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Background: Rhabdomyosarcoma (RMS) is a soft tissue sarcoma usually originated

from skeletal muscle. Currently, RMS classification based on PAX–FOXO1 fusion is

widely adopted. However, compared to relatively clear understanding of the

tumorigenesis in the fusion-positive RMS, little is known for that in fusion-

negative RMS (FN-RMS).

Methods: We explored the molecular mechanisms and the driver genes of FN-

RMS through frequent gene co-expression network mining (fGCN), differential

copy number (CN) and differential expression analyses on multiple RMS

transcriptomic datasets.

Results:Weobtained 50 fGCNmodules, amongwhich five are differentially expressed

between different fusion status. A closer look showed 23% of Module 2 genes are

concentrated on several cytobands of chromosome 8. Upstream regulators such as

MYC, YAP1, TWIST1 were identified for the fGCNmodules. Using in a separate dataset

we confirmed that, comparing to FP-RMS, 59 Module 2 genes show consistent CN

amplification and mRNA overexpression, among which 28 are on the identified chr8

cytobands. Such CN amplification and nearby MYC (also resides on one of the above

cytobands) and other upstream regulators (YAP1, TWIST1) may work together to drive

FN-RMS tumorigenesis and progression. Up to 43.1% downstream targets of Yap1 and

45.8% of the targets of Myc are differentially expressed in FN-RMS vs. normal

comparisons, which also confirmed the driving force of these regulators.

Discussion: We discovered that copy number amplification of specific cytobands

on chr8 and the upstream regulators MYC, YAP1 and TWIST1 work together to

affect the downstream gene co-expression and promote FN-RMS tumorigenesis

and progression. Our findings provide new insights for FN-RMS tumorigenesis and
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offer promising targets for precision therapy. Experimental investigation about the

functions of identified potential drivers in FN-RMS are in progress.
KEYWORDS

fusion-negative RMS (FN-RMS), fusion-positive RMS (FP-RMS), frequent co-expression
network (fGCN), copy number alteration, upstream regulator
GRAPHICAL ABSTRACT
1 Introduction

Rhabdomyosarcoma (RMS) is one of the most common soft tissue

sarcomas in children. It accounts for about 5% of all childhood tumors

and represents about 50% of pediatric soft tissue sarcomas cases (1, 2).

RMS usually originates and develops from skeletal (striated) muscle cells

(3). Traditionally, RMS contains two major subtypes: embryonal RMS

(ERMS; accounts for ~60% of RMS cases) and alveolar RMS (ARMS;

~20% of RMS cases); each presents distinct histologic features, molecular

alterations, and clinical outcome (2, 3). At the molecular level, ARMS

could be further divided into two subtypes according to the presence or

absence of the PAX3 or PAX7–FOXO1 gene fusion (1, 4), which refers to

the chromosomal translocations t(2;13)(q35;q14) and t(1;13)(p36;q14). A

part of PAX3 (on chromosome 2) or PAX7 (on chromosome 1) is fused

to FOXO1 (on chromosome 13) gene (4). ARMS with PAX3/PAX7-

FOXO1(together called PAX-FOXO1) gene fusion represents about 80%

of ARMS cases (1, 4, 5), and the ones without fusion gene accounts for

the rest 20%, which exhibit similar molecular patterns and clinical

behaviors to ERMS. This indicates that the fusion status can better

classify patient outcomes than the histologic subtype (1, 4). Thus, this

molecular level classification with respect to PAX–FOXO1 fusion status

has been gradually adopted. In this work, we refer to PAX-FOXO1

fusion-positive cases as FP-RMS and the others as FN-RMS. FP-RMS

contains relatively low-overall somatic mutation burden (1); therefore, a

number of studies have been carried out to investigate whether PAX-

FOXO1 gene fusion functions as the driver for the tumorigenesis and

development of FP-RMS. Ren et al. (6) confirmed that PAX-FOXO1

fusion genes commit mesenchymal stem cells to a myogenic lineage by

inhibiting terminal differentiation and contributing to ARMS formation.
02
Another study showed that PAX-FOXO1 fusion activates transcription

factor (TF) MYOD and myogenin and transforms mesenchymal

progenitor cells to the skeletal muscle lineage, leading to malignant

formation resembling ARMS (6). Rarer gene fusion of PAX3 to NCOA1

(7) or NCOA2 (8) have been reported, but because they are much rarer

andNCOA1/2 functions similarly as FOXO1, those fusions can be treated

as special cases of PAX-FP RMS.

However, compared with relatively clear understanding of

tumorigenesis and driving force in FP-RMS, the potential driver genes

of the more heterogeneous FN-RMS, which represent more than 80% of

the RMS cases, are still unclear. Previously, several SNVs for FN-RMS

have been identified such as RAS as a potential driver gene. RAS

mutations has been detected in 5–30% of all RMS patients (9).

However, they are only significantly associated with a subset of ERMS

patients (75% of high-risk and 45% of intermediate-risk cases had RAS

mutations, whereas low-risk ERMS had no mutations) (10), and not with

all of the FN-RMS patients. The understanding about the mechanisms of

FN-RMS as a whole is still incomplete, and further efforts to look for

other potential driver genes of this group are still needed. Moreover,

while FN-RMS harbor manymore SNVs, these SNVs are barely linked to

clinic due to limited recurrent SNVs across RMS specimens, lack of

ability to target a cancer-driving mutation, and incorrect assumptions

about the relevance of individual aberrations (11–15). Accumulated

studies have pointed out that DNA copy number variations (CNVs)

are common and more highly recurrent in FN RMS (15, 16). In previous

genomic analysis, ERMS (all considered as FN-RMS) demonstrates a

high frequency of LOH on chromosomes 11p, 11q, and 16q (1) and tends

to have more CNV than ARMS (1). However, a more systematic

comparative analysis of FN- versus FP-RMS is still needed to pinpoint
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the driving force behind FN-RMS tumorigenesis and development, as

well as to identify promising therapeutic targets for FN-RMS.

