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mitochondrial physiology
and metabolic pathways
in B lymphocytes
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Mitochondria, the organelle critical for cell survival and metabolism, are exploited

by cancer cells and provide an important therapeutic target in cancers.

Mitochondria dynamically undergo fission and fusion to maintain their diverse

functions. Proteins controlling mitochondrial fission and fusion have been

recognized as essential regulators of mitochondrial functions, mitochondrial

quality control, and cell survival. In a recent proteomic study, we identified the

key mitochondrial fission factor, MFF, as a new interacting protein of TRAF3, a

known tumor suppressor of multiple myeloma and other B cell malignancies. This

interaction recruits the majority of cytoplasmic TRAF3 to mitochondria, allowing

TRAF3 to regulate mitochondrial morphology, mitochondrial functions, and

mitochondria-dependent apoptosis in resting B lymphocytes. Interestingly,

recent transcriptomic, metabolic and lipidomic studies have revealed that TRAF3

also vitally regulates multiple metabolic pathways in B cells, including phospholipid

metabolism, glucose metabolism, and ribonucleotide metabolism. Thus, TRAF3

emerges as a novel regulator of mitochondrial physiology and metabolic pathways

in B lymphocytes and B cell malignancies. Here we review current knowledge in

this area and discuss relevant clinical implications.
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Introduction

Tumor necrosis factor receptor-associated factor 3 (TRAF3), a cytoplasmic adaptor

protein of the TRAF family, regulates the signal transduction pathways of a wide variety of

immune receptors, including the TNF-R superfamily, lymphocyte antigen receptors, pattern

recognition receptors (PRRs), and cytokine receptors (1–4). Through its scaffolding function

and E3 ubiquitin ligase activity, TRAF3 differentially modulates a plethora of downstream

signal transduction cascades, such as the activation of nuclear factor-kBs (NF-kB1 and NF-

kB2), mitogen-activated protein kinases (MAPKs), and interferon-regulatory factors (IRFs),
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among others (1–4). Such regulatory function of TRAF3 exhibits an

interesting dependence on the specific receptor engaged as well as the

cellular context (1–4).

TRAF3 is ubiquitously expressed in various immune and non-

immune cell types of mammals (1, 2, 5). Mice made genetically

deficient in Traf3 exhibit global defects and die by 10 days after birth

(6). Subsequent studies of conditional Traf3 knockout and cell type-

specific Traf3 transgenic mice revealed that TRAF3 plays critical and

diverse roles in adaptive immunity and innate immunity as well as the

homeostasis and stress responses of many tissues (1–4).

Consequently, aberrant function of TRAF3 leads to a broad array of

serious diseases in mouse models, including cancers, autoimmune

diseases, inflammatory diseases, and infectious diseases (1–4, 7, 8).

Reinforcing the evidence obtained from mouse models, somatic

mutations (such as homozygous deletions and inactivating mutations)

of the TRAF3 gene in humans were first identified in multiple myeloma

(MM) and then other B cell malignancies (1, 3, 9–11). Somatic alterations

of the TRAF3 gene are also present in other human cancers (3). The first

germline mutation of TRAF3, an autosomal loss-of-expression mutation

(R338W), was initially reported in a patient with a history of herpes

simplex virus-1 (HSV-1) encephalitis (12) and also detected in another

patient with recurrent Mycobacterium abscessus infection (13).

