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Jihong Sun2,4,5* and Fenhua Zhao1*

1Department of Radiology, Affiliated Dongyang Hospital of Wenzhou Medical University,
Dongyang, China, 2Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School
of Medicine, Hangzhou, China, 3Department of Radiology, Jiaxing Hospital of Traditional Chinese
Medicine, Jiaxing, China, 4Key Laboratory of Diagnosis and Treatment of Digestive System Tumors of
Zhejiang Province, Ningbo, China, 5Cancer Center, Zhejiang University, Hangzhou, China
Background: This study aimed to establish an effective model for preoperative

prediction of tumor deposits (TDs) in patients with rectal cancer (RC).

Methods: In 500 patients, radiomic features were extracted from magnetic

resonance imaging (MRI) using modalities such as high-resolution T2-

weighted (HRT2) imaging and diffusion-weighted imaging (DWI). Machine

learning (ML)-based and deep learning (DL)-based radiomic models were

developed and integrated with clinical characteristics for TD prediction. The

performance of the models was assessed using the area under the curve (AUC)

over five-fold cross-validation.

Results: A total of 564 radiomic features that quantified the intensity, shape,

orientation, and texture of the tumor were extracted for each patient. The HRT2-

ML, DWI-ML, Merged-ML, HRT2-DL, DWI-DL, and Merged-DL models

demonstrated AUCs of 0.62 ± 0.02, 0.64 ± 0.08, 0.69 ± 0.04, 0.57 ± 0.06,

0.68 ± 0.03, and 0.59 ± 0.04, respectively. The clinical-ML, clinical-HRT2-ML,

clinical-DWI-ML, clinical-Merged-ML, clinical-DL, clinical-HRT2-DL, clinical-

DWI-DL, and clinical-Merged-DL models demonstrated AUCs of 0.81 ± 0.06,

0.79 ± 0.02, 0.81 ± 0.02, 0.83 ± 0.01, 0.81 ± 0.04, 0.83 ± 0.04, 0.90 ± 0.04, and

0.83 ± 0.05, respectively. The clinical-DWI-DL model achieved the best

predictive performance (accuracy 0.84 ± 0.05, sensitivity 0.94 ± 0. 13,

specificity 0.79 ± 0.04).
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Conclusions: A comprehensive model combining MRI radiomic features and

clinical characteristics achieved promising performance in TD prediction for RC

patients. This approach has the potential to assist clinicians in preoperative stage

evaluation and personalized treatment of RC patients.
KEYWORDS

deep learning, rectal cancer, tumor deposit, magnetic resonance imaging, diffusion-
weighted imaging
1 Introduction

Colorectal cancer (CRC) is the third most common malignancy

and second leading cause of death worldwide. In particular, rectal

cancer (RC) accounts for approximately one-third of CRC (1). A

tumor deposit (TD) is defined as a discontinuous cancerous nodule

located in the mesenteric fascia without obvious nodal or vascular

features. The median incidence of TDs in CRC patients is

approximately 21.3% (2). Positive TDs can elevate clinical stages of

RC patients. RC patients with positive TDs are classified as N1c and

treated as clinical stage III, in the absence of nodal metastases. The

efficacy of adjuvant chemotherapy in stage III colon cancer had been

widely recognized in previous studies, For the TD patients, with the

receipt of chemotherapy had decreased risk of cancer-specific

mortality compared with those not (3). However, only 52% of TD-

positive and lymph node (LN)-negative patients receive preoperative

adjuvant chemotherapy (4). Therefore, early identification of TDs is

important and valuable for stage evaluation and treatment planning.

Magnetic resonance imaging (MRI) is considered the most

reliable imaging modality for the initial pretreatment evaluation of

patients with RC, including the assessment of TN staging,

circumferential resection margin (CRM), and extramural vascular

invasion (EMVI). Moreover, it can assist in the clinical preoperative

management of RC patients, determination of surgical scope, and

assessment of treatment response to neoadjuvant therapy (5, 6).

