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Objective: Due to the small proportion of target pixels in computed tomography

(CT) images and the high similarity with the environment, convolutional neural

network-based semantic segmentation models are difficult to develop by using

deep learning. Extracting feature information often leads to under- or

oversegmentation of lesions in CT images. In this paper, an improved

convolutional neural network segmentation model known as RAD-UNet,

which is based on the U-Net encoder-decoder architecture, is proposed and

applied to lung nodular segmentation in CT images.

Method: The proposed RAD-UNet segmentation model includes several

improved components: the U-Net encoder is replaced by a ResNet residual

network module; an atrous spatial pyramid pooling module is added after the U-

Net encoder; and the U-Net decoder is improved by introducing a cross-fusion

feature module with channel and spatial attention.

Results: The segmentation model was applied to the LIDC dataset and a CT

dataset collected by the Affiliated Hospital of Anhui Medical University. The

experimental results show that compared with the existing SegNet [14] and U-

Net [15] methods, the proposed model demonstrates better lung lesion

segmentation performance. On the above two datasets, the mIoU reached

87.76% and 88.13%, and the F1-score reached 93.56% and 93.72%,

respectively. Conclusion: The experimental results show that the improved

RAD-UNet segmentation method achieves more accurate pixel-level

segmentation in CT images of lung tumours and identifies lung nodules better

than the SegNet [14] and U-Net [15] models. The problems of under- and

oversegmentation that occur during segmentation are solved, effectively

improving the image segmentation performance.

KEYWORDS

deep learning, lung lesions, CT imaging, semantic segmentation, the U-Net, feature
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1 Introduction

Lung cancer has the highest mortality rate among cancers (1),

and early diagnosis of lung cancer is very important for later

treatment. Computed tomography (CT) (2) is a common imaging

modality used to detect lung cancer and an important tool for early

lung cancer diagnosis (3).

Computer-aided diagnosis (CAD) (4) systems can be applied to

large numbers of CT images. Effective lesion information reduces

misdiagnoses and missed diagnoses caused by manual reading, and

CAD systems have become important tools in lung cancer diagnosis

and treatment. Doctors use CAD systems to accurately locate and

segment lung nodules and analyse the pathological characteristics of

lung nodule lesions (5, 6). Since the segmentation results in lung

nodule images directly affect pathological diagnoses, the accuracy of

lung lesion segmentation algorithms is very important.

Traditional segmentation algorithms such as threshold

segmentation (7), edge detection segmentation (8), and area

growth (9, 10) can be used only in simple scenarios. For the

segmentation of pulmonary lesions in medical images, due to the

blurring of the surrounding grey region and the lack of

differentiability with the background, traditional segmentation

methods encounter several problems, such as missed and false

edge detection.

The emergence of deep learning convolutional neural network

(CNN) technology has further developed image segmentation

methods and applied them in clinical practice. Image semantic

segmentation plays an important role in the field of computer

vision. The goal of image segmentation is to classify each pixel in an

image, divide the image according to the specific, unique nature of

different regions, and propose techniques and processes for

identifying the target. In recent years, CNN and deep learning

have been widely used in medical image analysis (11, 12), and FCN

(13), SegNet (14) and U-Net (15) have demonstrated that

convolutional neural networks can achieve good results not only

in end-to-end learning but also in pixel-to-pixel learning.

The U-Net (15) image segmentation network (16) is a

segmentation model with an encoder-decoder structure that has

been widely used in image segmentation. In the network structure

of U-Net (15), the left side includes an encoding structure, the right

side includes a decoding structure, and the whole network has a U-

shaped structure. U-Net’s encoder-decoder structure and jump

connections have become a classic design, and several CNNs have

been developed according to the core structure of U-Net (15). For

example, Res-Unet (17) replaces each U-Net (15) submodule with a

connection with a residual network module. The conditional

random field (CRF) has been proposed to optimize the

segmentation effect by using atrous convolutions to increase the

receptive field while maintaining the resolution of the feature map.

Atrous spatial pyramid pooling (ASPP) uses layers with different

sampling rates to analyse a given input image in parallel, thereby

capturing object features and image context information on a

multidimensional scale. DeepLabv2 combines deep neural
Frontiers in Oncology 02
networks and probabilistic graph models to improve the

localization of segmented target boundaries (18). Attention UNet

(19) introduces the attention mechanism to U-Net (15), which

combines the encoder features with the corresponding features in

the decoder before proceeding to an attention module. Lin et al.

proposed the feature pyramid network (FPN) (20) in 2017. The

FPN model combines high- and low-resolution features and

achieves an excellent image segmentation effect.

In 2022, Hong Huang et al. proposed domain-adaptive self-

supervised transfer learning for chest CT classification of benign

and malignant lung nodules and developed a data preprocessing

strategy called adaptive slice selection to eliminate redundant noise

in input samples with lung nodules (21). Ruoyu Wu et al. proposed

a self-supervised transfer learning framework driven by visual

attention (STLFVA) for benign and malignant recognition of

nodules on chest CT Then, they used the multiview aggregate

attention module to comprehensively recalibrate the multilayer

feature map from multiple attention angles, which can strengthen

the anti-interference ability of background information (22). Xu Shi

et al. proposed a gastric cancer lesion detection network. A

hierarchical feature aggregation structure is designed in the

decoder, which can effectively fuse deep and shallow features. The

attention feature fusion module is introduced to accurately locate

the lesion area, and the attention features of different scales are

fused to obtain rich lesion discrimination information (23).