Interestingly, heterozygous germline mutations in TRAF3 (premature

stop codon mutations) were recently identified in 9 patients from five

unrelated families, causing an immune dysregulation syndrome

characterized by recurrent bacterial infection, autoimmunity, systemic

inflammation, B cell lymphoproliferation, and hypergammaglobulinemia

(14). Furthermore, genome-wide association studies (GWAS) and

targeted analyses demonstrated that common genetic variants of

TRAF3, which reduce TRAF3 expression, are associated with an

increased risk of B cell malignancies, systemic lupus erythematosus,

hypergammaglobulinemia, and recurrent bacterial infection in a wider

population (14). Taken together, the above evidence highlights the

importance of TRAF3 in the immune system, and particularly in

B lymphocytes.
TRAF3 in B cell biology and B cell
malignancies

In normal B lymphocytes, TRAF3 is a critical regulator of mature

B cell survival, B cell activation, and plasma cell differentiation and

maturation (15–23). These important physiological functions of

TRAF3 in B lymphocytes are achieved through its negative

regulatory roles in the signal transduction pathways of multiple

receptors that are central to B cell biology, including B cell antigen

receptor (BCR), the co-stimulatory receptor CD40, receptors of the

principle B cell survival factor BAFF, Toll-like receptors (TLRs), and

IL-6 receptor (15–23). Specific deletion of the Traf3 gene from B

lymphocytes in mice leads to prolonged B cell survival, constitutive

NF-kB2 activation, augmented BCR signaling, elevated T-dependent

and T-independent antibody responses, enhanced TLR responses,

and increased IL-6-induced plasma cell differentiation, which

culminate in autoimmunity and B lymphomagenesis (15–24).

Interestingly, transgenic overexpression of TRAF3 in B cells also

renders B cells exhibiting enhanced reactions (also termed
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hyperreaction) to antigens and TLRs, resulting in autoimmunity

and chronic inflammation (25). Thus, an appropriate level of

TRAF3 proteins is required for normal B cell survival

and functionality.

Consistent with the importance of TRAF3 in B cell biology,

deletions and inactivating mutations of the TRAF3 gene were first

reported in human multiple myeloma (MM) (9, 10), a malignancy

derived from plasma cells. According to the study by Keats et al., the

deletion frequency of TRAF3 is 15.8% in 158 analyzed MM patients

(9). The high frequency of TRAF3 deletions and inactivating

mutations was verified in a larger cohort of patient study by

Walker et al., which reported 16.7% genetic alterations of TRAF3 in

463 examined MM patients, including 13% of deep deletions, 3.26%

of mutations, and 0.43% of truncations of the TRAF3 gene (26).

Beyond genetic alterations, the Epstein-Barr virus (EBV)-encoded

oncoprotein latent membrane protein 1 (LMP1) sequesters TRAF3 in

B lymphocytes and can render EBV-infected wild type B cells

functionally TRAF3-deficient, which may also contribute to the

pathological mechanisms of B cell oncogenesis (27–29).

Subsequent studies revealed that deletions and inactivating

mutations of TRAF3 are frequently detected in many other types of

mature B cell malignancies, including diffuse large B-cell lymphoma

(DLBCL), splenic marginal zone lymphoma (MZL), B-cell chronic

lymphocytic leukemia (B-CLL), mantle cell lymphoma (MCL),

Waldenström’s macroglobulinemia, and Hodgkin lymphoma (HL)

(1, 3, 9–11, 30). This is corroborated by frequent TRAF3 mutations

detected in canine non-Hodgkin lymphomas (NHL) (31–34). Similar

to Traf3-/- mouse B cells, human B cells with germline TRAF3

mutations that reduce TRAF3 expression also exhibit constitutive

NF-kB2 activation and enhanced responses to BCR, BAFF, TLR9, and

IL-6 signaling, including increased proliferation and plasma cell

formation associated with elevated activation of NF-kB1, ERK,
AKT, and STAT3 (14). Reconstitution of TRAF3 expression in

TRAF3-defic ient human MM cel l s induces apoptos i s ,

demonstrating a tumor suppressive role of TRAF3 in B cell

malignancies (9, 35). Of clinical significance, it is being appreciated

that TRAF3 alterations contribute to patient resistance to various

therapies of B cell malignancies, including BTK inhibitors, PI3K

inhibitors, proteasome inhibitors, HDAC inhibitors, cIAP

antagonists, immunotherapy (e.g., rituximab), and chemotherapy

(e.g., R-CHOP) (9, 19, 20, 36–39). In this context, a deeper

understanding of the molecular mechanisms underlying TRAF3-

mediated regulation of B lymphocytes is required to inform better

treatment strategies for patients with B cell malignancies involving

TRAF3 deletions and other relevant alterations.
TRAF3 is a novel regulator of
mitochondrial physiology in B cells

While analyzing the subcellular distribution of TRAF3 in resting

B lymphocytes, Liu et al. found that the majority of cytoplasmic

TRAF3 is localized at the mitochondria in the absence of stimulation

(40). They also noticed that BAFF-induced recruitment and

subsequent degradation of TRAF3 mainly affect the proteins

localized at the mitochondria in B cells (40). Given the central role
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of mitochondria in regulating apoptosis (41–43), Liu et al. pursued

how TRAF3 is localized at mitochondria and what it does there.