Gene co-expression network mining identifies groups of genes

possessing highly correlated/anti-correlated expression profiles across

samples or disease conditions. These so-called gene co-expression

network modules (GCN modules) are generally enriched in specific

pathways or biological functions. Some module’s co-expression is the

result of common upstream regulators such as TFs. Therefore, detecting

GCN modules specific to a disease condition can lead to quick

identification of potential driving regulators. Alternatively, module

co-expression can also result from the chromosomal CNVs. Genes in

such modules reside on the same fragment of a chromosome, and the

CN changes cause their expression levels to vary synchronously.

Therefore, GCN mining can also serve as a powerful tool to identify

both functional CNVs and driving regulators. This approach has been

successfully applied to multiple adult cancer studies by our group on

colorectal, breast, lung, and kidney cancers to identify potential driver

genes and CN changes (17–21).

In this study, we aim to identify the driving mechanism of FN-RMS

through the coexpression network mining, which can quickly pinpoint

down the potential CNV changes as well as the pathway-level changes in

the FN-RMS including ERMS. We systematically investigated the

molecular mechanisms and the potential upstream regulators of FN-

RMS with the gene co-expression network mining approach. First, we

applied our previously developed frequent co-expression network (fGCN)

mining algorithm to identify frequent (or consensus) co-expression

network modules (called fGCN modules) across multiple RMS gene

expression datasets and obtained 50 fGCNmodules. Second, we explored

the distinctive co-expressed modules between FP- and FN-RMS, and five

modules (Modules 2, 18, 34, 41, and 46) enriched with genes differentially

expressed between the two groups were detected. For these five modules,

we observed that four major types of biological processes (namely,

extracellular matrix organization, cell morphology, neuron

development, and muscle structure related functions) were highly

enriched. Specifically, 117 of 504 genes in Module 2 are concentrated

on several cytobands on chromosome 8; Module-enriched upstream

regulators such as Myc, Yap1, and Twist1 presented distinctive

expression patterns between two groups. Moreover, we also found that

up to 24% of the Myc target genes and 27% of the Yap1 (through TEA/

ATTS activators) target genes are differentially expressed in the FN versus

FP-RMS in three datasets. More importantly, up to 45.8% of Myc target

genes and up to 43.1% of Yap1/TEA/ATTS targets are differentially

expressed in FN-RMS versus normal comparisons (Table 5). These

observations promoted us to hypothesize that the CN changes on these

enriched cytobands and the upstream regulators work together to
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generate the co-expression pattern in FN-RMS and contribute to tumor

development. To verify our hypothesis, we performed differential CN and

gene expression analyses on a separate RMS dataset from St. Jude

Children’s hospital. We observed the consistent CN amplification and

overexpression patterns comparing FN-RMS with FP-RMS at both

discovery datasets and St. Jude validation dataset. Meanwhile, we also

detected the same patterns for three transcriptional regulators (MYC,

YAP1, and TWIST1). Notably, MYC is located on chr8q24, one of the

identified cytobands by fGCN analysis, whereas YAP1 and TWIST1 were

previously reported RMS oncogenes or muscle development genes.

In summary, we identified specific cytobands CN amplification

on chromosome 8 as well as the enriched upstream transcriptional

regulators through GCN mining and validated the findings through

genomic and transcriptomic analysis. We believe that those

upregulated gene expression through CN amplification combined

with those transcriptional regulators work together to induce the gene

co-expression and subsequently may drive the FN-RMS

tumorigenesis and development. Our findings not only provide new

insights for tumorigenesis and development of fusion-negative RMS

but also offer promising directions for FN-RMS driving force study

and new potential targets for precision therapy. Experimental

validations work is currently going to further validate the roles of

the potential driver genes in the FN-RMS samples and cell lines.
2. Materials and methods

2.1 Data source

Five RMS datasets including GSE66533 (22), GSE108022 (23),

GSE114621 (15), GSE28511 (24), and St. Jude Children’s hospital

dataset (https://www.stjude.cloud/ ) were used in our analysis. Among

the five, the first three datasets (GSE66533, GSE108022, and GSE114621)

served as the discovery datasets and the last two datasets (GSE28511 and

St. Jude dataset) were served as the validation dataset. For the discovery

datasets and GSE28511 validation dataset, both gene expression data and

corresponding clinical data were obtained from the NCBI Gene

Expression Omnibus Database (https://www.ncbi.nlm.nih.gov/geo/).

For GSE66533 and GSE108022 data, the PAX–FOXO1 fusion status

for each sample are available. In GSE108022, the three samples marked as

“other fusion” types were excluded from the downstream comparative

analysis and the five samples marked as “normal” were used for

validation analysis. For GSE114621, only 11 samples were known for

their fusion status and seven of the 11 were included in GSE108022.

Therefore, GSE114621 dataset was excluded from the further

comparative analysis between FP- and FN-RMS samples. For
TABLE 1 Demographic of RMS samples and their PAX-FOXO1 fusion status in the cohorts used in the study.

Dataset FP-RMS FN-RMS Others Normal

The discovery datasets GSE66533 33 25 0 0

GSE108022 32 66 3 5

GSE114621* 6 5 90 0

The verification datasets GSE28511 10 8 0 6

St. Jude dataset 4 8 4 0
fron
*Some patients have missing information in these categories. Only 11 samples were provided the fusion status according to Shern et al. (2014). Among them, four in six FP-RMS and three in five FN-
RMS were included in GSE108022.
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GSE28511, skeletal muscle, tumor adjacent skeletal muscle, and ERMS

and ARMS samples were available. Here, the eight ERMS samples (all

FN-RMS) and six normal samples (skeletal muscle and tumor adjacent

skeletal muscle samples) were used for targets validation. For the St. Jude

dataset, matched CN data, expression data, and clinical data were

obtained. The CN data were downloaded from UCSC Xena database

(http://xena.ucsc.edu ), and the gene expression data andmatched clinical

data were obtained from St. Jude Cloud (https://www.stjude.cloud ).

