), 1.82 (1.36-2.44) and 1.91

(1.39-2.62), respectively (Supplementary Tables 3, 4). In the

multivariable analysis, the association between the risk score and

OS remained significant (HR=2.82, 95% CI 1.89-4.20, p<0.001,

Supplementary Tables 3, 4). These results indicated that the risk

score was associated with a better prognosis independent of TNM

stage, HBV or HCV infection, and TMB.

To validate the performance of the 24-gene risk model, public

datasets in GEO (GSE14520 and GSE10143) were collected together

as the validation cohort after removing batch effect. The patients

were also stratified into the high-risk and low-risk groups using the

median value in the validation set. The transcriptomic profile of the

selected 24 genes in the validation set is illustrated in Figure 3G.

Consistently, patients with the high-risk score had shorter OS

(HR=1.61, 95% CI 1.13-2.28, p=0.008, Figure 3H) in the

validation set, and the AUC value of 2-year survival was 0.65

(Figure 3I). In the multivariable analysis, the risk score was also

associated with OS (HR=1.70, 95% CI 1.08-2.69, p<0.001,
B

C D

A

FIGURE 1

Genetic and transcriptional alterations of PRGs in HCC. (A) Mutation frequencies of 40 PRGs in the TCGA-LIHC dataset; (B) Frequencies of CNV gain
(red dots), loss (blue dots), in HCC compared to normal tissue among PRGs; (C) Expression distributions of 40 PRGs between normal and HCC
tissues, *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001; "ns" represents "not significant"; (D) Principal component analysis (PCA) analysis of RRGs.
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Supplementary Table 5), which indicated to be an independent

factor of prognosis in HCC.

Next, a nomogram was constructed to predict the 1-, 2-, and 3-

year OS rates in HCC patients integrating the risk score, tumor

stage, HBV or HCV and TMB (Figure 4A). Calibration plots

indicated that the nomogram had a good predictive power for 1-

year and 3-year survival rates (Figures 4B, C). Compared to 1-year

AUC value of 0.79 of pyroptosis risk score, the AUC value of the

nomogram was up to 0.82 (Figure 4D). The nomogram further

improved the performance and facilitated the clinical practice of the

risk model.
Validation of the prognostic signature in
the CPTAC set at mRNA and protein levels

We further validated the prognostic value of the risk score in the

CPTAC dataset at mRNA and protein levels, which consisted of the
Frontiers in Oncology 05
transcriptomic and proteomic data of 159 patients with HCC and

corresponding clinical information. Consistent results were

observed at the mRNA level that patients with the high-risk score

had worse OS compared to those with the low-risk score (HR=2.99,

95% CI 1.67-5.35, p<0.001, Figure 5A) and AUC of 2-year survival

was 0.69 (Figure 5B). Additionally, the robust performance was also

observed in the multivariable analysis (HR=1.59, 95% CI 1.02-2.49,

p=0.042, Supplementary Table 6).

To explore whether the risk models were also applicable at the

protein level, the correlations between mRNA expression and

protein expression of these candidate markers were examined.

Finally, protein levels of 16 genes were significantly correlated

with mRNA expression (p<0.05, Figure 5C). Using the same

regression coefficients as the mRNA model, these proteins were

also calculated for risk scores in the CPTAC cohort. Patients with

the high-risk score tended to have a relatively shorter OS (HR=1.57,

95% CI 0.92-2.68, p=0.094) (Figure 5D). We further selected the top

five most related proteins, characterized as Pearson correlation
B C

D E F

G

A

FIGURE 2

PRG clusters and biological characteristics of two distinct subtypes of samples divided by consistent clustering. (A) Consensus matrix heatmap
defining three clusters (k=3) and their correlation area; (B) Heatmap of the mRNA expression of PRGs in the three clusters; (C) Principal components
analysis of the three clusters; (D) GSVA of cancer hallmarks between three distinct clusters; (E) KM survival curve of the three clusters; (F) Venn
diagram showing overlapping genes of the significant expressed genes between the three pyroptotic clusters; (G) KEGG enrichment analyses of
DEGs among the three pyroptosis clusters.
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coefficient (R) above 0.8, including CYP2A6, CYP2C9, G6PD,