Since TRAF3 does not contain any mitochondrial targeting motif

or transmembrane domain, Liu et al. tested if TRAF3 interacts with

mitochondrial outer membrane (MOM) proteins by employing a

proteomic approach, including biochemical fractionation to isolate

mitochondria and affinity purification to pull down mitochondrial

TRAF3-interacting proteins followed by liquid chromatography-

tandem mass spectrometry (LC-MS/MS)-based sequencing (40). To

facilitate affinity purification, they transduced TRAF3-deficient

human MM cells with lentiviruses expressing tagged TRAF3 (40).

Liu et al. identified the MOM protein MFF (44) as a TRAF3-

interacting protein and further verified the TRAF3-MFF interaction

by co-immunoprecipitation and GST pull-down assays (40). MFF

contains a coiled-coil domain that is known to mediate the

interactions of other proteins with TRAFs (45–47). The domain

structural analyses revealed that the TRAF-C domain of TRAF3 is

required for binding to MFF, which was verified by specific pull-down

of in vitro translated MFF by GST-TRAF3 but not by GST-

TRAF3DTRAF-C (40). Furthermore, TRAF3 inhibits the

phosphorylation and ubiquitination of MFF in resting B cells and

co-transfected HEK293T cells, whereas overexpression of MFF leads

to decreased ubiquitination of TRAF3 (40). Thus, MFF is a novel

TRAF3-interacting protein that recruits TRAF3 to the MOM in B

cells in the absence of receptor engagement.

The principal function of MFF is to promote mitochondrial

fission, thereby contributing to the regulation of mitochondrial

number, morphology, function, and quality (44, 48, 49). Consistent

with the detected TRAF3-MFF interaction, increased protein levels of

mitochondrial TRAF3 are associated with decreased mitochondrial

number, altered mitochondrial morphology, reduced mitochondrial

respiration, and increased mitochondrial ROS production and

membrane permeabilization, which lead to caspase 9-dependent

apoptosis in resting wild type B cells (40). Liu et al. and

Mambetsariev et al. found that deletion of TRAF3 has the opposite

effects on mitochondrial morphology, respiration, ROS production,

and mitochondria-dependent apoptosis in resting B cells (40, 50).

Interestingly, lentivirus-mediated overexpression of MFF restores

mitochondria-dependent apoptosis in TRAF3-deficient human MM

cells (40). Corroborating these findings, Rae et al. recently reported

that B lymphoblastoid cell lines (BLCLs) derived from patients with

germline premature stop codon mutations of TRAF3 display an

increased oxygen consumption rate, indicative of elevated

mitochondrial respiration, which is accompanied by altered

mitochondrial morphology, up-regulated COX II expression and

enhanced cytochrome c oxidase activity (14). Reconstitution of

TRAF3 expression in patient-derived BLCLs inhibits mitochondrial

respiration and the expression of the mitochondrial co-

transcriptional regulator PGC1a (14). Moreover, transgenic

overexpression of TRAF3 in B cells also promotes NHL

development in mice when the anti-apoptotic protein BCL-2 is

simultaneously overexpressed (51), suggesting a need for BCL-2-

mediated protection of mitochondria in TRAF3-overexpressing B

cells. Therefore, TRAF3 is a novel regulator of mitochondrial

physiology in normal and malignant B cells.