However, MRI is limited in determining tumor spread in the

mesorectum. Gröne et al. used a small diameter of 5 mm as the

statistical threshold to determine N staging. With this value, the

sensitivity, specificity, and accuracy of MRI staging were 72%, 45.7%,

and 56.7%, respectively (7). Langman et al. showed that mesenteric

nodules <3 mm had a 28% probability of malignancy (8). These

studies focused on the presence of tumor spread in mesorectal

nodules, either LN metastasis or TDs. However, the evaluation of

malignant LNs alone is insufficient to reflect the actual spread of RC in

the mesentery. According to the current European Society for Medical

Oncology (ESMO) preoperative risk assessment criteria, patients with

TDs are classified into a high-risk group with a worse prognosis (9). A

previous study confirmed that the presence of TDs is an independent

risk factor for the prognosis of patients with RC (10). An analysis of

two prognostic studies in N0 and N1c stages showed a significant

difference in the five-year survival rates (N0, 91.5%; N1c, 37%) (11).

Therefore, preoperative determination of tumor deposition status in

patients with RC is essential for optimal treatment.
02
Currently, the presence of TDs is determined by pathological

analysis after radical tumor resection. However, this method is

invasive and can be performed only postoperatively. According to a

previous study, MRI can help preoperatively and identify TDs and LN

metastases, as these lesions appear to have distinguishable imaging

characteristics onMRI (12). However, TDs are usually less than 5 mm

in diameter, and identifying such small nodules and accurately assess

the characteristics of the nodule can be challenging for radiologists

who are already overburdened in reading MRI in daily practice.

By extracting vast amounts of quantitative features from imaging

and providing non-visual information that indicates the biological

behavior of tumors, radiomics has gained popularity for the non-

invasive prediction of clinical or prognostic features of tumors, such

as T staging of RCs, LN status, vascular and nerve invasion, distant

metastasis, and pathological complete response to neoadjuvant

chemotherapy (13–20). Meanwhile, artificial intelligence including

deep neural networks has demonstrated high performance in the

analysis of medical images (21–23), providing cancer risk

assessment, recurrence, and survival predictions with higher

accuracy than human experts. Recently, several radiomic models

have been developed based on ultrasound (US), computed

tomography (CT), and MRI to preoperatively predict TDs in

patients with RC (10, 24, 25). However, the sample sizes in these

studies were relatively small. Furthermore, the MRI study carried out

by Yang et al. (25) only extracted the radiomic features from high-

resolution T2 weighted (HRT2) MRI, whereas functional MRI, such

as diffusion-weighted imaging (DWI), carries more information on

the heterogeneity of tumors. Currently, there is a lack of functional

MRI-based deep-learning (DL) radiomics research in this field.

This study aimed to develop an MR-based DL radiomic model

for preoperative TD prediction in a larger cohort with higher

prediction accuracy. This model extracts radiomic features from

both HRT2 and DWI images and integrates clinical factors into

TD prediction.
2 Methods

2.1 Patient characteristics

The records of 784 consecutive RC patients who underwent

preoperative MRI and radical surgery between 2013 and 2020 at Sir

Run Run Shaw Hospital affiliated with Zhejiang University School
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of Medicine were reviewed retrospectively. The local institutional

review board approved this study and provided a waiver of consent.

The inclusion criteria were: (a) pathologically confirmed primary

RC; (b) no neoadjuvant chemotherapy or radiotherapy before

surgery; and (c) tumor visible in at least three sequential slices of

HRT2 MRI. The exclusion criteria were as follows: (a) inadequate

MRI quality due to intractable artifacts, including HRT2 (n = 113)

and DWI (n = 78); (b) tumors not visible in HRT2 images (n = 14);

(c) carcinoembryonic antigen (CEA) and carbohydrate antigen 19-9

(CA19-9) levels not obtained (n = 44); (d) lack of tissue

differentiation grading in pathology reports (n = 5); and (e) co-

occurrence of other digestive system malignancies (n = 30).

