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Background: With the continuous development of medical imaging informatics

technology, radiomics has become a new and evolving field in medical

applications. Radiomics aims to be an aid to support clinical decision making

by extracting quantitative features from medical images and has a very wide

range of applications. The purpose of this study was to perform a bibliometric

and visual analysis of scientific results and research trends in the research

application of radiomics in glioma.

Methods: We searched the Web of Science Core Collection (WOScc) for

publications related to glioma radiomics. A bibliometric and visual analysis of

online publications in this field related to countries/regions, authors, journals,

references and keywords was performed using CiteSpace and R software.

Results: A total of 587 relevant literature published from 2012 to September 2022

were retrieved in WOScc, and finally a total of 484 publications were obtained

according to the filtering criteria, including 393 (81.20%) articles and 91 (18.80%)

reviews. The number of relevant publications increases year by year. The highest

number of publications was from the USA (171 articles, 35.33%) and China (170

articles, 35.12%). The research institution with the highest number of publications

was Chinese Acad Sci (24), followed by Univ Penn (22) and Fudan Univ (21).

WANG Y (27) had the most publications, followed by LI Y (22), and WANG J (20).

Among the 555 co-cited authors, LOUIS DN (207) and KICKINGEREDER P (207)

were the most cited authors. FRONTIERS IN ONCOLOGY (42) was the most

published journal and NEURO-ONCOLOGY (412) was the most co-cited journal.

The most frequent keywords in all publications included glioblastoma (187),

survival (136), classification (131), magnetic resonance imaging (113), machine

learning (100), tumor (82), and feature (79), central nervous system (66), IDH (57),

and radiomics (55). Cluster analysis was performed on the basis of keyword co-

occurrence, and a total of 16 clusters were formed, indicating that these

directions are the current hotspots of radiomics research applications in

glioma and may be the future directions of continuous development.

Conclusion: In the past decade, radiomics has received much attention in the

medical field and has been widely used in clinical research applications.

Cooperation and communication between countries/regions need to be
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enhanced in future research to promote the development of radiomics in the

field of medicine. In addition, the application of radiomics has improved the

accuracy of pre-treatment diagnosis, efficacy prediction and prognosis

assessment of glioma and helped to promote the development into precision

medicine, the future still faces many challenges.
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1 Introduction

The Central Brain Tumor Registry of the United States

(CBTRUS) statistical reports that of the primary brain and other

Central Nervous System (CNS) tumors diagnosed in the United

States from 2014-2018, overall, meningiomas were the most

common CNS tumor histology, followed by pituitary tumors and

glioblastomas, with glioblastomas being the most common

malignant CNS tumor (49.1%) (1). With the development of

pathology and the progress of pathological detection technology,

especially the improvement of the Next generation sequencing and

DNA methylation profile, the genetic background and mechanism

of occurrence and development of glioma are gradually clear. More

and more molecular markers have been proved to play an

important role in the classification, classification, grading,

prognosis and treatment of gliomas. The fifth edition of the

World Health Organization (WHO) Classification of Tumors of

the Central Nervous System (CNS) (WHO CNS5), published in

2021, integrates the histological characteristics and molecular

phenotype of tumors, puts forward a new tumor classification

standard, and focuses on promoting the application of molecular

diagnosis in the classification of central nervous system tumors (2).

In among them, WHO CNS5 simplification of the classification of

common, adult-type, diffuse gliomas. Includes only 3 types:

Astrocytoma, IDH-mutant; Oligodendroglioma, IDH-mutant and

1p/19q-codeleted; and Glioblastoma, IDH-wildtype (2). The

standard treatment protocol for glioma is maximal surgical

resection followed by radiotherapy combined with temozolomide

(TMZ) chemotherapy, and patients have a median survival of

approximately 14.6 months (3). In contrast, differences in survival

and treatment response of glioma are attributed to their genetic and

histological characteristics, particularly isocitrate dehydrogenase

(IDH) mutation status, 1p/19q co-deletion status and tumor

grade (4). There is significant genetic heterogeneity within the

tumor, but it needs to be assessed by molecular testing after

invasive examination or surgical resection. A reproducible and

non-invasive technique to predict molecular expression,

therapeutic efficacy and prognostic assessment of gliomas is

urgently needed.

The diagnosis of solid tumors is highly dependent on imaging,

including computed tomography (CT), magnetic resonance

imaging (MRI), and positron emission tomography (PET), with
02
MRI being by far the most commonly used imaging modality for

patients with brain tumors (5). However, conventional structure-

based medical imaging is subjective and a qualitative assessment,

and there are many shortcomings in these conventional

examination methods that require the continuous development of

new imaging techniques for better sensitivity and specificity, and

higher temporal and spatial resolution (6). In 2012, Dutch scholar

Lambin proposed the concept of radiomics based on previous work

(7). Lambin concluded that “high-throughput extraction of a large

number of features from medical images and transformation of

imaging data into a mineable data space with high resolution

through automated or semi-automated analysis methods”,

medical imaging can provide a comprehensive, non-invasive and

quantitative view of the spatial and temporal heterogeneity of

tumors. Later, Kumar V et al. (8) expanded the definition of

radiomics, which refers to the high-throughput extraction and

analysis of a large number of advanced and quantitative imaging

features from medical imaging images such as CT, PET or MRI.