FMO3, and SEC14L2. Unsurprisingly, the high-risk patients in

the 5-proteins model also had worse OS compared with the low-

risk group (HR=2.97, 95% CI 1.66-5.31, p<0.001, Figure 5E) and the

model had a better predictive ability with a 2-year AUC of

0.68 (Figure 5F).
The expression of the five proteins in HCC

To further confirm the importance of CYP2A6, CYP2C9,

G6PD, FMO3, and SEC14L2, the Human Protein Atlas (HPA)

database was used to compare their protein expression in normal

and HCC tissues. As demonstrated in Figure 6A, the expression of

CYP2A6 and CYP2C9 were relatively lower in tumor tissues, while

the expression of G6PD in HCC tumors was higher in tumor tissues

than in normal tissues. In the proteomic data of the CPTAC cohort,

G6PD was also significantly highly expressed in HCC tumor tissues

compared to normal tissues, while the remaining four proteins were
Frontiers in Oncology 06
significantly less expressed, consistent with the results of

immunohistochemistry (Figure 6B). KM survival curves showed

that HCC patients with higher CYP2A6, CYP2C9, FMO3, and

SEC14L2 protein expressions had longer OS and those of higher

G6PD had shorter OS in the CPTAC cohort (Figures 6C–G).
Comparison of immunity and angiogenesis
between the high and low-risk groups

To investigate the differences in physiological function between

the high- and low-risk groups of patients, we compared the

molecular mechanisms in immunity and angiogenesis. As shown

in Figure 7A, blood vessel morphogenesis, sprouting angiogenesis

and nine immunity-related pathways were significantly enriched in

the patients with the low-risk score via GSEA. We next investigated

the correlation between the expression of the 24 genes in the risk

model and immune cell infiltration abundances and angiogenesis-

related genes. The infiltration abundance of CD8-positive T cells
B C

D E F

G H I

A

FIGURE 3

Construction and validation of the pyroptosis-related signature. (A) Venn diagram showing overlapping genes of DEGs and the genes detectable in
GEO; (B) LASSO coefficient profiles of the 68 OS-associated genes; (C) Log Lambda value for LASSO regression; (D) Expression distributions of risk
model genes between high and low risk patients in training set; (E) Kaplan-Meier survival curves of high and low risk patients in training set; (F) ROC
curve of the risk model in training set; (G) Expression distributions of risk model genes between high and low risk patients in validation set; (H)
Kaplan-Meier survival curves of high and low risk patients in validation set; (I) ROC curve of the risk model in validation set.
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A B

DC

FIGURE 4

Construction and validation of a nomogram. (A) Nomogram for predicting the 1-, 2-, and 3-year OS of HCC patients in the TCGA cohort.
(B) Calibration plots of the nomogram to predict OS at 1-year; (C) Calibration plots of the nomogram to predict OS at 3-year; (D) ROC curve of the
nomogram and the risk model in the TCGA cohort at 1 year.
B C

D E F

A

FIGURE 5

Validation of the pyroptosis-related signature in the cohort CPTAC. (A) Kaplan-Meier survival curves of high and low risk patients in the CPTAC
cohort; (B) ROC curve in the CPTAC cohort; (C) the significant correlation of 16 signature genes (p<0.05) between transcriptome and proteome;
(D) Kaplan-Meier survival curves of high and low risk patients based on the 16 protein levels in proteome; (E) Kaplan-Meier survival curves of high
and low risk patients based on the 5 protein levels (r2>0.8) in the proteome; (F) ROC curve of the risk scores of the 5 proteins in the CPTAC cohort.
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was found to be significantly positively correlated with the

expression of ATP2A3, CD2, LGALS9, and NFE2L3 and

negatively correlated with the expression of FABP3 (p<0.05;

Figure 7B). Activated natural killing cell infiltration was also

correlated significantly positively with CD2 and TMSB10

expression and negatively with SEC14L2 and G6PD (p<0.05;

Figure 7B). Twenty-four angiogenesis-related genes were also

applied in correlation analysis with genes in the risk model

(Figure 7C). In terms of gene expression, HIF1A and MMP9 were

significantly correlated with all genes in the risk model (p<0.05;