It is noteworthy that BAFF inhibits mitochondrial ROS

production and prevents mitochondria-dependent apoptosis in wild
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type (WT) but not Traf3-/- B cells (40). Upon BAFF stimulation,

BAFF-Rs recruit TRAF3 from the MOM to plasma membrane, which

would lead to disruption of the TRAF3-MFF interaction and therefore

modulate mitochondrial functions in WT B cells (40). Interestingly,

the TRAF3-MFF interaction appears to result in decreased

phosphorylation and ubiquitination of MFF as well as decreased

ubiquitination of TRAF3 (40). Phosphorylation of MFF has been

shown to increase the activity of MFF in recruiting Drp1, the GTPase

that executes mitochondrial fission, to the MOM, promoting

mitochondrial fission (52–55). Ubiquitination of MFF may enhance

clearance of damaged mitochondria viamitophagy or may induce the

degradation of MFF under non-stressed conditions (56, 57). Detailed

mechanisms of how TRAF3 inhibits the phosphorylation and

ubiquitination of MFF in resting B cells remain unclear. TRAF3 is

known as an E3 ubiquitin ligase. Other E3 ubiquitin ligases that can

interact with MFF include Parkin and MARCH5 (56–58). However,

only Parkin has been shown to directly catalyze the ubiquitination of

MFF (56, 57). Deubiquitinating enzymes of MFF have not been

reported yet. It is possible that TRAF3 may catalyze the

ubiquitination of Parkin or relevant deubiquitinating enzymes,

kinases or phosphatases to indirectly inhibit the ubiquitination and

phosphorylation of MFF in resting B cells. Alternatively, the TRAF3-

MFF interaction may interfere with the accessibility of MFF by Parkin

and kinases or facilitate the recruitment of relevant deubiquitinating

enzymes or phosphatases, leading to reduced ubiquitination and

phosphorylation of MFF. Such detailed mechanisms await

further investigation.

An interesting open question is whether TRAF2, another member

of the TRAF family that has overlapping functions with TRAF3 in B

cells, can also interact with MFF. The TRAF3-TRAF2 heterotypic

interaction is known to bridge the formation of the cIAP1/2-TRAF2-

TRAF3-NIK complex in B cells (1). The TRAF3-TRAF2 interaction

minimally involves the TRAF-C domain of TRAF3 and the TRAF-N

domain and zinc fingers 4 and 5 of TRAF2 (59). It remains unknown

whether the TRAF3-MFF interaction interferes with the TRAF3-

TRAF2 interaction when TRAF3 proteins are limiting in B cells.

Following viral infection, both TRAF3 and TRAF2 are recruited to the

mitochondrial antiviral signaling complexes by MAVS (60–63), while

in response to ER stress, TRAF2 is translocated to ER via interacting

with the ER stress sensor IRE1a (64, 65). In addition, cIAP1/2 also

binds to caspases and upon mitochondrial membrane

permeabilization, cIAP1/2 binds to Smac that is released from

mitochondrial intermembrane space to cytosol (66, 67). However, it

is unclear whether and how the TRAF3-MFF, TRAF3-TRAF2, and

TRAF2-cIAP1/2 interactions are affected by viral infection, ER stress,

and mitochondrial membrane permeabilization in B cells. These

unanswered questions await further investigation.
TRAF3 regulates specific metabolic
pathways in resting B cells

The metabolic mechanisms underlying TRAF3-mediated

regulation of B cells have just begun to be unraveled. To

understand the metabolic basis of TRAF3-mediated regulation of B

cell survival, we recently exploited multiple “omics” approaches,

including metabolomics, lipidomics, and transcriptomics (35).
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Integrated analyses of these “omics” datasets revealed that TRAF3

regulates specific metabolic pathways in resting B cells, including

phospholipid, glucose, and ribonucleotide metabolism (35).