In hepatoma cell nuclear segmentation, Shyam et al. (24)

designed a NucleiSegNet that includes a residual block, a

bottleneck block, and an attention module. Anirudh et al. (25)

proposed an encoder-decoder network combining the atrous spatial

pyramid pool and attention module for renal cell nuclei

segmentation. Massimo et al. (26) adopted a hybrid segmentation

strategy based on gland contour structure and deep learning in

prostate cancer detection. In breast cancer HI segmentation, David

et al. (27) proposed a deep multiploid network to extract spatial

features within classes and learn spatial relationships between

classes. Blanca et al. (28) designed an encoder-decoder network

that combines separable void convolution and conditional random

fields. Amit et al. (29) introduced a separable convolutional

pyramid pooling network and achieved good performance on

renal and breast HIs.
2 Problems and scenarios

Lung lesion image segmentation and typical image

segmentation have some important differences. Lung image lesion

segmentation targets tend to be small; thus, the proportion of lesion

pixels in the image is small, and small target features are difficult to

identify. Moreover, convolutional neural network training is more

difficult. Furthermore, the similarity between lung lesions and the

imaging environment is very high, and highly recognizable features

are difficult to extract. Traditional image segmentation networks are

less effective for segmenting small targets that cannot be clearly
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distinguished, such as lung image lesions with similar image

backgrounds. Based on the above lung image segmentation

difficulties, the U-Net (15) segmentation algorithm is improved.

First, the encoder in the U-Net (15) model was improved. The

U-Net (15) encoder was improved by introducing a series of ResNet

neural networks with residual structures, and multiple ResNet

models are used as encoders to verify the segmentation effect in

the experiment to improve the segmentation performance of the

proposed network.

Second, an atrous spatial pyramid pooling (ASPP) module is

added after the U-Net (15) encoding structure. Based on the

characteristics of lung lesions, which are smaller segmentation

targets, the ASPP module samples the given input in parallel with

different convolutional layers to capture the image context at

multiple scales. This multiscale information is integrated to

enhance the feature extraction ability of the proposed model.

Third, a dual feature cross-fusion (DFCF) module is proposed.

The introduction of the attention mechanism allows the

convolutional neural network to focus on more important

features in the image, thereby reducing the attention to

unimportant features and targeting the lesions in lung images.

Considering the high environmental similarity, the DFCF module

uses a channel attention mechanism to cross-integrate global and

local semantic features, thereby enhancing the ability of the model

to extract highly recognizable features. Moreover, the channel

attention mechanism in the DFCF module is improved to a

convolutional block attention module (CBAM) with both channel

and spatial attention, thus allowing the proposed model to consider

different locations in the same channel at the same time. The

importance of the different channel pixels enhances the
Frontiers in Oncology 03
performance of the proposed network model. Taking U-Net (15)

as the backbone network, an encoder-decoder network model

known as RAD-UNet with ResNet residual structure, ASPP and

DFCF modules is proposed.
3 Structure and improvement

3.1 U-Net network structure

In 2015, Ronneberger et al. proposed a U-Net (15) image

segmentation network with an encoder-decoder structure. The U-

Net (15) model has a U-shaped symmetrical structure, which is

shown in Figure 1.

The left side of the U-Net (15) convolutional neural network

includes the convolutional and pooling layers, and the right side

includes an upsampling layer. Each convolutional layer in U-Net

(15) obtains a feature map, which is transmitted to the

corresponding upsampling layer through jump connections, thus

ensuring that the feature map of each layer is involved in

subsequent calculations.

The U-Net (15) convolutional neural network effectively utilizes

the features in the low-level feature map to ensure that the final

feature map contains both high-level features and low-level features,

thereby realizing the fusion of the extracted features at different

scales and improving the accuracy of the U-Net (15) model.

The left half of U-Net (15) includes five downsampling

modules, which each consist of two 3×3 convolutional layers, the

ReLU activation function, and a 2×2 maximum pooling layer. The

right half of U-Net (15) includes four upsampling modules, which
FIGURE 1

Schematic diagram of the U-Net (15) network structure.
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each consist of an upsampling convolutional layer, feature stitching,

two 3×3 convolutional layers, and the ReLU activation function. U-

Net (15) fuses features through feature map stitching, thus

obtaining a network with richer features.
3.2 RAD-UNet network improvement
model

The proposed RAD-UNet model is based on an improved U-

Net (15) segmentation model, and the improved cavity convolution

enhances the lung lesions in the input images. The ability of the

network to extract smaller target features, the expansion of the

receptive field, and the fusion of the feature maps extracted by

different layers improve the lung image segmentation effect for

smaller lesions. Furthermore, the improved convolution in RAD-

UNet is enhanced by using a nonlocal attention mechanism, which

combines local and global important semantic features at different

levels, thereby improving the ability of the network to distinguish

between lung lesions and the image background. The proposed

model uses U-Net (15) as the backbone network, and the structure

of the proposed RAD-UNet is shown in Figure 2.

