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Background and Purpose: Radiomics features and The Visually AcceSAble

Rembrandt Images (VASARI) standard appear to be quantitative and qualitative

evaluations utilized to determine glioma grade. This study developed a

preoperative model to predict glioma grade and improve the efficacy of

clinical strategies by combining these two assessment methods.

Materials and Methods: Patients diagnosed with glioma between March 2017

and September 2018 who underwent surgery and histopathology were enrolled

in this study. A total of 3840 radiomic features were calculated; however, using

the least absolute shrinkage and selection operator (LASSO) method, only 16

features were chosen to generate a radiomic signature. Three predictive models

were developed using radiomic features and VASARI standard. The performance

and validity of models were evaluated using decision curve analysis and 10-fold

nested cross-validation.

Results:Our study included 102 patients: 35 with low-grade glioma (LGG) and 67

with high-grade glioma (HGG). Model 1 utilized both radiomics and the VASARI

standard, which included radiomic signatures, proportion of edema, and deep

white matter invasion. Models 2 and 3 were constructed with radiomics or

VASARI, respectively, with an area under the receiver operating characteristic

curve (AUC) of 0.937 and 0.831, respectively, which was less than that of Model 1,

with an AUC of 0.966.

Conclusion: The combination of radiomics features and the VASARI standard is a

robust model for predicting glioma grades.
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Introduction

Glioma, one of the most common central nervous system

tumors (CNS), has a five-year survival rate of less than 5% and is

widely recognized as a highly malignant tumor (1, 2). According to

the WHO classification of brain tumors, pathology and clinical

practices typically divide gliomas into low and high grades (3, 4).

The prognosis of glioma patients would be improved by timely and

accurate preoperative diagnosis (2). The primary treatment for

gliomas is surgical resection followed by radiotherapy or

chemotherapy (5). As a non-invasive technique, MRI will likely

be utilized in the clinical setting to detect glioma and its clinical

grade early and reduce misdiagnosis (6). When developing clinical

strategies for patients suspected of having glioma, conventional

MRI sequences, such as T1-weighted, contrast-enhanced T1-

weighted MR images, T2-weighted, and fluid-attenuated inversion

recovery (7) are frequently employed.

Recent neoplasia research (8–10) has extensively used

radiomics as a promising method for evaluating tumor

characteristics. This semiautomatic method can quantify the high-

dimensional imaging features of glioma by extracting the radiomic

features from conventional medical images and combining these

features with other clinical information to design a machine-

learning model, which will improve the accuracy and efficiency of

clinical decisions (11–14). In contrast to the tumor phenotype and

microenvironment provided by clinical reports and histopathology,

this information is based on intensity, shape, size, volume, and

texture (15). Park et al. (16) extracted radiomic features from

multiparametric MRI to predict LGGs and a subgroup of LGGs

without enhancement. In the internal validation set, the area under

the receiver operating characteristic curve (AUC) was 0.85 and 0.82,

indicating the best performance. Mao et al. (17) predicted glioma

grade using an artificial neural network model based on image data.

The model had a means accuracy of 90.32%, sensitivity of 87.86%,

and specificity of 92.49%. With the exponential growth of medical

image analysis, radiomics is increasingly used to detect cancer,

evaluate prognosis and treatment, and monitor tumor status.

Glioma grade has been the subject of much research; however, it

is still of utmost importance because of its relevance to clinical

treatment and pre-surgical strategies.

Visually AcceSAble Rembrandt Images (VASARI) features of

glioma have 25 qualitative features for human gliomas in particular

(18). On standard pre- and post-contrast-enhanced MRI, these

features represent common characteristics of primary cerebral

neoplasia and are described using standardized terminology.

Chen et al. (19) combined radiomics with qualitative features

(VASARI annotations and T2-FLAIR mismatch signs) to predict

molecular subtypes in patients with lower-grade glioma. The AUC

of the model containing radiomics and qualitative features was

higher than the AUC of the model containing radiomics alone, with

0.8623 versus 0.6557. Cao et al. (20) demonstrated that the AUC of

the IDH1 mutation predictive model with VASARI features alone

was approximately 0.827 in the training group; however, in the

fusion model with optimal VASARI and radiomics features, the

AUC improved to 0.879, with an accuracy of 0.771, exceeding that
Frontiers in Oncology 02
of the model with VASARI alone (approximately 0.726). Therefore,

a fusion model combining radiomics and VASARI features would

better predict glioma grade than either model alone.