We found that a variety of metabolites, lipids and enzymes regulated

by TRAF3 in B cells are clustered in the interconnected

phosphatidylcholine (PC) and phosphatidylethanolamine (PE)

metabolic pathways (Figure 1A) (35). Enzymes that are regulated by

TRAF3 and may contribute to the altered PC and PE metabolism

include choline kinase a (Chka), lysophosphatdiylcholine
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acyltransferease 1 (Lpcat1), glycerophosphodiester phosphodiesterase3

(Gdpd3), diacylglycerol kinase a (Dgka), and fatty acid amide hydrolase

(Faah), etc. (35, 68). Using stable isotope labeling, we demonstrated that

Chka-driven de novo biosynthesis of PC is remarkably elevated in

Traf3-/- mouse B cells and decreased in TRAF3-reconstituted human

MM cells containing biallelic TRAF3 deletions (35). Inhibition of Chka
by RSM932A (also named TCD-717) or MN58B substantially reverses

the survival phenotype of TRAF3-deficient B cells both in vitro and in

vivo (35). Thus, TRAF3-regulated choline metabolism has diagnostic
A

B

D E

C

FIGURE 1

Metabolic pathways regulated by TRAF3 in B lymphocytes. (A–C) Pathway schematics showing TRAF3-mediated metabolic regulation in B cells. Small
metabolites, lipids, transporters, and metabolic enzymes that are dysregulated in Traf3-/- B cells are shown in red (for up-regulated) or blue (for down-
regulated). Enzymes and transporters are denoted in Italic font in the schematics. (A) The interconnected phosphatidylcholine (PC) and
phosphatidylethanolamine (PE) metabolic pathways. (B) Glucose metabolic pathways. (C) Ribonucleotide metabolic pathways. (D, E) Venn diagram of
TRAF3-regulated metabolic genes and those regulated by NF-kB1 and NF-kB2 (D) or BAFF and CD40 (E). Metabolic genes regulated by NF-kB1, NF-kB2,
BAFF or CD40 are extracted from the published Gene Expression Omnibus (GEO) datasets GSE75761, GSE75762, GSE58972, and GSE62559. (D) TRAF3
regulates the expression of 8 metabolic genes via NF-kB-independent mechanisms. NF-kB2 and NF-kB1 act synergistically to promote Lpcat1 expression
and suppress Pip5k1b expression. In contrast, Pgm2 and Hk2 expression are only inhibited by compound deletion of both Relb and cRel, suggesting
redundant roles of NF-kB2 and NF-kB1 in up-regulating the expression of these two enzymes. (E) The majority (10/16) of the differentially expressed
metabolic genes identified in Traf3-/- B cells are consistently changed in WT B cells following BAFF and CD40 stimulation. TRAF3 also regulates the
expression of 3 unique enzymes, which are not affected by BAFF or CD40 stimulation.
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and therapeutic value for B cell malignancies with TRAF3 deletions or

relevant alterations (35, 68).

We observed significant elevation of 5 glucose metabolic

intermediates in resting Traf3-/- B cells, including glucose-6-

phosphate (G6P), the convergence point of the glycolytic and

pentose phosphate pathways (PPP) (69), and 4 metabolites of

nonoxidative PPP (35). Our transcriptomic analysis identified up-

regulation of two key enzymes in Traf3-/- B cells: phosphoglucomutase

2 (Pgm2) and glycogen phosphorylase L (Pygl) that is responsible for

glycogen breakdown (70, 71). Mambetsariev et al. reported that

glucose transporter 1 (Glut1) and hexokinase II (HKII) are also up-

regulated in Traf3-/- B cells and that these cells exhibit increased

glucose uptake (50). Inhibition of glucose metabolism by the Glut1

inhibitor STF-31 or the glycolysis inhibitor 2-deoxyglucose (2-DG)

suppresses B cell survival, while glucose supplementation in serum-

free medium is required for long-term survival of Traf3-/- B cells in

culture (50). These findings are strengthened by the evidence that B

cell-specific deletion of Glut1 leads to substantially decreased numbers

of peripheral B cells in mice (72) and that Glut1 expression is necessary

to maintain elevated glucose metabolism and to promote cell survival

of human MM and B cell acute lymphoblastic leukemia (B-ALL) (73,

74). Therefore, TRAF3 can regulate both glycogen breakdown and

glucose uptake to modulate glucose metabolism (Figure 1B), which

also affects B cell survival.