The RAD-UNet convolutional neural network model shown in

Figure 2 is based on an improved U-Net (15) model. First, the

encoder in U-Net (15) is improved by incorporating network

modules with residual structures. In addition, an ASPP module is
Frontiers in Oncology 04
added after the U-Net (15) encoder, which is shown in yellow in

Figure 2. As shown in the figure, DFCF modules are added after

each upsampling layer in the decoder.

When a lung lesion image is input into the network, after each

downsampling layer, the input enters the improved ASPP module,

which performs multiscale feature fusion. The output is obtained

after the upsampling layers, and four DFCF modules are introduced

in the upsampling process. The DFCF modules integrate important

features at different levels, improving RAD-UNet’s lung lesion

segmentation performance and the ability to distinguish between

the target and the background.

3.2.1 RAD-UNet encoder improvements
Due to the gradual increase in the number of layers,

convolutional neural network models often encounter gradient

explosion and network degradation (30). To solve these issues, He

et al. proposed the deep residual network (ResNet) model. ResNet is

a neural network model that includes several stacked residual

blocks, and the residual block structure is shown in Figure 3A.

As shown in Figure 3A, the input to the residual module is

output after passing through two 3×3 convolutions. The features

then pass through the ReLU activation function to obtain the final

output. ResNet has powerful characterization capabilities and

enhances performance in image segmentation applications. The

RAD-UNet network model proposed in this paper replaces the U-

Net (15) encoder with ResNet residual blocks, and the decoder uses
FIGURE 2

Structure diagram of the RAD-UNet convolutional neural network.
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the original U-Net (15) decoding structure. In the improved RAD-

UNet model, the increase in the number of neural network layers

allows stronger and richer features to be obtained, thereby

improving the segmentation effect.
3.2.2 RAD-UNet ASPP module
Convolutional neural networks often need to introduce more

convolutional layers and pooling layers, which decreases the

resolution of the feature map and increases the computational

complexity of the model. Atrous convolutions (31) can arbitrarily

enlarge the receptive field without introducing additional parameters;

thus, atrous convolutions do not reduce the resolution of the feature

map. Atrous convolutions use the dilated rate parameter to enlarge the

receptive field, thus allowing the convolutional layer to have a larger

receptive field without downsampling the same number of parameters

or performing the same number of computations. For example, for a

3×3 convolution, when the sampling rate is 1, the receptive field is 3×3;

however, when the sampling rate is 2, the receptive field is 7×7, and

when the sampling rate increases to 4, the receptive field increases to

15×15. The relationship between the sampling rate and the receptive

field is shown in Figure 3B.

In Figure 3B, the red dots represent the convolutional nuclei in the

hollow convolutions, and the blue grids represent the size of the

receptive field. The introduction of atrous convolutions increases

the receptive field, thereby allowing important multiscale information

to be obtained while preventing information loss.
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Chen et al. introduced the ASPP module into the DeepLab

neural network. The ASPP module has achieved good results in

extracting multiscale image features. The smaller the sampling rate

of the ASPP module, the better the module segments smaller

targets, and the larger the sampling rate, the better the module

segments larger targets.

In this paper, the ASPP module is added after the U-Net (15)

encoding structure, and the ASPP module improves the ability of

the model to identify small lung lesions in the input images.

Moreover, the ASPP module enhances the ability to extract the

characteristics of small targets and uses different convolution layers

to fuse multiscale information, thereby enhancing the feature

extraction ability of the model. The improved ASPP module is

shown in Figure 3C.

Figure 3C shows the improved ASPP module in RAD-UNet.

The sampling rate of the ASPP module is 2, 3, or 4. The improved

ASPP module consists of a 1×1 convolution, 3×3 convolutions with

sampling rates of 2, 3 or 4, and an average pooling layer.

Convolutions with sampling rates of 2, 3 and 4 increase the

ability of the neural network to segment smaller targets, such as

lung lesions, thus improving the model segmentation effect.

3.2.3 RAD-UNet DFCF module
The attention mechanism in deep learning allocates computing

power to more important information and filters secondary

information to retain important information, similar to the

attention mechanism in human vision. In deep learning
A B

C

FIGURE 3

(A) Residual network module. (B) Improved atrous space pyramid pooling module. (C) Schematic diagram of the relationship between the sampling
rate and the receptive field (31).
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convolutional neural networks, the attention mechanism considers

the distribution of network weights, and in computer vision tasks

such as semantic segmentation, the attention mechanism is focused

on learning the area of interest in the image.

Convolutional neural networks perform well in image analysis

and processing tasks (e.g., image segmentation and object detection

(32)). In a convolutional neural network, the hierarchical pattern in

the global receptive field is captured by inserting nonlinear

activation functions and downsampling convolutional layers. To

obtain better training results in convolutional neural networks

without introducing excessive computations, the convolutional

block attention module (CBAM) (33), which combines spatial

and channel attention in two dimensions, is introduced. The

CBAM is a lightweight attention module that was proposed by

Woo et al., and its structure is shown in Figure 4A.
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Figure 4A shows that the CBAM contains a channel attention

module (CAM) and a spatial attention module (SAM). The CBAM

uses both channel and spatial attention to calculate the attention

feature map, which is then multiplied by the input feature map to

improve the network focus and produce more reliable features. The

structures of the CAM and SAM are shown in Figures 4B,

C, respectively.