This concept was proposed and rapidly improved and refined by an

increasing number of scholars in the following years. The advent of

radiomics has attracted widespread interest from researchers to

extract quantitative imaging features from conventional medical

images and these features can also be combined with pathology and

molecular biomarkers to more accurately assess the biological status

of tumors and treatment response (9, 10), in addition to allowing

disease stratification and potentially advancing the development of

individualized treatment plans for patients (11).

In contrast to conventional imaging pictures, radiomics

provides valuable quantitative information linked to biological

features. Recent studies have shown that radiomics has a wide

range of applications in identifying primary tumors, differential

diagnosis, tumor grading, assessing gene mutation status and

infiltration and heterogeneity, predicting treatment response,

prognostic assessment and recurrence (12). Lohmann P et al. (13)

repor ted the use of PET radiomics to di ff erent ia te

pseudoprogression from early tumor progression in patients with

glioma after chemotherapy, and the results showed that PET

radiomics helps to diagnose patients with pseudoprogression with

high diagnostic performance. Given its clinical significance, further

studies are warranted. Yan J et al. (14) investigated quantitative

radiomics based on preoperative MRI for non-invasive prediction

of molecular subtypes and survival in glioma patients, and showed
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that MRI-based radiomics may be useful for non-invasive detection

of molecular groups and prediction of survival in glioma regardless

of grade. Wang J et al. (15) combined radiomic features of

multisequence MRI as a pre-treatment noninvasive predictor of

overall survival (OS) and chemotherapy benefit in lower-grade

glioma (LGG), showed that radiomic features are independent of

clinicopathological data and are a noninvasive pre-treatment

predictor of survival in patients with LGG. In addition, it can

predict which LGG patients will benefit from chemotherapy. Lu CF

et al. (16) proposed a three-level machine learning model based on

multimodal MR radiomics for the classification of glioma subtypes.

The MR radiomics-based approach provides a reliable option for

determining the histological and molecular subtypes of gliomas. Li

G et al. (17) constructed a stable and verifiable preoperative T2-

weighted MRI-based radiomic model that predicted radiomic

features in the model related to immune response, especially

infiltration of tumor macrophages. Preoperatively, it can stably

predict the survival of glioma patients and assist in preoperative

assessment of macrophage infiltration in glioma tumors. Radiomics

extracts mineable data from medical images and has been widely

studied and applied in clinical diseases to support clinical decision

making with the aim of achieving precision medicine (18).

Radiomics has become a new and evolving field in clinical

medicine, but no studies have been conducted on bibliometric

methods to analysis its application in glioma. Bibliometrics uses

mathematical and statistical measures to qualitatively and

quantitatively evaluate the literature in the relevant field (19), and

also helps researchers to quickly get a grasp of the research hotspots

and trends in the field. CiteSpace is a bibliometric analysis software

developed by Prof. Chaomei Chen as a tool for visual analysis of

academic literature in a research field for research (20). The aim of

this study is to comprehensively analysis the research application of

radiomics in glioma from multiple perspectives through

bibliometric tools and to fully analysis the development status

and trends in this field.
2 Materials and methods

2.2 Data source

In September 2022, a relevant search was conducted in the Web

of Science Core Collection (WOScc) database, and the time span of

the search dates was set from 2012 to September 2022. The search

strategy was: ((((((((((((((((TS=(glioblastoma*)) OR TS=

(“glioblastoma multiform*”)) OR TS=(“malignant glioma”)) OR

TS=(“brain cancer”)) OR TS=(gliosarcoma)) OR TS=

(spongioblastoma)) OR TS=(astrocytoma)) OR TS=(astrocytomas))

OR TS=(“astrocytic tumors”)) OR TS=(“astrocytic glioma”)) OR TS=

(“astrocyte tumors”)) OR TS=(“astrocytic glioma”)) OR TS=

(oligodendroglioma*)) OR TS=(“oligodendroglial tumors”)) OR

TS=(GBM)) OR TS=(LGG)) AND (((TS=(Radiomics)) OR TS=

(radiogenomics)) OR TS=(“imaging omics”)). Literature inclusion

criteria: (1) glioma radiomics studies were the subject; (2) the type of

literature included articles and reviews; (3) the language of the

literature was English. Literature exclusion criteria: (1) publications
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were conference abstracts, news, and case studies. (2) The study topic

was not glioma. Two reviewers assessed and screened all retrieved

publications, and any disagreements were resolved through

discussion until consensus was reached. Flow chart of the literature

screening process (Figure 1).
2.2 Analysis methods

CiteSpace software (version 6.1.3) and R software (version

4.1.3) were mainly used for bibliometric and visual analysis of

publications related to the field of glioma radiomics research, and

Microsoft Excel 2019 was used for data management and trend

analysis of publications. CiteSpace software is a tool for visual

analysis of literature developed by Prof. Chaomei Chen for analysis

of indicators such as country/region, author, institution, journal,

reference, and keywords (20). In addition, CiteSpace is used for

keyword burst analysis and visualizes it to predict trends in the field.