Here, the 12 samples taken from initial diagnosis were chosen for

analysis. The PAX–FOXO1 fusion status of each sample was manually

checked using IGV browser and confirmed by Chen et al. (12). In

addition, the target genes of the upstream regulators Myc and TEAD

family were obtained from the TF Target Gene Database (25). More

details about the samples are summarized in Table 1.
2.2 Analysis workflow and statistical analyses

The main objective of this study was to investigate the molecular

basis and the potential driver genes of PAX–FOXO1 fusion-negative

RMS. The whole workflow is shown in Figure 1. First, fGCN mining

was applied to three RMS gene expression datasets (GSE66533,

GSE108022, and GSE114621, Table 1) using our developed lmQCM

(local maximal quasi-clique merger) to identify frequent (consensus)

GCN (fGCN) modules across the datasets. Second, the differential

expression analysis was performed between different fusion status

samples, and modules with significantly enriched differential co-

expressed genes were further investigated. Third, Gene Ontology

(GO) enrichment analysis and cytoband enrichment analysis were

carried out for all the fGCN modules to obtain the associated

biological processes and chromosomal regions with ToppGene (26).

In addition, we also explored the potential upstream regulators for all

the fGCN modules with Ingenuity Pathway Analysis (IPA) software

(27). Fourth, the target genes for identified TFs were checked for their

differential expression with respect to fusion status as well as between

FN-RMS and normal samples. Finally, we validated our findings on

both CN variation level and gene expression level using the

independent validation dataset from St. Jude Children’s hospital.
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2.3 Frequent co-expression network mining
and identification of fusion-negative RMS
significant modules

We applied the frequent co-expression network (fGCN) mining tool

lmQCM (17) to identify frequent co-expression network modules (fGCN

modules) across multiple RMS gene expression datasets (i.e., GSE66533,

GSE108022, and GSE114621). This tool has been extensively used to

mine tightly connected fGCN modules from multiple datasets in cancers

and other diseases (17–20) and is capable of generating small and densely

connected modules with highly enriched GO terms. To remove noise,

genes with a value of zero in more than 50% of the samples in each

dataset were excluded, and protein-coding genes were selected for future

analysis. To identify the fGCNmodules, we firstly calculated the Pearson

correlation coefficient (PCC) between each pair of genes in each dataset

separately. The gene pairs with top 5 percentile |PCC| among each

dataset were chosen for subsequent analysis. Then, the frequency of gene

pairs appeared in the top 5 percentile lists were computed among

multiply datasets. Finally, by using the frequency as weight, we

identified the fGCN modules. The parameters setting were g = 0.7, L =

1.0, t = 1.0, b = 0.4, minimum size of cluster = 10, and adopted PCC to

calculate gene-wised correlations.

To identify key modules associating with fusion status, differential

expression analysis for each module gene was performed using R

package Limma-voom (28). Only genes with both Benjamini–

Hochberg adjusted q-values < 0.05 and |fold change| > 1.5 were

considered as differential expressed genes (DEGs). Fisher’s exact test

was further applied to identify the modules enriched with DEGs

between FP-RMS and FN-RMS with the cutoff p-value < 0.05.
2.4 Cytoband and functional
enrichment analysis

To identify the associated biological functions or chromosome

locations of a particular fGCNmodule, we performed GO enrichment

analysis and cytoband enrichment analysis using ToppGene (https://

topgene.cchmc.org) (26) with the above fGCN module genes. Only
FIGURE 1

Study workflow: fGCN, frequent co-expression network minging; DE w.r.t. normal samples, Differential expression analysis with respect to normal tissue.
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GO terms or cytoband with false discovery rate (FDR) < 0.05 were

considered to be significantly to the particular fGCN module.
2.5 Identification of enriched upstream
transcriptional regulators for fGCN modules

To identify the potential upstream regulators of a particular

module, we performed the “Core” and “Upstream Regulator”

analysis with IPA (27) on identified fGCN module genes. First, we

explored the potential upstream regulators for each module. Notably,

we only limited to the experimentally validated interactions between

upstream regulators and their target genes that have been manually

curated in IPA’s Knowledge Base. Next, we further selected the

potential upstream regulators for each module as follows: (1) The

predicted upstream regulator itself is a transcription factor (TF); (2)

The predicted upstream regulator is significantly enriched (Fisher’s

exact test with p-value < 0.01); (3) The predicted upstream regulator

affected over 10% of the examined module genes. To further

investigate the transcriptional factors’ effect, target genes of Myc

and Yap1 (through the interaction with TEAD family protein) were

obtained from Transcription Factor Target Gene Database (http://

http://tfbsdb.systemsbiology.net/) and further examined for their

differential expression with respect to normal tissues in GSE108022

and GSE28511, which are the only dataset contains normal samples.

The DEGs were called with the same package and thresholds as

described in section 2.4.
2.6 Differential expression analysis for
the target genes of the identified TFs

To check the effect of upstream regulators on FN-RMS, we obtained

the target gene list from Transcription Factor Target Gene Database for

Myc and Yap1 (through TEA/ATTS family activators). For each target to

Myc or Yap1, differential expression analysis was performed to examine

their molecular patterns with respect to fusion status. Furthermore,

differential expression analysis between FN-RMS and normal was also

carried out within GSE108022 and GSE28511 validation dataset.