Figure 4B shows that input feature F is H × W × C, where H

denotes the height of the feature map, W denotes the width, and C

denotes the number of channels, global average pooling and global

maximum pooling are used to obtain two 1 × 1 × C feature maps,

and these two feature maps are fed into the two-layer fully

connected neural network with shared parameters. The two

feature maps obtained are added, and the weight coefficient

between 0 and 1 is obtained by the sigmoid function. Then, the
Channel
attention
module

Spatial 
attention
module

Input
features

Output
features

A

CBAM structure diagram

Input
features

Spatial attention 
module output

Global maximum
pooling

Global averaging
pooling

Input
features

Global maximum
pooling

B

Structural diagram of the CAM

C

Structural diagram of the SAM

Global averaging
pooling

Shared
weights

multilayer
perceptrons

Channel attention
module output

FIGURE 4

(A) CBAM structure diagram. (B) Structural diagram of the CAM. (C) Structural diagram of the SAM.
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weight coefficient is multiplied by the input feature map to obtain

the final output feature map, as shown in (3-1)

Mc(F) =  s (MLP(AvgPool(F)) +MLP(MaxPool(F)))

= s (W1(W0()) +W1(W0())) (3 1)

In the above equation, MLP (Multilayer Perceptron) represents

the shared MLP module in the channel attention module,where s
denotes the sigmoid function, W0∈RC/r×C, and W1∈RC×C/r. The

MLP weights, W0 andW1, are shared for both inputs, and the ReLU

activation function is followed by W0. .. and Fc
max denote average-

pooled features and max-pooled features respectively.

Figure 4C shows that the input feature F is H x W x C. The

maximum pooling and average pooling of one channel dimension

are carried out to obtain two H x W x 1 feature maps. These two

feature maps are spliced together in the channel dimension as H x

W x 2 after a convolutional layer. Reduced to 1 channel, the

convolution kernel uses 7 × 7, while keeping H and W

unchanged. The output feature map is H x W x 1, and then the

spatial weight coefficient is generated by the sigmoid function. The

final feature map is obtained by multiplying with the input feature

map, as shown in (3-2):

Ms(F) =  s (f 7x7(½AvgPool(F));  MaxPool(F)�))

= s (f 7x7(½Fs
avg ; F

s
max�)) (3� 2)

where s denotes the sigmoid function, and f7x7 represents a

convolution operation with a filter size of 7 × 7. Fs
avg ∈ R1x H x 

Wand ∈ Fs
maxR

1x H x WThe CBAM includes both channel and

spatial attention mechanisms and fewer parameters and obtains

important feature information through learning. The CBAM’s

channel attention module, CAM, uses parallel global maximum

pooling and global averaging pooling to extract richer and more

comprehensive high-level feature information. The results obtained

by the global maximum pooling and global average pooling layers in

the CAM are added, and the sigmoid activation function is used to

obtain the CAM output. The CBAM concatenates the spatial
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attention module (SAM) after the channel attention module. The

SAM performs global maximum pooling and global average pooling

on the input features and then combines and consoles the two

features. The new feature map is then passed through a sigmoid

activation function, and the output is multiplied by the original

input to obtain the final result.

3.2.4 The algorithm in the improved
DFCF module

The input local semantic features (LSFs) pass through the

channel attention module, which includes global average pooling

and global maximum pooling layers; then, the features pass through

a fully connected layer, the ReLU activation function, and another

fully connected layer. Next, the features are added and passed

through the sigmoid activation function. Finally, the result is

multiplied by the global semantic features (GSFs) to obtain the

final output of the channel attention module. The output then

passes through the SAM, that is, the GSFs first pass through global

average pooling and global maximum pooling layers. Then, the

results are combined and passed through a convolutional layer.

Next, the results pass through a sigmoid activation function. The

resulting output is multiplied by the input to obtain the final output

of the SAM. The structure of the improved DFCF module is shown

in Figure 5.

Similar to the LSF algorithm flow, the input GSFs pass through

the CAM, that is, the features pass through global average pooling

and global maximum pooling layers. Then, the features pass

through a fully connected layer, the ReLU activation function,

and another fully connected layer before they are combined. The

result is passed through the sigmoid activation function, and the

output is multiplied by the LSFs to obtain the output of the CAM.

The output then passes through the SAM; that is, the LSFs first pass

through global average pooling and global maximum pooling

layers. The results are then combined and passed through a

convolutional layer, and the output is passed through the sigmoid

activation function. The resulting output is then multiplied by the

input to obtain the final output of the SAM.
input local
semantic
features

Channel
attention
module

Spatial
attention
module

Channel
attention

Spatial
attention
module

input global
semantic
features

output
Channel
attention
module

FIGURE 5

Improved two-feature cross-fusion structure diagram.
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The improved DFCF module takes into account not only the

importance of the pixels in different channels but also the

importance of the pixels at different locations in the same channel.

3.2.5 Loss function
Due to the small proportion of lung lesion pixels in the CT

image, the samples are imbalanced in the dataset. When the model

is optimized using the binary cross entropy loss (BCE loss) function,

the segmentation accuracy of small lesions is not high. The BCE loss

function formula is shown in Equation (3.3).