In the visual mapping, the node size represents the frequency of

occurrence, with larger nodes representing higher frequency of

occurrence. Connections between nodes represent collaboration

or co-occurrence relationships. Betweenness centrality is an

important parameter in CiteSpace, generally centrality ≥ 0.1 is

considered as a more important node, marked by a purple circle

in the visual mapping, which mainly measures the value of the node

playing a bridging role in the overall network structure. The

“bibliometrix” package in the R software was used for the visual

analysis of the publications’ source journals.
3 Results

3.1 Publishing trend

A total of 587 publications related to the field of glioma

radiomics research from 2012 to September 2022 were searched

in WOScc, and 484 were finally obtained according to the search

criteria, including 393 articles (81.20%) and 91 reviews (18.80%).
FIGURE 1

Flow chart of the literature screening process.
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The number of relevant publications increased year by year, and

Figure 2 shows the trend of publications, including the annual and

cumulative number of publications. The annual number of relevant

publications was within 10 from 2012-2015, and the number of

publications steadily increased from 2016-2020, but the annual

number of publications was within 100, and the number of

publications exceeded 100 in 2021. Further, we conducted a

Pearson correlation analysis to test the correlation between

publications and citations by Pearson correlation coefficient, and

a p-value < 0.05 was considered as a significant correlation. The

results showed a high positive correlation between publications and

citations (r=0.97, p<0.01).
3.2 Country/region and
institution distribution

A total of 484 publications from 40 countries/regions and 258

institutions were obtained. The highest number of publications was

from the USA (171, 35.33%) and China (170, 35.12%), followed by

SOUTH KOREA (45, 9.30%) and GERMANY (41, 8.47%)

(Table 1). Figure 3A shows the visual mapping of collaborative

relationships between countries/regions. USA collaborates most
Frontiers in Oncology 04
closely with other countries/regions, followed by ENGLAND,

SPAIN. The top 10 countries/regions with the highest centrality

of publications are USA (0.64), followed by ENGLAND (0.24),

GERMANY (0.15) and CHINA (0.13). The research institution

with the most publications was Chinese Academy of Sciences

(Chinese Acad Sci) (24), followed by University of Pennsylvania

(Univ Penn) (22) and Fudan University (Fudan Univ) (21). Among

the top 10 institutions in terms of publications, University of

California, San Francisco (Univ Calif San Francisco) (0.16) had

the highest centrality, followed by Stanford University(Stanford

Univ)(0.13) and University of Pennsylvania(Univ Penn)(0.12)

(Table 1). Figure 3B shows a visual mapping of the research

institutions in CiteSpace. A node represents an institution, with

larger nodes indicating more publications and higher centrality

marked by purple circles.
3.3 Authors and co-cited authors

A total of 354 researchers were involved in the publication of

relevant literature. WANG Y (27) had the highest number of

publications, followed by LI Y (22), WANG J (20), and among

the top 10 authors LIU Z (0.1) had the highest centrality (Table 2).

Figure 4A shows the visual mapping of author collaboration

network, each circle represents an author, the larger the circle the

more publications, the line between the circles represents the

connection between authors, and the thicker the line the closer

the collaboration. In 1973, Small, an American intelligence scientist,

first introduced the concept of co-citation as a method to measure

the degree of relationship between documents (21). In 1981, White

and Griffith extended the co-citation of literature to the author level

and developed the method of author co-citation analysis (ACA)

(22). In addition, there are journal co-citations. Co-cited authors are

two or more authors who are cited in one or more articles at the

same time, and these two or more authors form a co-citation

relationship. Among the 555 co-cited authors, LOUIS DN (207)

and KICKINGEREDER P (207) were the most co-cited authors,

followed by LAMBIN P (171), GILLIES RJ (165). Among the top 10
FIGURE 2

The annual number of relevant publications and the annual
cumulative number of publications from 2012 to September 2022.
TABLE 1 Top 10 countries/regions and institutions for related publications.

Rank Count Centrality Year Countries/regions Count Centrality Year Institution

1 171 0.64 2012 USA 24 0.07 2017 Chinese Acad Sci

2 170 0.13 2015 PEOPLES R CHINA 22 0.12 2016 Univ Penn

3 45 0.01 2017 SOUTH KOREA 21 0.1 2016 Fudan Univ

4 41 0.15 2015 GERMANY 17 0.03 2015 Capital Med Univ

5 22 0.24 2017 ENGLAND 14 0.03 2018 Yonsei Univ

6 22 0.05 2016 ITALY 12 0.02 2019 Univ Ulsan

7 20 0.03 2015 FRANCE 12 0.01 2017 Sun Yat Sen Univ

8 19 0.06 2015 NETHERLANDS 11 0.13 2014 Stanford Univ

9 18 0.02 2018 CANADA 10 0.16 2018 Univ Calif San Francisco

10 18 0 2017 SPAIN 10 0 2019 Zhengzhou Univ
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TABLE 2 Top 10 authors and co-cited authors in related publications.

Rank Count Centrality Authors Rank Count Centrality Co-Cited Authours

1 27 0.05 WANG Y 1 207 0 LOUIS DN

2 22 0.05 LI Y 2 207 0.05 KICKINGEREDER P

3 20 0.03 WANG J 3 171 0.23 LAMBIN P

4 18 0.1 LIU Z 4 165 0.01 GILLIES RJ

5 18 0.05 LEE S 5 139 0.02 STUPP R

6 18 0.05 KIM S 6 126 0.08 AERTS HJWL

7 18 0.03 ZHANG H 7 125 0 OSTROM QT

8 16 0 KIM H 8 119 0 ELLINGSON BM

9 15 0.01 CHEN C 9 116 0 VAN GRIETHUYSENJJM

10 15 0.07 ZHANG Y 10 99 0.02 GUTMAN DA
F
rontiers in Onc
ology
 05
B

A

FIGURE 3

(A) Visual mapping of collaborative relationships between countries/regions of related publications. (B) Visual mapping of collaborative relationships
between related publication institutions.
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co-cited authors LAMBIN (0.23) had the highest centrality

(Table 2). Figure 4B shows a visual mapping between the co-

cited authors.
3.4 Journals and co-cited journals

The “bibliometrix” package in R software (version 4.1.3) was

used to visually analysis the source journals of the relevant

publications. FRONTIERS IN ONCOLOGY (42) was the most

published journal, followed by EUROPEAN RADIOLOGY (32)
Frontiers in Oncology 06
and CANCERS (31). Figure 5A shows a visual mapping of the top

20 academic journals in terms of number of articles published.