Our study aimed to determine the impact of VASARI features

on the basics of radiomics and whether the introduction of VASARI

features adds predictive value to glioma grade. The research was

conducted exclusively at Xiangya Hospital.
Materials and methods

Patients

The Medical Ethics Committee of our institution provided

Ethical approval, followed by the informed consent principle.

From March 2017 to September 2018, 102 patients who met the

following criteria were enrolled in this study: pathologic diagnosis

of glioma without prior treatment and MR data free of severe

artifacts. Medical records were extracted from an institutional

database. Our institutional Ethics Committee and Review Board

approved this retrospective study. Written informed consent was

waived owing to the retrospective nature of this investigation.

Additional information regarding the patient recruitment

procedure and exclusion criteria is presented in Figure 1.
Pathological re-assessment

The paraffin-embedded surgical specimens were re-assessed by

two experienced pathologists at our institution (with over 10 and 15

years of experience, respectively) in tumor imaging diagnosis of the

central nervous system (CNS), using the 2021 WHO classification

of CNS tumors (4).
Image acquisition

Untreated glioma patients underwent MRI using a 3.0-T

imaging unit (Siemens, Erlangen, Germany) and a 64-channel

receiver head coil. In the transverse plane, spoiled gradient-

recalled images were used to acquire T1-weighted anatomic

images (T1WI), T2-weighted anatomic images (T2WI), and fluid-

attenuated inversion recovery (FLAIR). Dynamic gadodiamide

(SFDA approval number J20100063, produced by GE Healthcare

Ireland) high-resolution, three-dimensional magnetization-

prepared rapid acquisition with gradient-echo sequences (3D-T1-

MPRAGE) were used to perform 10 ml contrast material-enhanced

MRI on patients.
Image segmentation

Segmentation of regions of interest (ROI) was performed on the

T1WI, T2WI, FLAIR, and contrast-enhanced 3D-T1-MPRAGE

images. Using ITK-SNAP (21) (http://www.itksnap.org), two
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experienced radiologists (reader 1 and 2, with more than ten years

of experience in neuroimaging) manually delineated the tumor

boundaries slice-by-slice. The two radiologists were blinded to the

patient information, including radiological and clinicopathological

data. Fifty patients were randomly selected to evaluate the inter-

observer (reader 1 versus reader 2) and intra-observer (reader 1

twice at intervals of four weeks) correlation coefficient (ICC).

Generally, consistency was indicated by an ICC greater than 0.75.

For the randomly selected 50 patients, the first segmentation of

reader 1 was used. The ROI contouring work of the remaining

patients was completed only by reader 1. The tumor ROIs were

manually delineated on T1WI, T2WI, FLAIR, and contrast-

enhanced 3D-T1-MPRAGE images, and only the axial direction

was involved in ROI contouring.
Radiomic feature selection

The radiomic features were extracted using PyRadiomics in

Python (version. 3.7, https://www.python.org/). Extracted features

included Shape, first-order intensity statistics, Gray Level Co-

occurrence Matrix, Gray Level Size Zone Matrix, Gray Level Run

Length Matrix, Gray Level Dependence Matrix, logarithm, and

Wavelet. Features with ICC values less than or equal to 0.75 were

supposed to be excluded from further analyses. Using the least

absolute shrinkage and selection operator (LASSO) method (22),

the most relevant radiomics features associated with glioma grading

were determined. Z-score normalization was used as a

preprocessing step for LASSO. Then, the weighted average

method with the respective LASSO coefficients was used to
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linearly combine the most relevant features into a single index

called radiomic signature (Rad-score). This Rad-score was deemed

an independent variable, along with other image-related

VASARI variables.
Clinical feature selection

Univariate and multivariate logistic regression were used to

select the most relevant predictors (including Rad-score and the

VASARI features) for high-grade glioma, with a p-value of 0.10 (for

univariate logistic regression) and 0.05 (for multivariate logistic

regression) as the significance level, respectively. In this study,

logistic regression was utilized because its outputs were

probabilities, which allowed subsequent calibration analysis,

nomogram plotting, and decision curve analysis, which are

required to comprehensively assess the performance of a

predictive model. Two neuroradiologists assessed all VASARI

imaging features on standard pre- and post-contrast-enhanced

MRI with 8 and 12 years of experience on the open-source

picture archiving and communication system (PACS)

workstation. Disagreements were addressed through discussions.
Model assessment and validation

In this study, we assessed four aspects of a predictive model, i.e.,

robustness, discrimination, accuracy, and clinical applicability. The

robustness of the model was evaluated by 10-fold nested cross-

validation (with an outer loop of ten folds for test cohorts and an
FIGURE 1

Flowchart of inclusion and exclusion process for patients to be enrolled.
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inner loop of nine folds for training and validation cohorts). The

folds in this cross-validation were stratified, that is, similarly

distributed for the positive and negative samples.