Ultimately, 500 patients were enrolled in this study (Figure 1).
2.2 Clinical characteristics and
pathological criteria

Clinical characteristics, including sex, age, body mass index

(BMI), and carbohydrate antigen 19-9 (CA19-9) and

carcinoembryonic antigen (CEA) levels, were collected from

electronic medical records. Histological grading, pathological

tumor node metastasis (pTNM) staging, LNs, TDs, vascular and

nerve invasion, and other clinical data were obtained from

pathological reports. The eighth edition of the AJCC staging

system was used as a reference for the pTNM staging. TDs are

defined as discrete tumor foci in the pericolic or perirectal fat,

without histological evidence of residual lymph node or identifiable

vascular or neural structures.The distance between the tumor and

anus, TN staging, CRM, and EMVI based on the MRI were obtained

from standardized reports of the picture archiving and

communication system (PACS). The criteria for determining LN

positivity on MRI were based on the latest recommendations of the

2016 European Society of Gastrointestinal and Abdominal

Radiology consensus meeting (26). MRI tumor length was defined

as the T2 sagittal tumor length. The distance from the anus was
Frontiers in Oncology 03
defined as the distance from the most inferior boundary of the

tumor to the subcutaneous edge of the anus. The criterion for EMVI

positivity was tumor invasion of the extramural vessels, with or

without vessel dilatation (27). CRM positivity was defined as a

tumor location within 1 mm of the mesorectal fascia, including

suspicious LNs, TDs, tumor expansion, and EMVI (28). Unclear or

missing information in the MRI reports were labeled and finally

confirmed by a radiologist with nine years of working experience.
2.3 MRI scanning

MRI acquisitions were performed using the following 3.0-T

MRI scanners: Signa HDxt (GE Healthcare, Chicago, IL), Discovery

MR750w (GE Healthcare), and MAGNETOM Skyra (Siemens

Healthineers, Erlangen, Germany). The MRI protocol consisted of

one axial HRT2 MRI sequence and one DWI acquisition obtained

using b-values of 0 and 1,000 (or 800) s/mm². No intravenous

contrast agents were administered. Details of the MRI acquisition

parameters are listed in Table 1.
2.4 Tumor segmentation and processing

Before image segmentation, patient-sensitive information was

anonymized. The primary tumor region (3D volume) was semi-

manually segmented on axial HRT2 and DWI images by a junior

radiologist (with more than three years of experience in radiology)

using an open-source software tool (ITK-SNAP 3.8;

www.itksnap.org) (29). Automatic tumor segmentation using a

CE-net-based DL segmentation model (30) was performed on the

axial HRT2 images to assist radiologists. All segmentation masks

were reviewed by a senior radiologist (with more than five years of

experience in radiology) and finally confirmed by another senior

radiologist (with more than 10 years of experience in radiology).

Disagreements were resolved through discussion.
FIGURE 1

Flowchart of patient selection and TD distribution in the study. TD, tumor deposition; CEA, carcinoembryonic antigen; CA19-9, carbohydrate
antigen 19-9.
frontiersin.org

http://www.itksnap.org
https://doi.org/10.3389/fonc.2023.1078863
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Fu et al. 10.3389/fonc.2023.1078863
2.5 Extraction of features

International Biomarker Standardization Initiative (IBSI)-

compliant radiomic features were extracted separately for the HRT2

images and DWI images using PyRadiomics, an open-source Python

package (version 2.1.2, https://pyradiomics.readthedocs.io) (31). Before

feature extraction, z-score normalization of the MRI signal intensities

for both the HRT2 and DWI images was performed using

PyRadiomics. Consequently, 564 features were obtained for each

HRT2 and DWI image, including 13 first-order statistics, 35 shape

features, 9 orientation features, and 507 texture features, such as the

gray-level co-occurrence matrix, gray-level size zone matrix, gray-level

run-length matrix, gray-level dependence matrix, neighborhood gray-

tone difference matrix, Gabor filter, Laplacian of Gaussian filter, local

binary patterns, and local phase and vascularity filters. A variance test

was performed on the extracted features to remove features with a low

variance (<0.01). A t-test was used to estimate the radiomic features

that were significantly correlated with TDs. Features with p < 0.05 were

considered significant features for model development. A detailed

flowchart of this process is shown in Figure 2.
Frontiers in Oncology 04
2.6 Pre-processing of features