Among the top 10 academic journals, the highest impact factor is

RADIOLOGY (29.146), followed by NEURO-ONCOLOGY

(13.029) (Table S1). The most cited of the 516 co-cited journals

was NEURO-ONCOLOGY (412), followed by RADIOLOGY (402)

and AM J NEURORADIOL (345) (Table 3). Among the top 10 co-

cited journals, NEW ENGL J MED (176.709) had the highest

impact factor and CLIN CANCER RES (0.27) had the highest

centrality, indicating the high status of these journals in this

research area. Figure 5B shows the visual mapping of co-cited
B

A

FIGURE 4

(A) Visual mapping of authors of related publications in CiteSpace. (B) Visual mapping of co-cited authors of related publications in CiteSpace.
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journals, with larger circles representing higher frequency of co-

citations and purple circles indicating higher centrality.

Chen C et al. (23) introduced a new visual analysis method,

dual-map overlay, which is used to analyze, compare and contrast

the characteristics of publications portfolios. The new method

introduces a novel dual-map thematic overlay design on global

science. Each publication portfolio can be superimposed as a one-

layer of dual-map overlays over 2 related, but different global

science maps: one for the citing journal and the other for the

cited journal. The color paths in Figure S1 shows the citation

relationships, where the three green paths, respectively, indicate

that literature published in dentistry, dermatology, surgery journals

is frequently cited by Molecular, Biology, Genetics. Literature from
Frontiers in Oncology 07
Medicine, Biology, clinical journals is often cited in health,

nursing, medicine journals. Literature from neurology, sports,

ophthalmology journals is often cited in psychology, education,

social journals.
3.5 Co-cited references and
references burst

Of the 558 co-cited references retrieved, the top 10 most

frequently cited references are listed in Table 4. Figure 6 shows a

visual mapping of the co-cited references. Gillies RJ et al. (24)

reported the most frequently cited article “Radiomics: Images
B

A

FIGURE 5

(A) Visual mapping of the top 20 source journals for related publications. (B) Visual mapping of co-cited journals of related publications.
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Are More than Pictures, They Are Data”. Describes the process

of radiomics, its challenges, and its potential power to facilitate

better clinical decision making, particularly in the care of cancer

patients. Second, van Griethuysen JJM et al. (25) report on the

“Computational Radiomics System to Decode the Radiographic

Phenotype”, which reports on their team’s development of

PyRadiomics, a flexible open-source platform capable of

extracting a large number of engineering features from

medical images. PyRadiomics is implemented in Python and

can be used standalone or with 3D Slicer. And discusses the

workflow and architecture of PyRadiomics and demonstrates its

application to lung lesions characterization. In addition,

according to the titles of the top 10 co-cited references, it is

possible to understand that their topics are mainly about the

prediction of survival in glioma patients by radiomics, and the

study of molecular subtypes.
Frontiers in Oncology 08
Reference burst analysis is beneficial for researchers to

understand the literature in a field that has received focused

attention during a certain period of time. Based on the strongest

citation bursts, Figure S2 shows that the first citation burst started in

2011, with the top 25 references having a citation burst intensity of

4.64-19.18. Among them, the strongest and longest lasting citation

was published by Aerts HJ et al. (26) in the journal “Nat Commun”,

entitled “Decoding tumor phenotype by noninvasive imaging using

a quantitative radiomics approach”, reported the prognostic power

of a large number of radiomic features, many of which had not

previously been identified as significant before, in an independent

dataset of patients with lung and head and neck cancers.

Radiogenomics analysis revealed that prognostic radiomic

features capturing intra-tumor heterogeneity were associated with

underlying gene expression patterns. These findings may have

clinical implications as imaging is routinely used in clinical
TABLE 3 Top 10 co-cited journals for related publications.

Rank Count Centrality Cited Journals IF 2022 Quartile in category

1 412 0.05 NEURO-ONCOLOGY 13.029 Q1

2 402 0 RADIOLOGY 29.146 Q1

3 345 0.04 AM J NEURORADIOL 4.966 Q2

4 305 0 EUR RADIOL 7.034 Q1

5 302 0.01 SCI REP-UK 4.996 Q2

6 289 0.01 J NEURO-ONCOL 4.506 Q2

7 252 0.27 CLIN CANCER RES 13.801 Q1

8 246 0.04 J MAGN RESON IMAGING 5.119 Q1

9 238 0 NEW ENGL J MED 176.709 Q1

10 237 0.01 PLOS ONE 3.752 Q2
TABLE 4 Top 10 co-cited references in related publications.