Moreover, the cytoband enrichment analysis for DEGs within Module

2 was performed to evaluate the influence of specific cytoband CN

alteration on FN-RMS. DEGs with both Benjamini–Hochberg adjusted

q-values < 0.05 and |fold change| >1.5 were selected.
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2.7 Validation of the CNV and differential
gene expression on St. Jude RMS samples

We examined the molecular patterns of identified five fGCN

modules at both CN level and transcriptomic level in St. Jude RMS

data. Particularly, we identified the modules that are enriched with

differentially expressed genes and differential CNVs between different

fusion status samples. In the CN level, we first performed differential

CN analysis on the gene level for each module gene between FP- and

FN-RMS. Wilcoxon rank-sum test method was used and p-values less

than 0.05 was considered to be significantly different. Then, we

applied Fisher’s exact test to identify fGCN modules exhibiting

significant CNV difference with respect to fusion status. CN

information was directly downloaded from St. Jude UCSC Xena

Database. Differential CN with p < 0.05 were selected. Similarly, to

identify the modules enriched with differential gene expression, we

performed the same DEG analysis as for the two discovery datasets

described in the above section. DEGs with both Benjamini–Hochberg

adjusted q-values < 0.05 and |fold change| > 1.5 were selected. Then,

Fisher’s exact test was further applied to check whether such kind of

module was significantly different with respect to fusion status. P-

values less than 0.05 were considered to be significantly different.
2.8 Statistical analysis software

Except where noted above, all statistical analyses were performed

in R version 3.5.1.
3 Results

3.1 Identification of key modules associated
with fusion status in RMS

Gene co-expression network mining has been proven as an

effective and efficient approach to infer tumor mechanisms with

transcriptomic data for potential driver genes or drug targets (17–

21). To obtain robust and consensus co-expression modules in RMS,

we performed frequent co-expression network (fGCN) analysis across

multiple RMS gene expression datasets and 50 consensus gene

expression modules were generated (Supplementary Table S1).

Considering the distinctions exist with regard to tumor progression
TABLE 2 Modules associated with fusion status in both discovery datasets.

Module name GSE66533 GSE108022 Module

No. DEGs Fisher’s exact
P-value

No. DEGs Fisher’s exact
P-value

Module size No. common DEGs in both datasets

Module 2 309 2.41E-183 418 3.04E-147 504 295

Module 18 21 6.11E-15 28 1.15E-13 30 21

Module 34 8 8.46E-06 13 7.97E-08 13 8

Module 41 8 3.57E-06 12 2.81E-07 12 8

Module 46 9 4.79E-08 9 3.72E-04 11 9
DEGs, differentially expressed genes.
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and prognosis between FP and FN-RMS, we focused on identify the

modules enriched with genes transcriptomics different between the

fusion status. Therefore, we extracted the modules enriched with

differentially expressed genes using transcriptomic data from

GSE66533 and GSE108022 individually (GSE114621 was omitted as

the fusion status of most samples are not available). In GSE66533, six

fGCN modules are enriched with DEGs between different fusion

status samples (Supplementary Table S2), whereas in GSE108022,

seven fGCN modules are enriched with such DEGs (Supplementary

Table S2). Specifically, among them, five modules, which are fGCN

Modules 2, 18, 34, 41, and 46, are shared between the two datasets. As
Frontiers in Oncology 06
seen from Table 2, the majority of the five fGCN module genes are

differentially expressed between different fusion status samples in

both GSE66533 dataset and GSE108022 dataset. 58.53% (295/504)

genes in Module 2, 70% (21/30) genes in Module 18, 61.54% (8/13)

genes in Module 34, 66.67% (8/12) genes in Module 41, and 81.82%

(9/11) genes in Module 46 showed significant differential expressions

between FN and FP samples in both GSE66533 and GSE108022

(Table 2). Consistent with this, the heatmaps of these modules also

indicate such expression difference in GSE66533 and GSE108022 data

(Figure 2). All these results suggested the five consensus modules

present consistent expression within them but distinctive molecular
A B

FIGURE 2

Heatmaps of the five modules significantly associated with fusion status. For each module, left is the heatmap with all module genes and right is the
heatmap with differential expressed module genes. (A) is for GSE66533 dataset and (B) is for GSE108022 dataset.
TABLE 3 The summary of GO-terms and upstream regulator enrichment analysis of the five fusion status associated fGCN modules.

Module Size Enriched
cytoband

Enriched biological func-
tion/process Enriched TFs DE w.r.t

fusion

2 504
8p24.3, 8p21.3,

8p11.2…

Extracellular matrix organization,
Cell morphogenesis,
neuron development

HNF4A, TP53 Yes

18 30 NA Striated muscle contraction MYOD1, YAP1, MYOG, KDM5A, KLF11, GATA4, MEF2C, Yes

34 13 NA NA Yes

41 12 NA Extracellular matrix organization
TP53, MYCN, TP73, HNF1B,
TWIST1, IKZF1, MYC,

Yes

46 11 NA Muscle contraction
MYOD1, SMARCA4, SRF, GATA4, MEF2C, TP53, HAND2, MYOCD,
TBX5, KDM5A, RB1, CTNNB1

Yes
Sig.DE, significantly differentially expressed.
Red font indicates significantly differentially expressed.
NA indicates not significantly enriched.
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patterns between different fusion statuses. Therefore, these five

modules were further examined with GO enrichment analysis using

ToppGene (26) and IPA (27).
3.2 The functional enrichment
of identified modules

For five consensus fGCN modules that are significantly

differentially expressed between FN- and FP-RMS samples, we

observed that four major types of biology processes, that is,

extracellular matrix organization, cell morphology, neuron

development, and muscle structure related functions are highly

enriched for those modules, suggesting that they may play

important roles in RMS development and progression (Table 3 and

Supplementary Table S3). Extracellular matrix organization (FDR =

2.05E-05), neuron development (FDR = 3.67E-05), and cell

morphogenesis (FDR = 3.30E-04) related biological processes were

highly enriched for Module 2 genes. Muscle structure-related

biological processes were significantly enriched in Module 18 and

46 genes (FDR = 2.78E-05 and 1.35E-05, separately; Table 3 and

Supplementary Table S3). For GO enrichment analysis results on all

the 50 modules, please see the Supplementary Table S3.
3.3 The potential upstream regulators for
the consensus fGCN modules

As consensus fGCN modules are commonly associated with

CNVs or co-regulated by common regulators such as TFs, we first

checked the chromosome co-localization of the module genes.