Each radiomic feature was standardized using z-score

normalization to improve the robustness of the model. Missing

information on the clinical characteristics was replaced with the

mean value of the corresponding feature. The number of positive

and negative samples was balanced using an up-sampling method

within the open-source Python package Imbalanced-learn (version

0.9.0) (32).
2.7 Development of radiomic models

Radiomic models based on common machine learning (ML)

techniques and DL methods were developed and compared to

predict TDs. Three ML models and three DL models were

constructed using features from HRT2 images (HRT2-ML and

HRT2-DL models), DWI images (DWI-ML and DWI-DL

models), and joint HRT2-DWI images (Merged-ML and Merged-

DL models).
FIGURE 2

Flowchart describing the methods used in developing the clinical-DL radiomics model for TD prediction in patients with RC. DL, deep learning; TD,
tumor deposition; RC, rectal cancer.
TABLE 1 Image acquisition parameters.

Machine type GE-Signa HDxt GE-Discovery MR750W SIEMENS-Skyra

Modality HRT2 DWI HRT2 DWI HRT2 DWI

Repetition time (ms) 3300 5900 3300 8000 5800 4400

Echo time (ms) 130 66 120 66 99 61

Slice thickness (mm) 3 5 3 5 3 5

Slice gap (mm) 0.3 1 0.3 1 0.3 1

Matrix 512×512 256×256 512×512 256×256 320×410 128×160

Echo train length 20 1 20 1 18 1

FOV (mm×mm) 160×160 250×250 160×160 380×380 160×160 300×300

b-values (s/mm2) 800 1000 800
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Integrated models combining radiomic information and clinical

characteristics were developed to further improve the predictive

performance. Three ML models and three DL models were

constructed using clinical characteristics and features from HRT2

images (Clinical-HRT2-ML and Clinical-HRT2-DL models), DWI

images (Clinical-DWI-ML and Clinical-DWI-DL models), and

joint HRT2-DWI images (Clinical-Merged-ML and Clinical-

Merged-DL models). For comparison, a clinical model that

analyzed only clinical characteristics was also developed.

ML models used the least absolute shrinkage and selection

operator (LASSO) technique (33) to select the optimized subset of

features from 221 preprocessed features, followed by a support

vector machine (SVM) to construct a prediction model.

DL models used a four-layer multi-layer perceptron (MLP) model,

in which 221 preprocessed features were directly input. The feature

numbers at each layer were 256, 128, 64, and 2, respectively, and the

softmax activation function was used for the final output. The network

model was actualized using the open-source deep learning framework

PyTorch (34), where the batch size was set to 16, the learning rate was

0.001, and the Adam algorithm was used as the optimizer.

The predictive performance of each model was evaluated using

five-fold repeated cross-validation. Each cross-validated split of the

data was used to perform feature selection techniques to avoid bias

in the estimation of the predictive performance.
2.8 Statistical analyses

Statistical analysis was performed with SPSS software (version 26.0;

IBM, Armonk, NY) and R (version 3.5.1; R Foundation, Vienna,

Austria). Differences in categorical characteristics between RC

patients with and without TDs were compared using Pearson’s chi-

squared test and Fisher’s exact test. Continuous variables are expressed

as means ± standard deviations. Differences in continuous

characteristics between the two groups were compared using the

Mann-Whitney U test. For all statistical analyses, P < 0.05 (two-sided

test) was considered statistically significant. The predictive performance

of the models was evaluated using the area under the receiver operating

characteristic (ROC) curve (AUC), over five-fold cross-validation.
3 Results

3.1 Clinical characteristics of patients

The final 500 patients included 315 males and 185 females

(mean age, 64.59 ± 10.7 years). According to the pathologically

confirmed TD results, the patients were divided into TD+ (n = 133)

and TD− (n = 367) subgroups. The baseline characteristics of the

patients are summarized in Table 2.
3.2 Performance of the radiomic models

In total, six radiomics models were developed, and the Merge-

ML and DWI-DL models both demonstrated comparable
Frontiers in Oncology 05
performance, with AUCs of 0.69 ± 0.04 and 0.68 ± 0.03,

respectively (P<0.05). The other models’ AUCs were lower than

those of the aforementioned two models. The AUCs of the HRT2-

ML, HRT2-DL, DWI-ML, andMerged-DLmodels were 0.62 ± 0.02,

0.57 ± 0.06, 0.64 ± 0.08 and 0.59 ± 0.04, respectively.
3.3 Performance of the integrated models
combining radiomic information and
clinical characteristics