Figure 7C). In terms of VEGFA, one of the core targets of anti-

angiogenic drugs was also found to be significantly positively

correlated with ATP2A3, G6PD, TACC3, and MUC1 and

negatively correlated with PPT1, S100A9, TMSB10, FABP3, and

BATF (p<0.05; Figure 7C).
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At last, we applied the risk model to the GSE109211 cohort

containing 67 cases with advanced HCC treated with sorafenib. In

the low-risk group, the proportion who responded to sorafenib was

45.5%, higher than that (17.6%) in the high-risk group (p=0.02,

Figure 7D). To compensate for the absence of other anti-angiogenic

drugs in the treatment cohort, drug sensitivities were predicted by

computation algorithm. The predicted IC50 of forentinib,

Lenvatinib, linifanib, and sunitinib were all significantly lower in

the low-risk group (Figure 7E).
Discussion

HCC is the most common type of all primary liver cancer with a

poor prognosis. Gene risk models based on specific cell activities,
B C D

E F G

A

FIGURE 6

The expression level of the 5 proteins in HCC. (A) The immunohistochemistry (IHC) results from the Human Protein Atlas (HPA) was used to detect
the protein level of three proteins in normal and tumor tissues; (B) The expression of the 5 proteins in proteomic level in normal and tumor tissues
in the CPTAC cohort, ****P<0.0001.; (C–G) Kaplan-Meier survival curves of high and low expressed CYP2A6 (C); CYP2C9 (D); G6PD (E); FMO3 (F);
SEC14 (G) in the CPTAC cohort.
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such as pyroptosis and immunization activities, have shown

advantages in predicting the prognosis of HCC (12, 14–16, 24). A

robust prediction model may help improve the outcomes of HCC

patients. In our study, we first comprehensively analyzed the 40

PRGs in HCC and three different pyroptotic clusters were identified

in the training set. Then the 318 DEGs of different pyroptotic

clusters were used to establish a pyroptosis-related gene risk model

to predict the prognosis of HCC in the training set. The 24-gene risk

model was further tested in the validation set and a similar tendency

was also seen in protein levels in the CPTAC cohort. Moreover, the

low-risk group was associated with angiogenesis signaling and more

sensitivity to anti-angiogenic drugs. In the study, we have included

all the available public datasets with both mRNA expression and

survival data, consisting of 1,076 patients from 5 cohorts. To our

knowledge, this is the largest cohorts used for establishing a

pyroptosis-related gene signature for prognosis prediction in

HCC. To be noted, we also included the CPTAC-Liver dataset

with both mRNA and protein data to validate our findings in both

mRNA and protein levels.
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Pyroptosis is a novel form of PCD, characterized by the

formation of bubble-like morphology and releasing a great deal of

inflammatory factors. Increasing evidence has implicated

pyroptosis in the occurrence and development of tumors

including HCC (13). The expression of GSDME in HCC cells was

significantly lower than that in normal cells and upregulating

DFNA5/GSDME expression inhibited cell proliferation, indicating

that GSDME may be an anti-oncogene (13, 25). Besides, the

expression of caspase-1, IL-1b, and IL-18 was significantly lower

in HCC tissues than those in adjacent normal tissues (26, 27).

Among the pyroptosis-related inflammasomes, the NLRP3

inflammasome has been studied in depth, and its influence in

HCC pathogenesis has been extensively documented during the

past several years. It is well established that the NLRP3

inflammasome is released by pyroptotic hepatocytes and

incorporated by adjoining cells, promoting inflammation and

extracellular matrix deposition (28). The NLRP3 inflammasome

was reported to be downregulated in HCC tissue compared with

normal liver and negatively correlated with pathological grades and
B C

D E

A

FIGURE 7

Differences in immunity and angiogenesis between high and low risk groups. (A) Two angiogenesis-related pathways and nine immune-related
pathways were significantly enriched in the low-risk group by GSEA. NES means normalized enrichment score; (B) The heatmap of the correlation
between the expression of the twenty-four genes constituting the risk model and the degree of immune infiltration; (C) The heatmap of the
correlation between the expression of the twenty-four genes constituting the risk model and angiogenesis-related genes; (D) Comparison of
response rates to sorafenib in high- and low-risk groups in GSE109211; (E) Drug sensitivity prediction of anti-angiogenic drugs except for sorafenib
by oncoPredict based on the CTRP (Cancer Therapeutics Response Portal) database, *P<0.05; **P<0.01; ***P<0.001; ****P<0.0001.
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clinical stage (29). Ding Y. et al. recently demonstrated that NLRP3