Cytoband enrichment analysis was performed based on the module

genes using ToppGene (Supplementary Table S3). Interestingly, 117

of 504 Module 2 genes are significantly enriched on chr8 cytobands of

8q24.3 (23 genes), 8p21.3 (12), 8p11.2 (8), 8q24.13 (7), 8q22.1 (7), and

so forth (Figure 3).

Next, to systematically explore how regulators such as the TFs

may play their roles in the consensus modules, for each module, we

carried out the TF enrichment analysis using IPA Upstream Regulator
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Analysis (27) on the fGCN genes and the potential upstream

regulators for each module were obtained (Table 3). We found that

several consensus modules were regulated by several common

upstream regulator genes YAP1, KLF11, TWIST1, MYC, GATA4,

MYOG, MYOD1, MYCN and so forth (Table 3). Among them, most

are differentially expressed between different fusion status in both

GSE66533 and GSE108022. They are either previously known to be

oncogenic regulators (GATA4, MYC, and YAP1) or myogenic or

muscle differentiation factors (GATA4, MYOG, MYOD1, and

TWIST1) (Table 3). More specifically, YAP1, KLF11, TWIST1, and

MYC are upregulated, whereasMYCN, MYOD1,MYOG, and GATA4

are downregulated in FN- versus FP-RMS samples (Table 4). MYC

and TWIST1 are the upstream regulators of Module 41, and YAP1 is

the upstream regulator of Module 18 (Table 3). Most notably, two

such regulators are actually located near or on the identified Module

2–enriched cytobands (MYC on chr8q24.21; GATA4 on chr8p23.1).

Furthermore, to confirm the upstream regulator activity changes

actually caused downstream a cascade of gene expression changes, we

checked the relationships between upstream regulator and their

downstream targets within different fusion status. We observed that

up to 24% of theMYC target genes and 27% of the YAP1/TEAD target

genes (YAP1 acts on genes through TEA/ATTS family transcription

activators) are differentially expressed in the FN- versus FP-RMS in

the discovery datasets (Table 5). To check whether the same trend

also exists for the tumor versus normal sample, we examined the same

set of target genes expression in FN-RMS versus normal tissue

comparisons and found that 18.9–45.8% of the Myc target genes

are differentially expressed in FN versus normal samples. For Yap1/

TEA/ATTS family targets, the percentage of targets with altered

expression is 15.2–43.1% (Table 5). Meanwhile, we observed that

for Module 2, 25% genes in GSE28511 and 52.9% genes in GSE108022

were differential expressed when comparing FN-RMS with normal

tissues (Supplementary Figure S1). These DEGs were also

significantly enriched in several cytobands on Chr8 (Supplementary

Table S4).

Because over 23% (117 of 504) genes from Module 2 are enriched

on specific cytobands, we hypothesized that the strong co-expression

may not only results from common regulators but also results from

the CN alteration on those cytobands.
FIGURE 3

The enriched cytobands of Module 2 genes. Black dots are module 2 genes enriched on chromosome 8 and red dots are transcription factor (i.e. MYC
and GATA4) located near or on the identified Module 2-enriched cytobands.
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3.4 CN changes play important
roles in fusion-negative RMS

To test our hypothesis, we obtained CN information for a separate

RMS dataset from St. Jude Children’s hospital and performed

differential CN and gene expression analyses for the fusion status

related modules (Modules 2, 18, 34, 41, and 46). The St. Jude data

contain eight FN-RMS and four FP-RMS samples with matching

RNA-seq and CN data. Overall, a visual examination of the entire

genome shows that FN samples contain much more CN amplification

than FP samples, especially in the chr8 region, except for one FN

sample (Figure 4). For the modules we focused, Module 2 showed

significantly differential CNV patterns between FP and FN-RMS

(adjusted p-value 1.24E-50) (Supplementary Table S5). At

transcriptomic level, Module 2 (adjusted p-value 2.56E-66), Module

18 (adjusted p-value 0.013198578), Module 34 (adjusted p-value

7.82E-10), and Module 41 (adjusted p-value 3.67E-07) presented

differential expression patterns between FP-RMS and FN-RMS

(Supplementary Table S5).
For Module 2 genes, most of the expressions were elevated in the

FN compared with FP samples (Figure 5B), which are consistent with

the CN amplification in those regions in FN samples (Figure 5A).

More specifically, 45.4% (229/504) of them display higher CN in FN-

RMS versus FP-RMS samples. At the transcriptome level, 27.4% (138/

504) of Module 2 genes are differential expressed between FN and FP-

RMS cases and most of these DEGs were higher expressed in FN-

RMS. Moreover, 59 of 229 of the genes discovered with CN alteration

show significant changes on mRNA expression (Figure 5). Twenty-

eight of 59 (47.5%) genes were also concentrated on the previously

identified chr 8 cytobands (Supplementary Table S6). All these results

indicated that Module 2 genes are highly altered at both genome and

transcriptome level in FN samples, and the CN amplifications of chr 8
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contribute significantly to the gene co-expression of Module 2,

causing a large portion of the genes to be higher expressed

(including MYC) and could further induce other downstream

biological changes in FN-RMS.