The area under the curve (AUC) of the receiver operating

characteristic (ROC) curves was used as the performance index.

The standard deviation of the ten AUCs was then calculated to

assess the robustness (stability) of the model. The discrimination

performance of the model was evaluated solely based on the AUC

itself. The calibration curve assessed the accuracy of the model,

which indicated the degree of agreement between the observed

probabilities and model-predicted probabilities using a bootstrap

method (1000 resampling iterations). The Hosmer-Lemeshow test

was conducted to determine if the level of agreement was

statistically significant (23). Clinical applicability was evaluated

using a decision curve analysis, which quantitatively suggested

whether the model would result in a net benefit for those patients

who use it in clinical practice compared to arbitrary decisions (i.e.,

treat all patients or treat none) (24).
Statistical analysis

All statistical analyses were conducted with R software version

4.0.2 (http://www.Rproject.org) using the following packages:

“glmnet,” “rms,” “pROC,” “rmda,” and “broom.” The “glmnet”

was used to execute the LASSO method. A nomogram was created

using the “rms” function. The AUCs of different ROC curves were

compared using the deLong test (25) in “pROC” package.

Calibration was assessed using R software, with the “calibrate”

function in R package “rms”. The Hosmer-Lemeshow test (23)

was used to determine the significance of the calibration curve. All
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statistical tests were two-sided, and the p-value of statistical

significance was set to 0.05, except for the univariate logistic

regression used to screen out potential variables, for which the p-

value was set to 0.10. The workflow of this study is illustrated

in Figure 2.
Results

Patient characteristics

Our study included 102 patients, with 37 in LGG group (I/II 2/

35) and 65 in HGG group (III/IV, 26/39). Table 1 summarizes the

VASARI features, Rad-score, and age and gender ratio for LGG and

HGG groups.
Radiomic feature extraction

A total of 3840 features from T1WI, T2WI, FLAIR, and

contrast-enhanced 3D-T1-MPRAGE images were extracted using

Pyradiomics, including shape (14 features), first-order intensity

statistics (18 features), Gray Level Co-occurrence Matrix (22

features), Gray Level Size Zone Matrix (16 features), Gray Level

Run Length Matrix (16 features), Gray Level Dependence Matrix

(14 features), logarithm (172 features), and wavelet (688 features).

All features had high ICCs (0.8491 0.9807). Using LASSO logistic

regression on the entire cohort, only 16 features survived based on

the minimum criterion; the remaining features were omitted

because their coefficients were compressed to zero per the LASSO

minimum criterion (Figure 2, Feature Selection). The remaining 16
FIGURE 2

Workflow for the method section. Firstly, tumor segmentation was depicted on the MRI images. Secondly, five categories of radiomic features were
extracted from the tumor, including shape, first-order, gray level co-occurrence matrix (GLCM), gray level run-length matrix (GLRLM), and wavelet
transform. Thirdly, the least absolute shrinkage and selection operator (LASSO) method was used on feature selection, with model development
shown. Finally, the ROC, calibration curve and decision curve analysis was used to assess the model performance.
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features are listed in Table 2. The Rad-score is then calculated as the

linear sum of these 16 non-zero coefficient weighted features (26).
Construction of predictive models

The results of univariate and multivariate logistic regression

analyses are presented in Table 1. As final predictors, three
Frontiers in Oncology 05
variables remained: edema proportion, deep white matter

invasion, and Rad-score. Note that the percentages of edema

and deep white matter invasion are VASARI features. Based on

the outcomes of logistic regression, three predictive models were

developed. Model 1 was constructed with all three final predictors;

Model 2 was constructed with Rad-score alone, and Model 3 was

constructed with the remaining two VASARI variables after Rad-

score was omitted.
TABLE 1 The results of binary logistic regression analysis for predictive models.