expression was associated with the degree of B cell, CD4+ T cell,

CD8+ T cell, neutrophils, and dendritic cell invasion (30). Besides,

another study elaborated the molecular mechanism by which the

NLRP3 inflammasome initiated cancer cell death in HCC. 17b-
estradiol (E2)-induced activation of the NLRP3 inflammasome

serves as a suppressor in HCC progression, as it triggers caspase

1-dependent pyroptotic cell death and inhibits protective autophagy

via the E2/ERb/AMPK/mTOR pathway (31). The block of AIM2—

another inflammasome—was reported to induce mTOR-S6K1

pathway activation and thus promoted HCC progression (32).

Another study revealed that IRF1 increased CD8+ T cells, NK and

NKT cells migration, and activated IFN-g secretion in NK and NKT

cells to induce tumor apoptosis through the CXCL10/CXCR3

paracrine axis in HCC (33). In addition, it has been reported that

some antitumor drugs or molecules can trigger pyroptosis in HCC

(34). Here in this research, we explored the genetic variations and

expression of PRGs based on the TCGA cohort and global

alterations in PRGs at the transcriptional and genetic levels in

HCC. The majority of PRGs had CNV gain or loss, and most of

them were upregulated in HCC patients at the transcriptional level.

Moreover, PCA analysis based on PRGs successfully differentiates

HCC samples from normal samples. These results indicated that

PRGs may be involved in the prognostic prediction in HCC.

Three pyroptotic clusters were defined according to the

expression of PRGs from 595 cases of HCC in the training

cohort. The survival differs among different clusters, which

indicates that PRGs might serve as a predictor for evaluating the

clinical outcome of HCC. Then 318 DEGs among the three clusters

were identified. After univariable Cox regression and LASSO

regression analysis, a 24-gene prognostic model was constructed

from DEGs. Patients with high expressions of LGALS9, SEC14L2,

FABP3, CD2, PON1, FMO3, ATP2A3, MUC1, LAIR1, CYP2C9, and

MSB10 had a longer OS, while patients with high expression of

CYP2A6, PPT1, G6PD, CD97, S100A9, NFE2L3, BATF, CSF1,

CYP4A11, ATP1B3, AZGP1, NCF2, and TACC3 had a poorer

prognosis. In this signature, FABP3, PON1, LAIR-1, CYP2A6,

CYP2C9, BATF, and AZGP1, et al. have been reported to be

associated with survival in HCC (35–39). Among the above

genes, FABP3 (fatty acid-binding protein) has been reported to be

related involved in tumorigenesis and infiltrating immune cells,

which can be a prognostic biomarker in non-small cell lung cancer,

breast cancer, and esophageal cancer (40). Paraoxonase 1 (PON1), a

calcium-dependent hydrolase protein synthesized mainly in the

liver by hepatocytes, is a serum biomarker for the diagnosis of

microvascular invasion (35). Low expression of PON1 was

associated with poor survival in HCC patients (36). Leukocyte-

associated immunoglobulin-like receptor-1 (LAIR-1) is an immune

inhibitory receptor, high levels of LAIR-1 expression are associated

with poor cancer differentiation and overexpression of LAIR-1 was

significantly associated with worse overall survival in HCC (39).

Decreased expression of BATF2 and AZGP1 was reported to be
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associated with a poor prognosis in HCC (37, 38). The risk model

demonstrates high predictive accuracy and sensitivity, and its

prognostic value was confirmed in the validation group. We then

established a quantitative nomogram by integrating the risk score,

tumor stage, HBV or HCV and TMB, which further improved the

performance and facilitated the clinical use of the risk model.