Next, we further checked previously identified common

regulators (i.e., YAP1, TWIST1, KLF11, GATA4, MYC, MYCN,

MYOG, and MYOD1) in comparative analysis using St. Jude data,

and five of eight TFs (YAP1, MYC, TWIST1, GATA4, and MYOD1)

are significantly altered in both genomic or transcriptomic levels

(Table 4). YAP1 is located on chr11q22.1 and is the common

upstream regulator of Module 18. It shows consistent higher CN

and gene expression in FN-RMS versus FP-RMS cases in both

discovery and St Jude datasets (Table 4). MYC is located on

chr8q24.21, which is adjacent to the enriched cytobands we

identified through co-expression, the same as YAP1, it presents

consistent higher CN and mRNA expression (significantly amplified

[p-value = 0.0174] in CN data and near significant upregulation

expression data [p-value = 0.058]) in FN- versus FP-RMS cases of St.

Jude data (Table 4). TWIST1 is located on 7p21.1 with no CN change

in St. Jude dataset but shows consistent higher expression in FN-RMS

cases in both discovery and St Jude dataset (Table 4). MYOD1 is

located on 11p15.1. It exhibits lower gene expression in FN- versus

FP-RMS cases in discovery datasets but shows CN amplification in St.

Jude dataset with no significant gene expression change (Table 4).

GATA4 is located on chr8p23.1. It exhibits lower gene expression in

FN- versus FP-RMS cases in discovery datasets but shows CN

amplificat ion in St Jude dataset with near s ignificant

downregulation (p-value = 0.057) in St. Jude expression dataset in

FN- versus FP-RMS cases (Table 4). KLF11 is located on 2p25.1. It

exhibits no CN change in St. Jude dataset and near significant higher

expression in FN-RMS cases, which is consistent with the changes of

discovery datasets. As for the other two upstream regulators (MYCN
TABLE 4 The differential expression and copy number change for the enriched upstream regulators for the identified modules.

Gene
symbol

GSE66533 GSE108022 St. Jude

CNV mRNA

FDR logFC
FN vs.
FP

Change
FN vs.
FP

FDR logFC
FN vs.
FP

Change
FN vs.
FP

Pvalue FN
mean

FP
mean

FN.mean-
FP.mean

Change
FN vs.
FP

FDR logFC
FN vs.
FP

Change
FN vs.
FP

YAP1 0.004 0.911 Up 1.00E-
06

1.125 Up 0.037 0.514 0 0.514 Amp 0.011 2.912 Up

TWIST1 0.037 1.252 Up 0.006 1.365 Up 0.084 0.409 -0.098 0.506 n.s. 0.02 5.211 Up

KLF11 0.022 0.759 Up 1.03E-
06

0.958 Up 0.441 0.555 0.38 0.175 n.s. 0.053 2.488 Up*

GATA4 3.87E-
05

-1.501 Down 5.33E-
29

-8.216 Down 0.017 0.783 0 0.7825 Amp 0.057 -5.181 Down*

MYC 0.01 1.182 Up 0.001 0.992 Up 0.0174 0.904 0 0.904 Amp 0.058 3.302 Up*

MYCN 8.14E-
07

-1.796 Down 1.77E-
11

-2.422 Down 0.733 0.563 1.135 -0.573 n.s. 0.064 -3.19 n.s.

MYOG 1.03E-
05

-1.457 Down 2.00E-
04

-1.36 Down 0.361 0.149 0 0.149 n.s. 0.460 -1.515 n.s.

MYOD1 0.001 -1.25 Down 2.42E-
04

-1.663 Down 0.037 0.489 0 0.489 Amp 0.989 -0.026 n.s.
front
n.s, not significant; *above but very close to the significant p-value cutoff.
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and MYOG), no significant differences are observed between two

groups at the both genome and transcriptome level in St. Jude dataset

(Table 4), possibly due to the small sample size. We also checked

MYC, YAP1, and TWIST1 expression changes in FN-RMS with

respect to normal tissue in GSE108022 and GSE28511. However,

the two datasets showed inconsistent expression change for the three

genes; therefore, their expression changes are inconclusive at this

point. We expect more normal samples and larger cohort data in the

future may give us more definitive answers on this aspect.

Taken together, these results confirmed that the CN amplification

of chr 8 and the common regulators (YAP1,MYC, and TWIST1) work

together to affect the downstream gene co-expression and contribute

FN-RMS progression.
4 Discussion

RMS has been traditionally classified into embryonal RMS

( ERMS ) a n d a l v e o l a r RMS (ARMS ) b a s e d on t h e

histopathological features (1). Compared with histological

classification, molecular classification based on the presence or

absence of PAX3– or PAX7–FOXO1(PAX–FOXO1) fusion can

more accurately capture the molecular biology patterns and

cytological features of RMS and prognose patient outcome to

guide clinical therapy (2), therefore has gained more and more

popularity in the RMS research community in recent years.

However, compared with the relatively clear fusion-driven

oncogenic cascade events in FP-RMS, where the PAX3/7 gene

fusion to FOXO1 creates a new fused transcriptional factor and

completely altered the downstream targets’ expression profile,

therefore serves as one of the driving mutations of FP-RMS, little

is known about the molecular mechanisms for the tumorigenesis of

FN-RMS which accounts for over 80% RMS cases. There is an

urgent need to understand the disease etiology and develop new

and effective therapeutic targets for this subtype.
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In this study, we applied the fGCN analysis approach to explore

the molecular mechanisms behind tumorigenesis in FN-RMS. fGCN

analysis identified five consensus modules (Modules 2, 18, 34, 41, and

46), which present distinct expression patterns between FN versus FP

RMS samples. Go enrichment analysis reveals that these modules

were enriched in four major types of biological processes, that is,

extracellular matrix organization, cell morphology, neuron

development, and muscle structure processes. Davicioni et al. have

demonstrated that neuronal and muscle structure related biological

process were significantly altered between FP-RMS and FN-RMS

(29), and our results confirmed that. As RMS is a skeletal muscle

−derived soft tissue tumor, it is not surprising that muscle

differentiation and its dysregulation are major contributors to FN-

RMS tumorigenesis and progression, which are indicated by the

differentially expressed fGCN modules 18 and 46. Cell morphology

refers to the shape and size of cells and pathologists performed

diagnosis and prognosis of disease based on the changes of cell

morphology. In addition, the interaction of extracellular matrix

(ECM) with tumor cells plays important roles in tumor invasion

and metastasis. There is no doubt that the dysregulation of cell

morphology and extracellular matrix related biological process

promote FNRMS development.