Factors Univariate analysis Multivariate analysis

OR 95% CI p value OR 95% CI p value

Gender 0.957 0.688-1.331 0.882

Age 1.080 0.659-1.770 0.908

VASARI

F1 1.036 0.857-1.252 0.922

F2 1.541 0.926-2.565 0.465

F3 0.916 0.645-1.301 0.787

F4 1.255 0.831-1.895 0.652

F5 0.946 0.722-1.240 0.897

F6 1.178 0.885-1.568 0.736

F7 0.933 0.691-1.260 0.807

F8 2.036 1.029-4.029 0.046 1.136 0.986-1.309 0.088

F9 1.252 0.836-1.875 0.688

F10 0.853 0.492-1.479 0.162

F11 1.461 0.896-2.382 0.507

F12 0.952 0.757-1.197 0.776

F13 1.281 0.853-1.924 0.439

F14 3.638 1.088-12.165 0.029 2.152 1.029-4.501 0.036

F15 1.109 0.905-1.371 0.786

F16 1.266 0.932-1.720 0.409

F17 0.899 0.673-1.201 0.533

F18 1.426 0.811-2.507 0.427

F19 1.058 0.957-1.170 0.456

F20 1.436 0.913-2.259 0.221

F21 3.895 1.120-13.546 0.011 2.487 1.094-5.654 0.026

F22 0.895 0.616-1.300 0.436

F23 1.127 0.882-1.440 0.649

F24 2.587 1.031-6.491 0.035 1.195 0.992-1.440 0.062

F25 1.225 0.894-1.679 0.587

Rad-score 13.661 3.688-50.603 <0.001 18.604 4.257-81.303 <0.001
CI, confidence interval; OR, odds ratio. VASARI, The Visually AcceSAble Rembrandt Images. F1: Tumor Location. F2: Side of Tumor Epicenter, F3: Eloquent Brain. F4: Enhancement Quality.
F5: Proportion Enhancing. F6: Proportion nCET. F7: Proportion Necrosis. F8: Cyst(s). F9: Multifocal or Multicentric. F10: T1/FLAIR RATIO. F11: Thickness of enhancing margin. F12:
Definition of the enhancing margin. F13: Definition of the non -enhancing margin. F14: Proportion of Edema. F15: Edema Crosses Midline. F16: Hemorrhage. F17: Diffusion. F18: Pial invasion.
F19: Ependymal invasion. F20: Cortical involvement. F21: Deep White Matter Invasion. F22: nCET tumor Crosses Midline. F23: Enhancing tumor Crosses Midline. F24: Satellites. F25: Calvarial
remodeling.
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Model performance

Robustness
The 10-fold nested cross-validation was performed to assess the

performance stability of the model. Figure 3 depicts the

performance of the three models in 10-fold nested cross-

validation. The ten iterations for the test cohort had standard

deviations of 0.0362, 0.0458, and 0.0355 for models 1, 2, and 3,

respectively. Thus, all three models were relatively stable

throughout the ten repetitions in terms of AUC.

Discrimination
ROC curve indicates the discriminatory ability of a diagnostic/

predictive model. Figure 4 displays the ROC curve analyses of the

three models. Model 1, Model 2, and Model 3 had AUCs of these
Frontiers in Oncology 06
ROC curves for predicting glioma grade of 0.966 (95% CI: 0.937–

0.995), 0.937 (95% CI: 0.889–0.985), and 0.831 (95% CI: 0.745–

0.917), respectively. Table 3 displays the remaining indices of ROC

curves, including the sensitivity, specificity, positive predictive

value, negative predictive value, and accuracy.
Accuracy
The accuracy refers to the consistency between the predicted and

observed values, which is reflected in the calibration curve. The

calibration curves of the three models demonstrated a good

agreement between the predicted and observed probabilities of

HGG (Figure 5). All these curves failed to reach statistical

significance according to the Hosmer-Lemeshow test (all p > 0.05),

indicating that there is good agreement with the ideal diagonal line

(i.e., good fitting between the predicted and the observed HGG
TABLE 2 Selected radiomic features and its coefficients.