TN staging, tumor length (measured in the sagittal view), tumor

index CEA, CRM, and EMVI as assessed in the MRI report were

significantly different between the TD+ and TD− groups. These

clinical markers were used to establish a clinical model and were

introduced into the integrated models. The performance of all

models are listed in Table 3. Both the Clinical-ML and Clinical-

DL models performed similarly, with AUC values of 0.81 ± 0.04 and

0.81 ± 0.06, respectively. Among the integrated models, the

Clinical-DWI-DL model achieved the highest performance, with a

diagnostic accuracy of 0.84 ± 0.05, an AUC score of 0.90 ± 0.04,

sensitivity of 0.94 ± 0. 03, and specificity of 0.79 ± 0.08 (Figure 3).

The Clinical-Merged-ML and Clinical-Merged-DL models achieved

similar performances, with AUC scores of 0.83 ± 0.01 and 0.83 ±

0.05, which were both lower than the Clinical-DWI-DL model.
3.4 Robustness of the model on
different scanners

We compared the performance of our DWI-DL model on one

scanner (GE-Signa HDxt) and all three scanners to assess the

robustness of the DL-model on different scanners. We obtained

AUC scores of 0.69 ± 0.08 when used with a single scanner and 0.68

± 0.03 when used with three scanners. We did not detect a

statistically significant difference (p = 0.69), even though the

model performed better on a single scanner than on three scanners.
4 Discussion

In this study, we developed and validated a variety of models for

non-invasive preoperative prediction of TDs in patients with RC,

based on radiomic features, clinical factors, and a combination of

both. Among all the models, the integrated DL-based model using a

combination of DWI radiomic features and clinical characteristics

was the most effective and achieved promising predictive

performance. This approach can serve as a potential preoperative

assessment tool to assist clinicians in preoperative stage evaluation

and personalized treatment of patients with RC.

Of the 500 included RC patients, 26% presented with TDs, which is

slightly higher than the median incidence (21.3%) of TDs in patients

with CRC, as previously reported (2). TDs are an important prognostic

factor in CRC, as a significantly worse prognosis has been found in

patients with TDs, regardless of the sub-staging of the LNs (35). TDs

are also an independent risk factor for liver, lung, and peritoneal
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TABLE 2 The baseline characteristics of the patients.

Characteristics TDs-positive TDs-negative P

Gender
Male 49(36.8) 136(37.1) 0.96

Female 84(63.0) 231(62.9)

Age 65.0(11.0) 64.4(10.5) 0.60

BMI 23.2(2.6) 22.9(3.2) 0.49

CEA (ng/ml) 16.5(40.3) 6.3(11.4) <0.01

CA 19-9 (IU/ml) 61.7(300.6) 27.1(217.9) 0.16

Distance(cm) 8.8(7.2) 8.9(3.4) 0.81

Tumor length (cm) 4.6(1.4) 4.1(1.3) <0.01

mrT stage T1 1(0.8) 8(2.2) <0.01

T2 14(10.5) 101(27.5)

T3 86(64.7) 228(62.1)

T4 32(24.1) 30(8.2)

mrN stage N0 2(1.5) 226(61.6) <0.01

N1 85(63.9) 101(27.5)

N2 46(34.6) 40(10.9)

CRM Presence 44(33.1) 53(14.4) <0.01

Absence 89(66.9) 314(85.6)

EVMI Presence 57(42.9) 68(18.5) <0.01

Absence 76(57.1) 299(81.5)

pT stage T1 1(0.8) 32(8.7) <0.01

T2 13(9.8) 121(33.0)

T3 109(81.9) 184(50.1)