CN amplification of specifical cytobands has been observed in

FN-RMS samples, although their roles in tumorigenesis were not

further explored (15, 16, 30). Previous studies also discovered that

ERMS samples (FN-RMS) displayed chromosomal region gains,

including regions on chr 8 (30, 31). In our analysis, we observed

the same CN amplifications on FN samples (Figure 4), and Module 2

genes were highly enriched on chr 8 with CN amplification and the

consistent gene overexpression in FN-RMS samples (Figure 5) from

our validation cohort. Fifty-nine genes from Module2 located on the

identified chr 8 cytobands show CN amplification and elevated gene

expression. They participate in biological processes such as protein

transport and vesicle trafficking and are components of synapse,

endoplasmic reticulum membrane, and Golgi apparatus. Not

surprisingly, among them are EGFR (32, 33), NCOA2 (34, 35),
TABLE 5 Target genes differential expression in multiply datasets.

MYC target genes (Total No. 391)

DEGs
FN vs. FP FN vs. Normal

GSE66533 GSE108022 St. Jude GSE28511 GSE108022

Total 36 94 21 74 179

Up-reg 24 58 8 45 110

Down-reg 12 36 13 29 69

YAP1/TEAD target genes (Total No. 4068)

DEGs
FN vs. FP FN vs. Normal

GSE66533 GSE108022 St. Jude GSE28511 GSE108022

Total 457 1107 256 622 1752

Up-reg 274 684 174 283 842

Down-reg 183 423 82 339 910
frontiersin.org

https://doi.org/10.3389/fonc.2023.1080989
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhan et al. 10.3389/fonc.2023.1080989
DERL1 (36, 37), EXT1 (38, 39), PLAG1 (39), COPS5 (40, 41), ASAP1

(41, 42), CHRNA6 (43, 44), and CHRNB3 (44, 45), which have been

associated with multiple types of cancers in previous studies.

Therefore, the CN amplification not only explains the co-expression

of this group of genes but also provides a potential driving force for

FN-RMS and generates new potential therapeutic targets for

this subtype.

We also discovered that multiple potential oncogenic

transcriptional factors MYC, YAP1, and TWIST1 with concordant

CN and expression changes may contribute to FN-RMS
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tumorigenesis as well. MYC, which is located on chr8q24.21 and

right next to the identified cytobands, showing consistent CN

amplification and overexpression changes in FN-RMS samples

(Figure 3) (Table 4). MYC is also the upstream regulator of Module

41 and 9.2–24% of the targets are differentially expressed compared

FN-RMS with FP-RMS in the discovery datasets (Table 5). More

importantly, as high as 45.8% of Myc target genes are differentially

expressed in FN-RMS versus normal samples (Table 5). Accumulated

evidences have suggested that MYC was an important oncogenic

factor in RMS (46, 47), and its upregulation is closely related to tumor
A

B

C

FIGURE 4

CNV distribution in FN-RMS vs. FP-RMS of St. Jude dataset. (A) is for entire genome,(B) is for chromosome 8, and (C) is for enriched cytoband genes of
chr 8 for Module 2 from discovery datasets.
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aggression and poor clinical outcome (46–51). Durbin et al. have

highlighted that MYC could pathogenically subvert a myogenic core

regulatory circuitry (CRC; the essential TFs of RMS) to promote RMS

tumorigenesis and progression (52). They have also pointed that

MYC was closely associated with the CN amplification (52). MYC

higher expression were observed in ERMS (FN RMS) samples and

FN-ARMS (53, 54). Moreover, several studies demonstrated that the

depletion of c-MYC resulted the decrease of metastatic, invasive, and

angiogenic-related markers (53, 55–57). Importantly, the inhibition of

MYC was observed to decrease tumorigenicity of ERMS and

myogenic differentiation (54). All these results agreed with our

observation that the CN amplification of MYC contribute to the

FN-RMS tumorigenesis and progression and MYC could serve as an

attractive target for FN-RMS clinical treatment. YAP1 also presents

concordant CN amplification and overexpression in FN-RMS in both

discovery datasets and St. Jude data (Table 4). This observation is

consistent with another report showing CN amplification and

overexpression of YAP1 in ERMS (FN-RMS) compared with FP-

ARMS (58). Meanwhile, we noticed that YAP1 is the upstream

regulator of Module 18, which presenting distinct expression

patterns between FN- and FP-RMS are enriched with muscle

differentiation and development genes, and about up to 27% of the

YAP1/TEAD target genes are differential expressed in the FN- versus

FP-RMS in the discovery datasets. Therefore, we proposed that YAP1

CN amplification may also contribute to the different molecular

patterns between two groups. Tremblay et al. found that reducing

YAP1 expression could decrease the expression of mature skeletal

muscle differentiation related genes (58). Moreover, they have also

highlighted that the hyperactivity of YAP1 was highly related to the

increased tumor stage and poor prognosis in ERMS and FN-ARMS

(FN-RMS) and the knockdown of YAP1 could reduce ERMS (FN-

RMS) tumorigenicity. Although we did not observe consistent

upregulation of YAP1 in FN-RMS versus normal samples among

different cohorts, we did observe that up to 43.1% YAP1 target genes

are significantly differentially expressed in this comparison. All these

evidences suggest that YAP1 is a potential oncogenic driver in FN-

RMS. For another TF TWIST1 we identified through fGCN mining,

we observed consistent overexpression patterns in FN-RMS samples

compared with FP-RMS at both discovery datasets and St. Jude

dataset (Table 4). Maestro et al. have showed that TWIST1 CN

amplification and overexpression play important roles in RMS
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development (59). Furthermore, TWIST1 play a key role in