Selected features Coefficient

Contrast-enhanced 3D-T1-MPRAGE original_firstorder_MeanAbsoluteDeviation 0.008376

original_firstorder_Mean -0.21765

logsigma_3_0_mm_3D_glcm_Correlation 0.014965

log_sigma_5_0_mm_3D_glszm_GrayLevelNonUniformityNormalized 0.163822

log_sigma_5_0_mm_3D_glszm_SmallAreaLowGrayLevelEmphasis 0.354926

wavelet_LHL_gldm_DependenceVariance -0.02259

wavelet_LHH_gldm_LargeDependenceHighGrayLevelEmphasis 0.061954

wavelet_HLL_glcm_JointEntropy -0.1377

wavelet-LLL_gldm_SmallDependenceLowGrayLevelEmphasis 0.069576

T1WI log-sigma-5-0-mm-3D_glcm_SumEntropy 0.176542

wavelet-HHL_glcm_JointAverage 0.000975

T2WI log-sigma-5-0-mm-3D_gldm_LowGrayLevelEmphasis 0.027959

wavelet-LHH_glrlm_LongRunEmphasis -0.26765

FLAIR log-sigma-5-0-mm-3D_gldm_GrayLevelVariance -0.036765

wavelet-LHL_gldm_SmallDependenceLowGrayLevelEmphasis -0.316588

wavelet-HLL_firstorder_Kurtosis 0.117975
A B C

FIGURE 3

The performances of three models in the nested cross-validation. (A–C) represent model 1, model 2 and model 3 respectively.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1083216
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


You et al. 10.3389/fonc.2023.1083216
probability). Because all three calibration curves were statistically well-

fitted and exhibited no discernible deviation from the ideal line, we

could not select the best-fitted curve.

Clinical applicability
Figure 6 depicts the decision curves of the models. These models

are separated from the “treat all” or “treat none” lines, indicating

that they may have clinical utility. However, Model 1 appears to

have the highest position, indicating that using Model 1 to grade

glioma would provide patients with the greatest net benefit

compared with Models 2 and 3. Regarding glioma grading, our

results indicate that Model 1 (combining radiomics and VASARI

variables) is the optimal model among the three models and could

be the preferable model for regular clinical practice. Figure 7 depicts

the nomogram of model 1 to facilitate its clinical application.
Discussion

In this study, we developed a predictive model for glioma grade

before surgery and histopathology. This model, constructed using

radiomics and two VASARI features, performed well in
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distinguishing LGG from HGG patients. The performance of the

model was comprehensively evaluated based on its discrimination,

calibration, and clinical utility. The 10-fold nested cross-validation

also confirmed the stability and robustness of the model. In

addition, our study suggests that radiomics and VASARI could be

used to independently predict glioma grade.

With only 102 patients enrolled, the conventional method of

dividing the samples into training and testing cohorts was

insufficient to evaluate the robustness of our model. Our study

evaluated the robustness of the predictive models using 10-fold

cross-validation. There have been published radiomics studies with

validation cohorts as small as 20–30 patients, making the

performance of such models questionable owing to the risks of

overfitting and high instability (27). Meanwhile, the external

validation cohort sample size should ideally be between 25%–40%

of the training cohort (27), although it is common for published

studies to violate this requirement. Wang et al. (28) recruited 85

patients and divided them into a training cohort (n = 56) and a

validation cohort (n = 29) to develop a radiomics nomogram for

glioma grade prediction. The authors discovered that the radiomics

nomogram had an excellent C-index of 0.971 in the training cohort

and 0.961 in the validation cohort. Given the limited number of
frontiersin.or
,

A B C

FIGURE 4

The receiver operating characteristic (ROC) curves for the three models were shown. (A) presented the ROC of model 1 which combined radiomic
and VASARI features, with the area under the curve (AUC) of 0.966. (B) displayed the ROC of model 2 including radiomic alone, with the AUC of
0.937. (C) presented the ROC of model 3 including VASARI features alone, with the AUC of 0.831.
TABLE 3 Performance of the three predictive models.

Metrics Model 1
(Rad−VASARI combined)

Model 2
(Rad_score only)

Model 3
(VASARI only)

AUC 0.966 0.937 0.831

Accuracy 0.931 0.912 0.761

Sensitivity 0.954 0.908 0.776

Specificity 0.892 0.919 0.723

PPV 0.939 0.952 0.681

NPV 0.917 0.850 0.596
AUC: area under the receiver operating characteristic curve; PPV: positive predictive value; NPV: negative predictive value.
The AUC cut-off was determined based on Youden index maximization criterion. Specifically, Youden index = true positive rate (sensitivity) – false positive rate (1-specificity). In the ROC curve
a series of Youden indices was calculated, then the maximum Youden index of this series was picked out and the corresponding value of the test variable which matched this maximum Youden
index was the cut-off value.
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samples and the disparity between HGG and LGG, separating the

data into training and validation datasets would further reduce the

sample size, resulting in highly unstable performance. For a limited

cohort, nested cross-validation could be a preferable method to

assess whether the selected features are stable across the different

folds and to avoid circularity bias while measuring prediction

performance (29–31). Our study provided additional information

on nested cross-validation from the dividing cohort to AUC scores,

enhancing the credibility and confirming the robustness of our

models by presenting a transparently detailed procedure.