Rank Count Centrality Cited Reference

1 136 0.01 Radiomics: Images Are More than Pictures, They Are Data

2 136 0.01 The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary

3 115 0.01 Computational Radiomics System to Decode the Radiographic Phenotype

4 90 0.03 Radiomics: the bridge between medical imaging and personalized medicine

5 75 0.01
Radiomic Profiling of Glioblastoma: Identifying an Imaging Predictor of Patient Survival with Improved Performance over
Established Clinical and Radiologic Risk Models

6 71 0
Data Descriptor: Advancing The Cancer Genome Atlas glioma MRI collections with expert segmentation labels and radiomic
features

7 62 0.09 Decoding tumor phenotype by noninvasive imaging using a quantitative radiomics approach

8 53 0.01
Radiomic features from the peritumoral brain parenchyma on treatment- naïve multi-parametric MR imaging predict long
versus short-term survival in glioblastoma multiforme: Preliminary findings

9 52 0.05
Radiogenomics of Glioblastoma: Machine Learning-based Classification of Molecular Characteristics by Using Multiparametric
and Multiregional MR Imaging Features

10 52 0.03 MRI features predict survival and molecular markers in diffuse lower-grade gliomas
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practice, providing an unprecedented opportunity for low-cost

improved decision support for cancer treatment.
3.6 Keyword visual analysis

Keywords are words or phrases selected to reflect the concept of

the subject of a paper for the purpose of literature indexing and

searching. The analysis of keywords enables to summarize the

research themes in a specific field and explore hot spots and

research directions. The top 10 keywords that appear frequently

in the studies related to glioma imaging histology displayed in Table

S2 include glioblastoma (187), survival (136), classification (131),

magnetic resonance imaging (113), machine learning (100), tumor

(82), feature (79), central nervous system (66), IDH (57), and

radiomics (55), indicating that these areas are the current

research hotspots in glioma radiomics. In the keyword co-

occurrence virtual mapping (Figure 7A), there are 344 nodes and

2211 connected lines. Each node corresponds to a keyword, and the

larger the node the more frequently the keyword appears. The

number of connecting lines between nodes and the distance

between nodes reflect the closeness of the keywords.

The clustering analysis of keywords based on keyword co-

occurrence analysis can reflect the hot directions of this research

area. Figure 7B shows the visual mapping of keyword clustering,

which mainly includes high-grade glioma treatment response

monitoring, glioblastoma patient survival prediction, programmed

death-ligand, preoperative differentiation, non-invasive genotype

prediction, brain tumor, molecular characteristics, machine

learning model development, illuminating radiogenomic

characteristics, scalar regression analysis, using radiomics,

anatomic localization, artificial intelligence, predicting early

recurrence, genomic mapping, regional genetic heterogeneity

16 clusters.
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4 Discussion

4.1 General information

Publication volume is a more intuitive reflection of the research

fervor and development rate of this research field within a certain

period of time, which is important for analysis of research dynamics

and prediction of development trends. Figure 2 shows that the

annual and cumulative number of publications related to glioma

radiomics are both on the rise. 2012-2015, the annual number of

related publications was within 10, and the number of publications

steadily increased from 2016 to 2020, but the annual number of

publications was within 100, and the number of publications

exceeded 100 in 2021, indicating that this field is receiving more

and more attention from researchers and the research intensity is

keeps rising.

The volume and centrality of publications by country/region

and institution provides an objective reflection of the level of

scientific research in the relevant research area and the value of

acting as a bridge in the entire network structure. The highest

number of publications is in USA (171, 35.33%) and China (170,

35.12%), with USA working most closely with other countries. In

addition, the country/region with the highest centrality among the

top 10 countries/regions in terms of publication volume is USA

(0.64), followed by ENGLAND (0.24), GERMANY (0.15) and

China (0.13), which shows that USA has contributed greatly to

the scientific development in this field. The research institution with

the highest number of publications is Chinese Acad Sci (24), and

among the top 10 institutions in terms of publications, Univ Calif

San Francisco (0.16) has the highest centrality. In the future,

exchange and cooperation between countries/regions need to be

strengthened to promote the development of this research area.

A total of 354 researchers were involved in the publication of

related literature. WANG Y (27) had the most publications,

followed by LI Y (22), WANG J (20), and among the top 10

authors LIU Z (0.1) had the highest centrality. Wang Y et al. (27)

build a radiomic prediction model of LGG-related epilepsy types

based on MRI data. The results showed that MRI-based radiomic

analysis could predict the type of LGG-related epilepsy and thus

provide individualized treatment for patients with LGG-related

epilepsy. Among the 555 co-cited authors, LOUIS DN (207) and

KICKINGEREDER P (207) were the most cited authors. Among

the top 10 co-cited authors LAMBIN (0.23) had the highest

centrality. Louis DN et al. reported “2016 World Health

Organization classification of central nervous system tumors:

summary”, proposed a concept for the structure of CNS tumor

diagnosis in the molecular era. Building on the 2016 update of the

fourth edition and the work of the CNS Consortium for

Molecular and Practical Approaches to Tumor Taxonomy, the

2021 fifth edition introduces significant changes that advance the

role of molecular diagnostics in the classification of CNS tumors

(2). It is evident that Louis DN and his colleagues have made a

great contribution to the continuous updating of the tumor

classification of CNS. Kickingereder P et al. (28) developed a

framework that relies on artificial neural networks (ANNs) for
FIGURE 6

Visual mapping of references to related publications.
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fully automated quantitative analysis of MRI in neuro-oncology