In line with elevation of ribose-5-phosphate (Ribose-5-P), a

metabolite generated by nonoxidative PPP that serves as the

molecular backbone of ribonucleotide biosynthesis (69, 75–77), we

detected significantly increased levels of 9 ribonucleotides in resting

Traf3-/- B cells (Figure 1C) (35). We also identified up-regulation of

two enzymes responsible for ribonucleotide biosynthesis (Mthfd1 and

Adssl1) as well as down-regulation of two enzymes involved in

ribonucleotide catabolism (Upb1 and Pde2a) in Traf3-/- B cells (35).

However, we did not observe significant changes in ribonucleotide

triphosphates (35), probably because they are consumed to support

elevated transcription and other reactions required for the prolonged

B cell survival. MTHFD1, an enzyme crucial for de novo purine

biosynthesis, is up-regulated in human MM, NHL, and HL

(Oncomine) (78–81). Interestingly, a common polymorphism of

MTHFD1 R653Q (MTHFD1 G1958A) in the synthetase domain

impairs purine synthesis and the corresponding AA genotype is

associated with a decreased risk of human B-ALL and NHL (82,

83), indicating a role of this enzyme in B cell oncogenesis. Taken

together, elevated PC and PE synthesis, glucose metabolism, and

ribonucleotide synthesis are the metabolic basis mediating the

aberrant survival of TRAF3-deficient B cells.

BAFF-R or CD40 signaling recruits TRAF3 to receptor complexes

at plasma membrane rafts, inducing TRAF3 degradation, NF-kB2
activation, and B cell survival (1). TRAF3 also inhibits NF-kB1
activation induced by CD40 and BCR signaling (18, 19). We thus

analyzed the Gene Expression Omnibus (GEO) datasets for relevant

metabolic genes in mouse B cells genetically deficient in different

subunits of NF-kB in comparison to WT B cells, including Nfkb2-/-

(GSE75761 and GSE75762), Rela-/- (GSE58972), cRel-/-, and Relb-/-

cRel-/- (GSE62559) B cells, in the absence or presence of stimulation

with BAFF, CD40 or CD40 plus IgM (84–86). The results of our

analyses revealed that 8 of the 16 TRAF3-regulated metabolic genes

(35, 50) are independent of NF-kBs (Figure 1D). Down-regulation of
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Pde2a is dependent on NF-kB1, while regulation of 3 other genes is

dependent on NF-kB2. Interestingly, NF-kB2 and NF-kB1 act

synergistically to promote Lpcat1 expression and suppress Pip5k1b

expression. In contrast, NF-kB2 and NF-kB1 appear to play

redundant roles in up-regulating the expression of Pgm2 and Hk2,

which is only inhibited by compound deficiency in both Relb and cRel

(84–86). On the other hand, the majority (10/16) of the metabolic

genes differentially expressed in Traf3-/- B cells are consistently

changed in WT B cells following BAFF and CD40 stimulation

(Figure 1E) (84–86). Faah and 2 other regulated genes (Lpcat1 and

Pde2a) are only shared with either BAFF or CD40 stimulation,

respectively. However, 3 additional genes (Lacc1, Adssl1, and

Gdpd3) are uniquely altered by Traf3 deficiency. Thus, although

similar to BAFF- or CD40-induced physiological B cell survival,

aberrant survival of TRAF3-deficient B cells exhibits certain distinct

features in metabolic reprogramming.
Discussion

In summary, recent proteomic and metabolic evidence reveals

that TRAF3 regulates mitochondrial physiology and metabolic

pathways to control B cell survival (Figure 2). TRAF3 can regulate

mitochondrial morphology and function via interacting with MFF

(40). Interestingly, TRAF3-mediated metabolic regulation leads to

reduced levels of the phospholipids PC and PE (35), which are the

most abundant phospholipids of mitochondrial membranes –

comprising ∼40% and ∼30% of total mitochondrial phospholipids,

respectively (87). Moderate dysregulation of PC and PE has profound

effects on mitochondrial physiology and mitochondria-dependent

apoptosis (88, 89). Moreover, the expression of anti-apoptotic

proteins such as Mcl1 and Bcl-xL, critical regulators of

mitochondrial physiology and intrinsic apoptosis (90, 91), is

inhibited by TRAF3 via the downstream NIK-NF-kB2 and nuclear

CREB pathways (16, 17, 92, 93). Therefore, TRAF3 can regulate

mitochondrial physiology and mitochondria-dependent apoptosis in

B cells via multi-layered mechanisms. In addition, TRAF3 also

regulates the expression of key enzymes responsible for glucose and

ribonucleotide metabolism (35, 50), which coordinately provide the

metabolic basis to control B cell survival.