LBCE(y, y ̂ ) = −(y log ( y ̂ ) + (1 − y) log (1 − y ̂ )) (3:3)

The Dice loss function can alleviate the sample imbalance in

lung image datasets; however, the Dice loss function may produce

gradient oscillations during training and is not as stable as the BCE

loss function. The Dice loss function formula is shown in Equation

(3.4).

LDICE(y, y ̂ ) = 1 − (2y y ̂+1)=(y + y ̂ ) (3:4)

This paper adopts a loss function L that combines the Dice and

BCE loss functions, and its formula is shown in Equation (3.5):

L(y, y ̂ ) = LBCE(y, y ̂ ) + LDICE(y, y ̂ ) (3:5)

In the above formula, y represents the actual label value, and y

represents the model prediction result.
4 Experimental data and evaluation
indicators

The experimental datasets used in this paper are the public

Lung Image Database Consortium (LIDC) dataset and the

pulmonary CT dataset of the Affiliated Hospital of Anhui Medical

University (AHAMU-LC). The LIDC dataset was collected by the

National Cancer Institute and includes a total of 1018 cases. In each

case, four radiologists identified the contours of the lung nodules

and other signs of disease. The AHAMU-LC dataset includes a total

of 436 cases, and the CT images in each case were labelled and

validated by multiple imaging physicians. The dataset includes 9265

slices with lung nodules, and the captured images are 512 ×512

in size.

In this paper, evaluation indicators based on a confusion matrix

are adopted. The mean of the intersection over union (mIoU),

recall, precision and F1-score (34, 35) are adopted as indicators to

evaluate the performance of the proposed network.

In the confusion matrix, positive and negative represent positive

and negative samples, respectively. True positive (TP) indicates that

the true class of the sample is a positive example, and the model

prediction result is also a positive example; true negative (TN)

indicates that the true class of the sample is negative, and the model
Frontiers in Oncology 08
prediction result is also negative; false positive (FP) indicates that

the true class of the sample is negative but the model prediction

result is positive; and false negative (FN) indicates that the true class

of the sample is positive but the model prediction result is negative.

The confusion matrix is shown in Figure 6A.

The intersection over union (IoU) is the ratio of the intersection

and union of the true labels and segmentation results. The IoU

value ranges between 0 and 1, and larger IoU values indicate better

segmentation results. The IoU is represented by the area

in Figure 6B as IoU = S3
S1+S2−S3

The formula for the IoU is shown

in Equation (4.1) (29), the formula for the confusion matrix is

shown in Equation (4.2) (30), and the mIoU formula is shown in

Equation (4.3).

IoU =
jAP ∩ AGT j
jAP ∪ AGT j

(4:1)

IoU =
TP

TP + FP + FN
(4:2)

mIoU =
1
no

n

i−1
IoUi (4:3)

The recall rate represents the proportion of positive pixels that

were correctly identified divided by the total number of positive

pixels. The recall formula is shown in Equation (4.4) (36), and the

formula for the confusion matrix is shown in Equation (4.5) (37).

Re call =
jAP ∩ AGT j

jAGT j
(4:4)

Re call =
TP

TP + FN
(4:5)

The precision indicates the proportion of pixels that were

correctly segmented to the total number of segmented pixels.

The precision formula is shown in Equation (4.6) (36), and the

formula for the confusion matrix is shown in Equation (4.7)

(37).

Pr ecision =
jAP ∩ AGT j

jAPj
(4:6)

Pr ecision =
TP

TP + FP
(4:7)

The F1-score represents the harmonized average of the

precision and recall. The F1-score varies between 0 and 1, and the

formula is shown in Equation (4.8) (36).

F1 − score =
2x Re callx Pr ecision
Re call + Pr ecision

(4:8)

In the above formula, | Ap | represents the area of the human body

in which the network segments the lung lesions in the CT images, and |
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AGT| represents the actual area of the CT lung image lesion label. The

index value is in the test set of all lung imaging lesions and is calculated

by taking the average of the calculation results.
5 Experimental results and analysis

5.1 Experimental environment and
experimental settings

In medical imaging, since various tissue structures and lesions

often have different CT values, the range of CT values of interest is

typically selected using window position and window width

techniques. For lung nodule segmentation in CT images, the

window width of the LIDC and AHAMU-LC datasets was

optimally set. For the LIDC dataset, a window position of 250

and window width of 1490 were selected (38). For the AHAMU-LC

dataset, a window position of 500 and window width of 1490 were

selected. Moreover, the data domain of the CT image was

normalized to the range of [0, 1].

A total of 9657 lung CT lesions were taken from the LIDC and

AHAMU-LC datasets, including images with corresponding

manual segmentation results. The data were randomly divided

into training and test sets at a ratio of 8:2. The data were

preprocessed using left-right and up–down flips for CT image
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enhancement, which improves the generalizability of the model

and reduces overfitting. During training, the initial learning rate was

set to 0.001, the batch size was set to 64, the number of epochs was

set to 300, and the model was trained using the Adam

optimization algorithm.
5.2 LIDC experimental results

On the LIDC dataset, the improved RAD-UNet model was

compared with R-UNet, RA-UNet, SegNet (14) and U-Net (15).