to overcome the inherent limitations of manual assessment of

tumor burden. The discovery of ANN enables objective and

automated assessment of tumor response in neuro-oncology at

high throughput and could eventually serve as a blueprint for the

application of ANN in radiology to improve clinical decision

making. Future research should focus on prospective validation

in clinical trials, as well as application to automated high-

throughput imaging biomarker discovery and extension to

other diseases. In addition, Kickingereder P et al. (29) explored

the correlation between multiparametric, multiregional MRI

features and key molecular features in patients with newly

diagnosed glioblastoma. Found associations between established

MRI features and molecular features, although their strength is

not sufficient to generate machine learning classification models

for reliable and clinically meaningful prediction of molecular

features in patients with glioblastoma. In addition, the role of

integrating radiomics into a multi-layered decision-making

framework with key molecular and clinical features to improve
Frontiers in Oncology 10
disease stratification and potentially advance personalized

treatment of glioblastoma patients is emphasized (11).

FRONTIERS IN ONCOLOGY (42) was the most published

journal, followed by EUROPEAN RADIOLOGY (32) and

CANCERS (31). Among the top ten academic journals,

RADIOLOGY (29.146) has the highest impact factor, followed by

NEURO-ONCOLOGY (13.029). The impact factor of journals is

widely accepted and recognized internationally, and is an important

indicator for evaluating the academic influence of journals. The

most cited of the 516 co-cited journals was NEURO-ONCOLOGY

(412), followed by RADIOLOGY (402) and AM J NEURORADIOL

(345), and among the top 10 co-cited journals, NEW ENGL J MED

(176.709) had the highest impact factor and CLIN CANCER RES

(0.27) had the highest centrality. This indicates that the above

journals have high influence and status in this research area.

The analysis of co-cited references can reveal the research

themes clustered in the field. Information on the top 10 co-cited

references was mined, which can be considered as the classic

literature in the field. Based on the top 10 co-cited references it
B

A

FIGURE 7

(A) Visual mapping of keyword co-occurrence for related publications. (B) Visual mapping of keyword clustering for related publications.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1083080
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1083080
can be understood that the research themes in this field are mainly

about the prediction of survival of glioma patients by radiomics,

and molecular subtypes. The reference with the greatest burst

intensity and longest duration was reported by Aerts HJ et al.

(26), in an independent dataset of patients with lung and head and

neck cancer, a large number of radiogenomic features with

prognostic power, many of which had not previously been

identified as significant.

Generally, keywords in the literature are the core summary of

research content. Most scholars use keywords in the literature of a

specific field to analyze the research themes and hotspots in

different periods and reveal the trajectory of changes in the

research content and research focus of a specific field. We listed

the top ten keywords in this research field, and performed keyword

clustering analysis based on keyword co-occurrence, which finally

formed 16 clusters to identify the current research hotspots and

possible future development trends of radiomics in glioma. The

main contents are as follows:

4.1.1 Overview of radiomics
Radiomics, an emerging field, rapidly extracts numerous

quantitative features from tomographic images such as CT, MR,

or PET images through high-throughput calculations. The process

of converting digital medical images into mineable high-

dimensional data, called radiomics, motivates the reflection of

information about underlying pathophysiology through medical

images, and these relationships can be revealed by quantitative

image analysis. This multi-step process involves image acquisition

and reconstruction, image preprocessing, identification of regions

of interest (ROI), feature extraction and quantization, feature

filtering, and predictive model building (24). In image acquisition,

the quality of MR images obtained with different instruments and

imaging parameters varies widely. Such imaging quality variation

will have a significant impact on the radiomics analysis. The main

differences in MR images include mode mismatch (M), intensity

distribution differences (I) and layer spacing differences (L), which

are referred to as MIL differences. Hu Z et al. (30) proposed a MIL

normalization system to reconstruct inhomogeneous MR images

into high-quality data with complete modes, uniform intensity

distribution and consistent layer spacing. The MIL normalization

system provides high-quality standardized data, which is a

prerequisite for accurate radiomics analysis. Typical image

preprocessing for radiomics analysis includes, but is not limited

to, intensity normalization, spatial smoothing, spatial resampling,

noise reduction, and correction of MRI field inhomogeneities (8,

31). Feature-based radiomics utilizes a set of mathematically

predefined features that are typically extracted from a segmented

ROI or volume-of-interest (VOI), and image segmentation can be

achieved by manual, semi-automatic or fully automatic methods

(32, 33). After feature extraction, a subset of relevant features is

determined by feature selection algorithms to avoid overfitting and

to generate robust and generalizable predictive models. Parmar C

et al. (34) evaluated 14 feature selection methods and 12

classification methods for predictive performance and stability to

data perturbations. The results showed that the Wilcxon-test based
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feature selection method WLCX produced the highest prediction

performance in most classifiers. Interestingly, WLCX is a simple

univariate rank-based method that does not consider the

redundancy of selected features during feature ranking. Most

feature selection methods provide the highest predictive

performance when used with random forest (RF) classifiers.