The above proteomic and metabolic findings have therapeutic

implications, suggesting that manipulation of mitochondrial

dynamics and inhibition of key metabolic enzymes or transporters

offer new perspectives of treatment strategies for B cell malignancies,

especially those with TRAF3 deletions or relevant alterations. Indeed,

we demonstrated that overexpression of MFF restores the intrinsic

apoptosis in TRAF3-deficient human MM cells, supporting a

therapeutic potential of drugs that have been developed to target

mitochondrial dynamics and are being tested in other disease models,

including cell permeable peptidomimetics of MFF, mitochondrial

division inhibitor-1 (mdivi-1), dynasore, P110, and 15-

oxospiramilactone, etc. (44, 48, 94, 95). We also showed that

inhibition of choline metabolism by the Chka inhibitors TCD-717

or MN58B substantially reduces the expanded B cell compartment in

B-Traf3-/- mice and induces apoptosis in TRAF3-deficient human

MM cells (35), while Mambetsariev et al. demonstrated that

inhibition of glucose metabolism by the Glut1 inhibitor STF-31 or
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the glycolysis inhibitor 2-DG dampens Traf3-/- B cell survival (50).

Moreover, available information suggests that several other TRAF3-

regulated metabolic enzymes (e.g., Lpcat1, Pygl, Hk2, and Mthfd1) are

also targetable points in cancers (70, 82, 83, 96–104). Thus, all these

mitochondria-targeting drugs and pharmacological inhibitors of

metabolic enzymes/transporters can be exploited, alone or in

combination with current therapies, for the treatment of human B

cell malignancies to improve patient outcome.

Increasing evidence indicates that TRAF3 is a tumor suppressor

not only in B cell malignancies, but also in a variety of cancers derived

from macrophages, osteoblasts, and epithelial cells of different tissues.

Examples include histiocytic sarcoma, osteosarcoma, head and neck

cancer, bladder cancer, colorectal cancer, breast cancer, liver cancer,

and lung cancer (3, 7, 8, 105–112). Loss of TRAF3 also leads to

constitutive NF-kB2 activation in macrophages, osteoblasts/

osteoclasts, and epithelial cells (7, 107, 111–114). Similar to that

observed in B cells, TRAF3 also regulates cell survival and

mitochondrial ROS production in macrophages and epithelial

carcinoma cells under specific circumstances (109, 115). We

detected co-immunoprecipitation of TRAF3 with MFF in

transfected HEK293T epithelial cells. Interestingly, Liu et al.

recently reported that TRAF3 interacts with the mitochondrial

fusion protein mitofusin-1 (MFN1) in ovarian cancer cells, which is

enhanced upon TLR4 signaling induced by Selene nanoparticles
Frontiers in Oncology 06
(116). Furthermore, Zhou et al. previously reported co-

immunoprecipitation of TRAF3 with the MOM protein PINK1 in

resting primary mouse peritoneal macrophages (117). Therefore,

whether and how TRAF3 regulates mitochondria-dependent

apoptosis in these cell types via the TRAF3-MFF axis and

metabolic mechanisms as described for B cells or via distinct

MFN1- and PINK1- dependent mechanisms are significant areas

for future exploration. Such knowledge would lay the foundation for

testing the therapeutic potential of TRAF3 gene therapy,

mitochondria-targeting drugs, and pharmacological inhibitors of

metabolic enzymes/transporters in histiocytic sarcoma,

osteosarcoma, and epithelial cell-derived cancers of various tissues,

especially those with TRAF3 deletions or relevant alterations.
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