The segmentation algorithms were compared and evaluated. The

experimental results are shown in Figure 7, including the original

CT images in the test set, the lesions labelled by a doctor, and the

lung nodules segmented by the SegNet (14), U-Net (15), R-UNet,

RA-UNet, and RAD-UNet models.

Figure 7 shows that the RAD-UNet algorithm proposed in this

paper produces comparable segmented lung CT images. The nodules

with small, blurry edges and similar background grey values identified

by RAD-UNet are significantly better than the nodules identified by

SegNet (14) and U-Net. SegNet (14) and U-Net (15) have different

degrees of over- and undersegmentation at the boundary.

The segmentation experiment results on the LIDC dataset are

shown in Table 1 and Figure 8A. As shown in Table 1 and

Figure 8A, the method proposed in this paper performs better
Confusion matrix
True value

Positive Negative

predicted 

value

Positive TP FP

Negative FN TN

Label area S2

Label area S1

overlapping area S3

B

Schematic diagram of the meaning of the IoU

A 

Schematic diagram of the confusion matrix

FIGURE 6

(A) Schematic diagram of the confusion matrix. (B) Schematic diagram of the meaning of the IoU.
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than the SegNet (14) and U-Net (15) algorithms on all evaluation

metrics; on the test set, the mIoU of the proposed model reached

87.76%, the recall reached 92.17%, the precision reached 94.75%,

and the F1-score reached 93.56%.

To visualize the performance of the segmentation model, the

F1-scores for RAD-UNet, RA-UNet, R-UNet, SegNet (14), and U-

Net (15) during training are plotted in Figure 8B.

Figure 8B shows that SegNet (14) and U-Net (15) obtained

similar results, while RAD-UNet performs better than these two

models. The parameter adjustment in the pyramid pooling module,

as well as the cross fusion of the global and local semantic features,

improve the F1-score of the proposed model after convergence in

the training process. Thus, RAD-UNet achieves more accurate and
Frontiers in Oncology 10
fine segmentation of small target lung lesions in the CT images than

the SegNet (14) and U-Net (15) algorithms.
5.3 Experimental results on the
AHAMU-LC dataset

To further demonstrate the robustness of the improved RAD-

UNet algorithm, comparative experiments were also performed on

the AHAMU-LC dataset. Figure 9 shows the RAD-UNet, R-UNet,

RA-UNet, SegNet (14), and U-Net (15) experimental results on this

dataset. When the nodule infiltrates the surrounding environment,

the SegNet (14) and U-Net (15) algorithms extract information
FIGURE 7

Comparison of lung nodule segmentation results on the AHAMU-LC dataset.
TABLE 1 Segmentation results of different algorithms in terms of multiple metrics on the LIDC test set.

Algorithm mIoU/% Recall/% Precision/% F1-score/%

FCN-16s[13] 73.21 80.63 82.52 81.35

SegNet[14] 78.13 85.98 88.13 86.08

U-Net[15] 80.72 87.05 89.12 88.67

R-UNet 81.93 88.13 90.33 89.79

RA-UNet 85.15 90.21 93.06 91.63

RAD-UNet 87.76 92.17 94.75 93.56
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from different semantic-level features due to blurring and boundary

inadequacy; thus, the invading tumour cannot be accurately

identified, and undersegmentation occurs. The manual

segmentation of the results by doctors as a standard mask is more

consistent with the results in this article.

To quantitatively analyse and verify the effectiveness of the

improved RAD-UNet algorithm, the RAD-UNet, SegNet (14) and

U-Net (15) methods were applied to the AHAMU-LC dataset.

Comparative experiments were performed on the test set of the

dataset, and the results are shown in Table 2 and Figure 10A.

Table 2 and Figure 10A shows that the method proposed in this

paper achieved better evaluation metric scores than the other

methods, and its mIoU on the test set reached 88.13%, the recall

reached 92.32%, the precision reached 94.82%, and the F1-score

reached 93.72%.

To visualize the performance of the improved RAD-UNet

segmentation model, the accuracy curve of each comparison

algorithm during training is plotted, as shown in Figure 10B.

Figure 10B demonstrates that by training the model on a large

number of images, the proposed method can extract multilevel

abstract features. Moreover, after convergence, the RAD-UNet

algorithm is more accurate than the SegNet (14) and U-Net (15)

models, resulting in a more accurate segmentation of small lung

lesions in the CT images and a more robust model.
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5.4 Discussion of experimental results

The proportion of pixels in the entire CT image is small for lung

nodule lesions, and it is difficult to extract small target features and

train the network. Additionally, the similarity between lung nodule

lesions and normal tissues of CT images is high. It is difficult to

distinguish them from background images and to extract strong

distinguishable features. In this experiment, the U-Net network was

selected as the baseline method, and the above lung nodule image

segmentation problems were targeted on the basis of the U-shaped

encoding-decoding network. The U-Net network was studied,

improved and optimized to solve the difficulty of image

segmentation of lung nodules.

It can be seen from the above test results that the three

improved parts, R-UNet, RA-UNet and RAD-UNet, improved their

performance to a certain extent compared with SegNet (14) and UNet.