Commonly used feature selection algorithms include the

minimum redundancy maximum relevance (mRMR) algorithm

(35, 36) and the sequential feature selection methods (37). After

feature selection, a mathematical model for the prediction of a

known, underlying ground truth. The most popular algorithms in

radiomics are linear and logistic regression, decision trees (e.g.,

random forests), support vector machines, neural networks, and the

Cox proportional hazards model in case of censored survival data

(38). Since high variation in medical imaging parameters affects the

robustness of radiomic features and thus the performance of the

predictive models built on them. Reiazi R et al. (39) evaluated the

impact of imaging parameters on the robustness of radiomic

features. Insights are also provided on the validity and variability

of different methods that have been applied to investigate the

robustness of radiological features. Radiomics research still faces

many problems in clinical practice, with inconsistencies in imaging

equipment, acquisition parameters, and image preprocessing

methods and methods of study used, resulting in widely variable

results and poor reproducibility. To ensure the stability and

generalizability of the study results, standardization of radiomics

study methods is necessary in future studies, which will also be the

focus of future research.

4.1.2 Application of radiomics in glioma
4.1.2.1 Radiomics applied to predict the molecular
subtypes of glioma

The criteria for glioma classification in CNS was introduced by

WHO in 2021. This criteria for glioma classification requires the

integration of histology with genomics (2). In contrast, the current

clinical gold standard for detecting chromosomal mutations is still

invasive and poses a hidden risk to patients. Pei L et al. (40)

proposed a new approach to glioma analysis that, for the first

time, combines cellular features derived from digital analysis of

brain histopathology images with molecular features that follow the

latest WHO criteria. This work shows for the first time in the

literature the promise of cellular quantification to predict brain

tumor grading in LGGs with IDH mutations. Yu J et al. (41)

explored a noninvasive approach to reveal IDH1 status by a

quantitative radiomic approach in grade II gliomas, and the result

showed that radiomics is a potentially useful method to estimate

IDH1 mutation status noninvasively using conventional T2-Flair

MRI images. Tan Y et al. (42) develop and validate a radiomic

nomogram for preoperative prediction of IDH genotype in

astrocytoma. The results showed that the radiomic signature was

built by six selected radiomic features, yielding area under roc curve

(AUC) values of 0.901 and 0.888 in the training and validation

cohorts. Li Y et al. (43) develop a radiomics pipeline based on the

clinical MRI scans to non-invasively predict glioma subtypes,

defined based on tumor grade, IDH mutation status and 1p/19q
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codeletion status. Sun C et al. (44) constructed a joint machine

learning-based model to predict molecular subtypes of LGG, and

the results showed that the joint machine learning algorithm can

provide a non-invasive method to predict preoperative molecular

subtypes of LGG with good predictive performance. Wei J et al. (45)

based MRI radiomics to predict MGMT methylation status, the

results showed that fusion radiomics features exhibited the highest

ability in predicting MGMT promoter methylation, with AUC of

0.925 in the training cohort and 0.902 in the validation cohort. Guo

J et al. (46) explored the combination of multiparametric MRI-

based radiomics with selected blood inflammatory markers was

effective in predicting grade and proliferation in glioma patients.

Radiomic features obtained from medical images have been used as

a new method for non-invasive diagnosis and clinical decision

making, showing clear advantages in the non-invasive

histopathological and molecular diagnosis of gliomas. In contrast,

the optimal combination of multiparametric MRI and machine

learning techniques has not yet been determined, and the

performance of combining other clinical bioindicators in

predicting molecular mutation status has not yet been fully

evaluated, which will be the direction and focus of future research.

4.1.2.2 Radiomics applied to survival prediction in glioma

Due to the site specificity of glioma growth, heterogeneity of

tumor cells and drug resistance, this still leaves glioma patients with a

poor prognosis. Researchers are interested in more accurately

predicting the survival rate of glioma patients, which could lead to

better individualized treatment plans. Wang J et al. (15) developed and

validated a radiomic signature for survival and chemotherapy efficacy

in LGG patients. The results showed that combining radiomic features

of combined contrast-enhanced axial T-1 weighted (CE-T1-w) and

fluid-attenuated inversion recovery (LAIR) sequences with

clinicopathologic nomograms was superior to clinicopathologic

nomograms in predicting OS in LGG. Choi Y et al. (47) reported

that multiparametric MR-based radiomics combined with

conventional clinical and genetic prognostic models improved the

prognostic value of OS and progression-free survival (PFS) in patients

with glioblastoma. Shaheen A et al. (48) evaluated the efficacy of four

multi-regional radiomics models for OS classification and quantified

the robustness of predictions to automatic segmentation of brain

tumor volume changes. Concluded that while STAPLE-fusion can

reduce segmentation errors, it is also not a solution for learning

accurate and robust radiomics models. Xu C et al. (49) used the

integration of state-of-the-art convolutional neural networks (CNN)

and radiomics to stratify glioma grade and predict survival of LGG

patients. This proposed integrated approach can be applied

noninvasively and effectively for the prediction of glioma grade and

survival. Bae S et al. (50) investigatedMRI radiomic features combined

with clinical and genetic information. The results showed that adding

radiomic models to clinical and genetic profiles improved survival

prediction compared to models that included clinical and genetic

profiles alone. Park JE et al. (51) developed and validated a

multiparametric MR radiomics model and demonstrated that

incorporating diffusion- and perfusion-weighted MR imaging into

an MR radiomics model improves prognostication in glioblastoma
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patients with better performance over that achievable with clinical

predictors alone. In order to achieve more accurate predictive efficacy,

many researchers have proposed the development of hybrid

prediction models, which shows that the combination of radiomic

features with clinical and genetic factors will be a research trend and

hot spot for survival prediction in glioma patients in the future.