Altogether, our study further confirmed the prognostic value of

these genes in HCC patients.

The predictive ability of the pyroptosis-related gene signature was

further validated in the CPTAC cohort at both mRNA and protein

levels. Interestingly, the risk score consisting of 5 proteins whose

correlation with mRNA was above 0.8 also had a good predictive

ability with a 2-year AUC of 0.68. The expression of the 5 proteins

was associated with survival in HCC patients respectively. HCC

patients with higher CYP2A6, CYP2C9, FMO3, and SEC14L2

protein expressions had longer OS and those of higher G6PD had

shorter OS in the CPTAC cohort. To further confirm the importance

of CYP2A6, CYP2C9, and G6PD in HCC, we used the HPA database

to evaluate their protein expression levels in normal and HCC tissues.

The expression of CYP2A6 and CYP2C9 was relatively lower in

tumors tissues, but the G6PD expression level was higher in HCC

tissues, which was consistent with the proteomic level in CPTAC.

Cytochrome P450s (CYPs), a large group of enzymes that play crucial

roles in the metabolism of endogenous and exogenous molecules,

have been suggested that the expression of CYPs is very important for

the management of cancer since these functionally associated

enzymes might be involved in the development of HCC (41).

CYP2A6 is a CYP450 gene and has been reported its

downregulation in tumor tissues is linked to worse overall survival

and recurrence-free survival from hepatocellular carcinoma (41).

CYP2C9 was also reported downregulated in HCC tissue in part

due to the de-differentiation of cancer cells and favorable factors in

prognosis signature in HCC (42, 43). A previous study showed that

G6PD (glucose-6-phosphate dehydrogenase) was highly expressed in

HCC and was associated with poor prognosis (44). These results

indicated that CYP2A6 and CYP2C9 might be protective factors,

while G6PD might be risk factors in HCC, which improved the

performance and facilitated the use of the risk model.

Moreover, GSEA found that blood vessel morphogenesis,

sprouting angiogenesis, and immunity-related pathways were

significantly enriched in patients with the low-risk score. The

expression of the model genes was correlated with immune cell

infiltration and the mRNA expression of angiogenesis-related genes.

HCC is characterized by its aggressiveness and angiogenic capability;

thus, the angiogenic factor VEGF is considered to be a target for HCC

therapy (45). The multi‐kinase inhibitor sorafenib has been the global

standard of care for advanced HCC for a decade with its anti‐

angiogenic and anti-proliferative effects (46). Meanwhile, patients

in the low-risk group showed a better response to sorafenib in the

GSE109211 cohort. Interestingly, sorafenib has been reported to

induce pyroptosis in macrophages and unleash the NK cell

response in HCC (47). In addition, forentinib, Lenvatinib, linifanib,
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and sunitinib were predicted to be more sensitive in patients with the

low-risk scoresrisk score, suggesting that PRGs are potentially

associated with response to antiangiogenic therapy.

However, this work had several limitations. First, this is a

retrospective study, in which the sample and transcriptomic data

were derived from different platforms, and it may induce potential

bias. However, the limitation of the retrospective setting can be

greatly minimized by the large sample size (the five cohorts

involving 1,076 patients). Moreover, the batch effect has been

minimized by bioinformatics. Second, prospective studies and wet

experiments underlying these pyroptosis-related genes and HCC

prognosis are needed to confirm the reliability of the signature.

Third, we used the HPA database (immunohistochemistry) to

evaluate the expression of CYP2A6, CYP2C9, G6PD, FMO3, and

SEC14L2 in normal and HCC tissues. However, future experiments

are needed to further validate the findings in the HPA database.

Forth, further experimental research including cell and molecular

biology is needed to investigate the mechanisms.

In conclusion, we constructed and validated a 24 pyroptosis-

related gene signature with robust utility for prognostication derived

from the TCGA, ICGC, and GEO databases through enrichment,

differential, and regression analyses. The signature was further

validated at both the mRNA and protein levels in the CPTAC

dataset and was connected with the response to antiangiogenic

therapy. These observations provide a new idea for the molecular

characterization of pyroptosis and the prognosis of HCC.
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