Regarding the clinical features we selected, the proportion of

edema and deep white matter invasion were two key indicators

of the malignant behavior of glioma. First, the incidence of

peritumoral edema (PTE) is significantly associated with glioma

morbidity and mortality. According to previous studies, the average

or overall survival of patients with significant edema (> 10 mm) was

reduced by more than half compared to those with minor edema

(32, 33). In a previous study, Wu et al. (33) hypothesized that edema

shape resulting from the extent of edema also influences patient

survival. Patients with an irregular edema shape (such as a radial or

finger-like shape) tended to have a worse prognosis than those with

round edema. In addition, Jeong et al. (34) found that amplification
Frontiers in Oncology 08
of the epidermal growth factor receptor (EGFR) plays a significant

role in the formation of PTE and causes the volume of edema to

increase, thereby negatively affecting overall survival. Some studies

have indicated that HMGB1 suppression and LINC00665

expression are closely associated with PTE (35, 36).

The deep white matter invasion that we selected to represent

malignant glioma was also significant in a previous study. Tumor

location, a crucial parameter for patient care, correlates strongly

with molecular subtypes, histopathological characteristics, clinical

presentation and surgery, surgical management, glioma malignancy

level, and prognosis (37–42). Roux et al. (38) presented probabilistic

maps based on clinical presentations and survival analysis. Their

results demonstrated that tumors in the deep location and eloquent

brain regions were more likely to be associated with poor prognosis

and shorter overall survival than those in the superficial location

distant from the eloquent area.

Invasion along the white matter tracts is an important

clinicopathological characteristic of gliomas, indicative of poor

therapeutic prognosis (37, 43). Our study utilized the VASARI

standard and combined it with contrast-enhanced 3D-T1-MPRAGE

radiomics for analysis, which should be superior to using VASARI alone

because radiomics analysis should be more objective, accurate, and
frontiersin.or
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FIGURE 5

The calibration curves of the three models showed good consistency between the predicted probability of HGG and the observed probability of
HGG (A model 1, B model 2, and C model 3).
FIGURE 6

Decision curves for the three models. Red, combined radiomic and VASARI features model; blue, radiomic model; green, VASARI features model.
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reliable as a quantitative method. As a non-invasive diagnostic method,

radiomic features extracted from images reflect cellular behaviors in the

intratumoral microenvironment, which correlates with the prognosis of

the tumor (44–46). Heterogeneity, an important parameter of the

clinicopathological characteristics of gliomas, is associated with the

degree of malignant behavior (47). For instance, tumors with more

aggressive behavior may indicate higher heterogeneity, whereas tumors

with more favorable behavior tend to exhibit less heterogeneity. Our

study filtered kurtosis and entropy-related radiomic features using the

LASSO method, indicating greater heterogeneity. According to a

previous study (48), kurtosis and entropy are significant indicators of

glioma heterogeneity. Spatial and temporal vascular anomalies, which

result from hypoxia and acidosis within the tumor caused by

angiogenesis, are primary contributors to tumor heterogeneity (47).

The models in our study were consistent with those in previous

research, suggesting that kurtosis and entropy reflect greater

heterogeneity and a worse prognosis. Among the most relevant 16

radiomic features (Table 2), nine features were derived from contrast-

enhanced 3D-T1-MPRAGE, two were derived from T1WI, two were

derived fromT2WI, and three were derived from FLAIR, indicating that

3D-T1-MPRAGE could be the essential sequence and exerted the

largest contribution for identifying the glioma grade.

Our study had several limitations. First, the small sample size

was insufficient to maintain the stability of the results. Therefore, we

utilized nested cross-validation to confirm the validity of the

predictive model. Second, our study lacked the molecular subtype

for the samples, while the molecular phenotype is crucial for the

prognosis of glioma (49, 50). Future medical imaging research

should focus on the molecular characteristics of glioma, which

could aid in more accurate subtype prediction and the development

of individual treatment strategies.
Conclusion

This study demonstrates the significance of a predictive

model combining radiomics features with VASARI standard

for glioma grade analysis before surgical intervention. This

non-invasive imaging-centered strategy would aid in advancing

clinical research and guiding individualized treatment for

patients with high-grade glioma.
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