Their working principles and contributions are discussed as follows:

R-UNet uses residual blocks to replace the coder of the UNet

network for improvement. Because the residual blocks in the

residual network use the jump connection mode, in the depth

neural network, the gradient disappears because the increase in

depth is reduced. Compared with UNet, it not only improves the

segmentation accuracy but also reduces the training time and the

number of parameters.
A

B

FIGURE 8

(A) Segmentation results of different algorithms in terms of multiple metrics on the LIDC test set. (B) Comparison of the F1-score change curves
during network training on the LIDC dataset.
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It can be seen in Table 1 and Table 2 that R-UNet is better than

UNet in the four evaluation indicators of mIoU, recall, precision

and F1-score, which are 1.21% 1.78%, 1.08% 0.73%, 0.21% 0.93%

and 1.12% 0.98% higher, respectively. This proves the effectiveness

of replacing the UNet network encoder with a residual

structure block.

Inspired by the structural idea of ASPP modules proposed by

Chen et al. in DeepLab networks. The ASPP module has a good

effect on extracting the multiscale features of the image. The smaller

the void rate of the convolution kernel of the ASPP module is, the

more conducive it is to segmenting smaller targets, and the larger

the void rate of the convolution kernel is, the more conducive it is to

segmenting larger targets.

In this experiment, in view of the small characteristics of lung

imaging lesions, after the U-Net (15) coding structure, the modified

ASPP was added to improve the latter ASPP module. The latter

ASPP module consists of a 1×1 convolution and a 3×3 convolution
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with a void ratio of 2, a 3×3 convolution with a void rate of 4, and a

3×3 convolution with a void rate of 6 convolutions and an average

pooling composition. Convolution kernels with void ratios of 2, 4,

and 6 are used to increase the ability of the neural network to

segment smaller targets of lung imaging lesions.

RA-UNet uses increased cavity convolution to fuse feature

maps extracted with different cavity rates, expand the receptive

field, enhance feature expression, and improve the feature

extraction ability and segmentation effect for small lung lesions.

It can be seen in Table 1 and Table 2 that RA-UNet is superior

to R-UNet in the four evaluation indicators of mIoU, recall,

precision and F1 core, which are 3.22% 3.09%, 2.08% 1.88%,

2.73% 2.55% and 1.84% 1.54% higher, respectively. This proves

the advantage of adding cavity convolution.

In view of the problem that lung nodule lesions are not clearly

distinguished in CT images, a DFCF module with feature cross-

fusion was added after each upsampling in the decoder of the U-Net
TABLE 2 Segmentation results of different algorithms in terms of multiple metrics on the AHAMU-LC test set.

Algorithm mIoU/% Recall/% Precision/% F1-score/%

FCN-16s[13] 72.24 80.23 82.31 81.62

SegNet[14] 77.57 85.86 87.59 86.87

U-Net[15] 79.86 87.63 90.14 88.73

R-UNet 81.64 88.36 91.07 89.71

RA-UNet 85.73 90.24 93.62 91.25

RAD-UNet 88.13 92.32 94.82 93.72
FIGURE 9

Comparison of lung nodule segmentation results on the AHAMU-LC dataset.
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baseline network. DFCF makes the effective feature weight larger,

the invalid or small effect feature weight smaller, enhances the

ability to distinguish between lung nodules and background, and

improves the channel attention module in DFCF to CBAM

attention module with both channel attention and spatial

attention. The network model considers both the importance of

pixels at different locations of the same channel and the importance

of pixels in different channels.
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RAD-UNet uses a nonlocal attention mechanism to cross-fuse

global and local semantic features, integrate important features at

different levels, enhance the network’s ability to distinguish between

lung lesions and normal tissues, further improve the segmentation

performance, and prove that the improved feature fusion module

has also made some contributions.

It can be seen in Table 1 and Table 2 that RAD-UNet is better

than RA-UNet in the four evaluation indicators of mIoU, recall,

precision and F1-score, which are 2.61% 2.40%, 1.91% 2.08%, 1.69%

1.20% and 1.93% 2.47% higher, respectively. It shows the

effectiveness and superiority of adding cross-fusion global and

local semantic features.
5.5 Discussion of classification test results

To further test the classification results of lung nodule

segmentation, CT images of lung nodules of different diameters

and different numbers were randomly selected from the above

dataset, and the trained improved RAD-UNet model and the

classical network model U-Net (15) were used for classification

testing. The results are shown in Table 3.

It can be seen in Table 3 of the classification test that with the

decrease in lung nodule diameter, the improved RAD-UNet has

obvious advantages over U-Net (15) network segmentation in the

four evaluation indicators of mIoU, recall, precision and F1-score. It

was further confirmed that the improved model RAD-UNet had a

good segmentation effect on pulmonary nodule lesions with a small

proportion of target pixels in CT images and was very similar to

the environment.
5.6 Quantitative evaluation with statistical
analysis

To quantitatively evaluate, we compare the effectiveness of the

proposed method RAD-UNet with the deep learning models U-Net

(15) and SegNet (14) segmented with CT lung nodule images from

the above dataset, as shown in Table 4. The proposed method

exceeds the baseline technique in the segmentation of lung nodule
B 

Comparison of F1-score change curves during network

training on the AHAMU-LC dataset

A

Segmentation results of different algorithms in terms of multiple

metrics on the AHAMU-LC test set

FIGURE 10

(A) Segmentation results of different algorithms in terms of multiple
metrics on the AHAMU-LC test set. (B) Comparison of F1-score
change curves during network training on the AHAMU-LC dataset.
TABLE 3 Classification test segmentation results of lung nodules of different sizes using U-Net (15) and RAD-UNet.