myogenesis and genetically or pharmacologically inhibition of

TWIST1 could curb cancer-driven muscle cachexia and reduce

morbidity and mortality (60). Tremblay et al. have also discovered

that YAP1 could upregulate TWIST1 to contribute ERMS (FN-RMS)

development (58). This is consistent with our identification that both

YAP1 and TWIST1 show higher expressed in FN-RMS. All these

evidences support that TWIST1 is another potential driver gene in

RMS. MYOD1 is a myogenic regulatory factor and is necessary for

muscle fiber differentiation (61). However, its role in FN-RMS

samples that we examined shows inconsistent results. In the

discover datasets, we observed lower expression of MYOD1 in FN-

RMS samples compared with FP-RMS ones. While in the St. Jude

dataset, MYOD1 CN amplification is observed in FN-RMS, but no

significant changes in term of gene expression between two fusion

status subtypes. Zibat et al. identified that MYOD1 is significantly

lower expressed in FN-RMS (ERMS and FN-ARMS) than FN-RMS

(PAX-FOXO1 ARMS) (62), and lacking ofMYOD1 is associated with

poor prognosis in ERMS (61). In addition, TWIST1 is a known

MYOD1 inhibitor (63) and Tremblay et al. have observed that YAP1

and TWIST1 could inhibitMYOD1 activity in ERMS (58). This agrees

with our finding that YAP1, TWIST1, and MYOD1 showed inverse

expression patterns (in the discovery dataset). As in the St. Jude

dataset, we observed MYOD1 CN amplification in FN-RMS than FP-

RMS and no significantly expression difference, this may due to a

relatively small sample size in this cohort and no normal skeletal

muscles included for analysis. A large cohort with different fusion

subtypes and normal skeletal muscles are needed for a definitive

answer. For GATA4, it is right on the identified cytoband chr8p23.1

and shows downregulation in discovery datasets and St. Jude dataset

transcriptomic level. It is involved in embryogenesis and in

myocardial differentiation and function and is a common regulator

for fusion status-associated Module 18 and 46. However, we observed

CN amplification in St. Jude dataset FN versus FP RMS (Table 4).

Therefore, GATA4 role in term of tumorigenesis may require a large

cohort data to verify.

In summary, all these findings demonstrate that the amplified

CNs on chr8 genes and the overexpression of MYC, YAP1, and

TWIST1may contribute to FN-RMS development, and they can serve

as promising targets for FN-RMS therapeutic drug targets.

Interestingly, our study also indicated that different molecular
A B

FIGURE 5

Heatmaps of Module 2 genes with consistent copy number and expression changes in FN-RMS vs FP-RMS in St. Jude dataset. (A) is for CNV; (B) is for mRNA.
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mechanisms in terms of genomics alteration exist among distinct

RMS subtypes, which induce similar downstream transcriptomic

changes and biological processes to manifest the similar tumor

development in the skeletal muscle tissues.

Despite the extensive observations and consistent results

generated from our analysis, some limitations of this study should

be noticed as well. First, while the molecular mechanisms and the

potential drivers have been largely defined, further experimental

validation are still needed to confirm their function in FN-RMS.

Second, as the two datasets contain very few normal skeletal muscles

samples (five for GSE108022 and six for GSE28511), further larger

scale comparative study between FN-RMS and normal skeletal

muscles are still needed to verify the contribution of CN alteration

and the three TF changes in FN-RMS tumorigenesis and progression.

Third, even though the driving force of CNV has been revealed in FN-

RMS, not all FN-RMS samples shown that CN changes. Other driving

mechanism may also exist or co-exist in the FN-RMS patients. As FN-

RMS is still a quite heterogeneous RMS subtype, the driving force can

be multiple factors in multiple levels that work concordantly toward

the tumorigenesis in different FN samples. It is very possible that they

may possess other important somatic mutations and SNVs such as the

ones in RAS pathway. As of now, we do not have the somatic

mutation or SNV data for the samples that we investigated in our

validation cohort. In our future work, when these data are available,

we will separate the RAS pathway SNV and mutations from the wild-

type samples, see how much CNV effects contribute to each subtype,

and focus more on the RAS wild-type samples, which CNV may exert

strong driving forces. Last but not the least, although MYC, YAP1,

and TWIST1 can be promising therapeutic targets, both

pharmacologically and clinical trials assessment are still needed

before clinical application.
5 Conclusions

In conclusion, we identified the potential driver genes and

investigate their molecular mechanism for PAX3/PAX7-FOXO1

fusion-negative RMS based on fGCN mining, which can also serve

as promising therapeutical drug targets in FN-RMS. We confirmed

that the CN amplification of specific cytobands (mostly on

chromosome 8) and the elevated expression of the upstream

regulators (such as MYC, YAP1, and TWIST1) work together to

regulate the downstream gene differential expression and subsequent

induce extracellular matrix organization, cell morphology, neuron

development, and muscle structure–related biological processes

dysfunction, which promoting FN-RMS tumorigenesis and

development. Our findings not only helped to improve the

understanding of the mechanisms of FN-RMS but also offered

promising potential targets for FN-RMS personalized therapeutic

intervention. Future works of manipulating these driver genes on

FN-RMS cell lines are undergoing.
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