4.1.2.3 Radiomics applied to the differential diagnosis
of glioma

Reliable assessment of tumor diagnosis by radiomics prior to

treatment can help guide treatment selection and reduce the

incidence of adverse events. Suh HB et al. (52) machine learning

algorithms based on MRI radiomics distinguished primary central

nervous system lymphoma (PCNSL) from non-necrotizing atypical

glioblastoma and showed excellent predictive performance. Bathla

G et al. (53) compared the diagnostic performance of several

radiomics-based models in distinguishing glioblastoma from

PCNSL. The predictive performance using both individual and

combined sequences, which was fairly stable across multiple best

performing models (AUC: 0.961-0.977), but did display

considerable variation between the best and worst performing

models. Revealed that the predictive accuracy of radiomics can

differ significantly based on the model and feature selection

methods and the combination of sequences used.

Currently, there is no reliable diagnostic test to distinguish

between pseudoprogression and early tumor progression. Lohmann

P et al. (13) reported that PET radiomics helped to diagnose

patients with pseudoprogressive gliomas. Müller M et al. (54)

developed a PET-based radiomic classifier that showed high

accuracy in differentiating treatment-related changes (TRC) from

tumor progression (TP) in gliomas. Distinguishing between

glioblastoma and isolated brain metastases may be challenging

due to the similar appearance of both on MRI. Su CQ et al. (55)

reported a study using radiomic analysis to differentiate between

glioblastoma and solitary brain metastases, the results showed that

in the training and validation cohorts, the radiomic features yielded

AUC values of 0.82 and 0.81. Ortiz-Ramón R et al. (56) evaluated

the potential of 2D texture features extracted from MR images in

differentiating brain metastases (BM) from glioblastomas following

a radiomics approach. Results showed that the radiomics is able to

discriminate between glioblastoma and BM with high accuracy

using a set of 2D texture features, thus helping to diagnose brain

lesions in a rapid and non-invasive way. Since there is no uniform

model to obtain the best performance for each specific dataset, it is

necessary to try different combinatorial approaches and combining

different advanced imaging protocols is a future research direction.

4.1.2.4 Radiomics applied to individualized treatment
of glioma

Radiomics has made tremendous developments in the last decade,

serving as a bridge between imaging and precision medicine (57). The

application of radiomics research reflects the quest for precision

medicine, and the availability of robust and validated biomarkers is

essential to drive precision medicine forward. Fathi Kazerooni A et al.

(58) described the prospects of radiomics and radiogenomics for
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personalized treatment of glioma patients from the perspectives of

neuro-oncology, neuropathology and computational. Concluded that

radiomics introduces new solutions to the current clinical challenges

of glioma treatment and provides promising evidence for personalized

diagnosis and treatment. Carles M et al. (59) evaluated a prognostic

model based on PET radiomic signature that facilitates prognostic

assessment and selection of patients with recurrent glioblastoma who

benefit from re-radiotherapy, and further analysis in a larger

prospective validation cohort is warranted and planned.

Noninvasive early prediction and delineation of recurrence can

aid in targeted treatment, which has the potential to delay

recurrence. Chougule T et al. (60) reported a study on

understanding longitudinal radiomic changes from preoperative

MRI to glioma recurrence and subsequently using machine learning

to predict recurrence areas 143 ± 42 days before recurrence. The

findings showed a step forward in the prediction of glioblastoma

recurrence by phenotypic changes in radiomics, which have the

potential to serve as MRI-based biomarkers for tailoring customized

therapeutic interventions. Kickingereder P et al. (11) reported that

integrating radiomics with key molecular and clinical features into a

multilevel decision framework could improve disease stratification

and potentially advance personalized therapy for patients with

glioblastoma. Classifiers based on various combinations of MRI

sequences, genetic information, and clinical data can predict tumor

diagnosis, overall survival, and treatment response with reasonable

accuracy and non-invasively. Radiomics has the potential to

transform the scope of glioma management through personalized

medicine, but the application in glioma is still in its infancy and has

not yet been translated into clinical decision making (61). Larger

sample sizes, standardized image acquisition and data extraction

techniques will be needed in the future to develop machine learning

models that can be effectively translated into clinical practice.

A large literature showed that radiomics has been extensively

studied in glioma and has yielded promising results. However,

large-scale multicenter validation of existing exploratory radiomics

studies is still lacking, and the vast majority of validation cohorts are

still derived from retrospective data from single independent units.

In addition, correlations between radiomics and clinical features

have been extensively studied, but less so with other data types such

as genomics, transcriptomics, proteomics, and metabolomics. And

the next milestone in radiomics will undoubtedly be the

establishment of models for clinical decision support. However,

achieving this goal will require the development of globally accepted

standards as well as the establishment of a robust and

comprehensive common database, which in turn will require the

participation of different medical centers from around the world to

provide data. These challenges and directions will also be the focus

and trend of the field in future research.
5 Limitations

1) The data were obtained from WOScc only. 2) We collected

relevant literature from 2012-2022, while the literature in WOScc is

continuously updated. 3) Reviewers removed irrelevant literature

from the study manually which may lead to selection bias.
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We conducted a comprehensive analyze of publications related

to glioma radiomics using bibliometric tools to reveal the

bibliometric features of the field. A synthesis of relevant

publications identifies the current state of research and research

hotspots in the field. Although radiomics is a rapidly expanding

field, the application in glioma is still at the stage of clinical

exploration and there are many obstacles to overcome in the future.
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