U-Net (15) RAD-UNet

Cate Diameter
(mm) Amount mIoU/

%
Recall/
%

Precision/
%

F1-score/
%

mIoU/
%

Recall/
%

Precision/
%

F1-score/
%

Micro
nodule

d ≤ 5 437 68.56 78.64 85.34 84.21 80.37 86.74 90.13 91.57

Small
nodule

5<d ≤ 10 816 72.63 81.53 87.67 85.37 82.72 90.53 92.56 92.66

Nodule 10<d ≤ 30 573 76.12 85.61 89.71 87.55 86.55 91.82 94.23 93.12

Lung mass d>30 85 84.36 88.39 91.13 90.03 89.17 93.65 95.21 93.57
f
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images, with an mIoU of 87.8%, a recall of 92.2%, an accuracy of

94.8%, and an F1 score of 93.6%.

To further demonstrate the efficacy of the proposed method,

using SPSS software, we examined the quantitative scores that were
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evaluated with Fisher’s least significant difference (LSD) procedure

(Table 5). Based on the LSD test, the suggested approach exceeds

the baseline approaches in terms of mIoU, recall, precision and F1-

score (p< 0.001).
TABLE 4 Quantitative evaluation of the proposed method and the baseline approaches in the segmentation of CT images of lung nodules.

Method
Score 95% C.I.for Mean

Mean Std.Deviation Std.Error Lower Bound Upper Bound

mIoU

Proposed method 0.878 0.104 0.048 0.746 0.924

U-Net[15] 0.807 0.103 0.072 0.676 0.915

SegNet[14] 0.781 0.116 0.061 0.679 0.823

FCN-16S[13] 0.732 0.143 0.087 0.612 0.864

Recall

Proposed method 0.922 0.034 0.042 0.813 0.962

U-Net[15] 0.871 0.021 0.037 0.758 0.957

SegNet[14] 0.860 0.026 0.029 0.754 0.963

FCN-16S[13] 0.806 0.153 0.082 0.701 0.952

Precision

Proposed method 0.948 0.128 0.039 0.832 0.997

U-Net[15] 0.891 0.105 0.028 0.779 0.976

SegNet[14] 0.881 0.087 0.023 0.768 0.984

FCN-16S[13] 0.825 0.153 0.061 0.703 0.946

F1-score

Proposed method 0.936 0.119 0.030 0.827 0.991

U-Net[15] 0.887 0.085 0.022 0.782 0.975

SegNet[14] 0.861 0.116 0.031 0.753 0.981

FCN-16S[13] 0.814 0.127 0.056 0.711 0.947
Bold values is the highest value of several methods of the same indicator.
TABLE 5 Multiple comparisons of CT lung nodule segmentation results: LSD test.

LSD Multiple Comparisons

Dependent Variable (I) Method (J) Method Mean Difference(I-J) Sig.
95% C.I.

Lower Bound Upper Bound

mIoU Proposed method

U-Net[15] 0.071* <0.001 0.062 0.093

SegNet[14] 0.097* <0.001 0.085 0.127

FCN-16s[13] 0.146* <0.001 0.126 0.167

Recall Proposed method

U-Net[15] 0.051* <0.001 0.039 0.075

SegNet[14] 0.062* <0.001 0.051 0.078

FCN-16s[13] 0.116* <0.001 0.102 0.134

Precision Proposed method

U-Net[15] 0.057* <0.001 0.048 0.077

SegNet[14] 0.067* <0.001 0.054 0.086

FCN-16s[13] 0.123* <0.001 0.107 0.142

F1-score Proposed method

U-Net[15] 0.049* <0.001 0.037 0.063

SegNet[14] 0.075* <0.001 0.062 0.091

FCN-16s[13] 0.122* <0.001 0.113 0.137
* The proposed method is significantly better than the baseline approaches using the LSD test (p< 0.001).
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6 Conclusion

SegNet (14) and U-Net (15) obtain undersegmented results when

extracting lung lesions in CT images due to the small target size and

insignificant discrimination from the background. In this paper, an

improved RAD-UNet neural network model is proposed, which

replaces the U-Net (15) convolutional network encoder with a

residual network module and introduces a pyramid pooling

module with optimized parameters, cross-fusion semantic features

and other improvements, thereby enabling end-to-end, pixel-to-pixel

processing in the convolutional network. The experimental results on

the LIDC and AHAMU-LC datasets show that compared to the

conventional SegNet (14) and U-Net (15) segmentation networks,

RAD-UNet’s mIoU reached 87.76% and 88.13% on the two datasets,

and the F1-score reached 93.56% and 93.72%, respectively. The

results objectively illustrate that the proposed RAD-UNet algorithm

segments lung nodules more accurately than the conventional SegNet

(14) and U-Net models in lung CT images.
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