T4 10(7.5) 30(8.2)

pN stage N0 0(0) 272(74.1) <0.01

N1a 32(24.1) 38(10.4)

N1b 26(19.5) 35(9.5)

N1c 35(26.3) 0(0)

N2a 27(20.3) 14(3.8)

N2b 13(9.8) 8(2.2)

LI Presence 29(21.8) 19(5.2) <0.01

Absence 104(78.2) 348(94.8)

PI Presence 40(30.1) 28(7.6) <0.01

Absence 93(69.9) 339(92.4)

Grade

Well differentiated 47(35.3) 181(49.3) 0.01

Moderately differentiated 61(45.9) 145(39.5)

Poorly/undifferentiated 25(18.8) 41(11.2)
F
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Unless otherwise indicated, data are the number of patients, with percentages in parentheses. Categorical variables were compared by using the chi-squared test. P < 0.05 indicates a statistically
significant difference. Continuous variables were expressed as means ± standard deviations. TD, tumor deposition; CEA, carcinoembryonic antigen; CA19-9, carbohydrate antigen 19-9; mrT
stage, tumor stage on magnetic resonance imaging; mrN stage, lymph node stage on magnetic resonance imaging; CRM, circumferential resection margin; EMVI, extramural microvascular
invasion; pT stage, pathological tumor stage; pN stage, pathological lymph node stage; LI, lymphovascular invasion; PI, perineural invasion; Grade, pathological tumor histological grade.
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metastases (36). Moreover, patients with TDs have a higher risk of LN

metastasis and lymphovascular and perineural invasion (37). In this

study, the proportion of patients with LN metastases and vascular and

nerve invasion in the TD+ group (73.7%, 21.8%, and 30.1%,

respectively) was also significantly higher than that in the TD−

group (25.9%, 5.2%, and 7.6%, respectively), indicating a possible

correlation between TDs and LN metastases, neurovascular invasion,

and multi-channel tumor metastases, which are also associated with

worse prognosis in patients with CRC.

While TDs cannot be reliably assessed preoperatively using

traditional imaging techniques that depend on the naked eye,

previous studies have shown that they may be predicted using

radiomics, which provides implicit information on tumor

heterogeneity far beyond the capability of visual inspection.

Radiomic models based on US, CT, and MRI have been established

for TD prediction. However, functional MRI (e.g., DWI) provides

more information on tumor heterogeneity. Therefore, we established

radiomic models based onDWI, which demonstrated higher predictive

performance than HRT2-only radiomic models.

The Clinical-ML and Clinical-DL models perform similarly in

Table 3. This is because there are only 7 clinical features, which is a

relatively small number, and both DL and ML work well with such

low-dimensional data. We can also observe that the Clinical-DWI-DL
Frontiers in Oncology 07
model improves by roughly 9% over the Clinical-DL model, while the

Clinical-DWI-ML model barely improves. This could be because deep

learning models outperform ML-based models in high-dimensional

data situations.

A study on MRI evaluation demonstrated that a joint-modality

(HRT2 and DWI) radiomic model achieved higher diagnostic

performance than HRT2-only and DWI-only models (38). However,

in our study, the joint-modality model did not outperform single-

modality models. This result is similar to the findings of Shin et al.

whopredicted the complete pathological response inRC, and their joint-

modalitymodelusing features fromT2-weightedandDWI imageshada

classification performance similar to that of the T2-onlymodel (39).We

alsodevelopedan integratedmodel that combinedradiomic features and

clinical characteristics to improve the predictive performance. Among

the integrated DL-based models combined with clinical factors, the

model utilizing DWI-only radiomic features achieved the highest

performance. This may be due to inconsistent baselines and different

spatial resolutions between HRT2 and DWI scans of RC, which cannot

be reduced by spatial resampling prior to feature extraction.

In addition to investigating the model’s performance, we

investigated its robustness due to the complexity of clinical data

collection. We chose the model with the best performance (DWI-

DL) for this investigation because clinical information is independent
TABLE 3 Comparison of areas under the curve for all models.

Models DL ML

AUC ACC SEN SPE AUC ACC SEN SPE

DWI 0.68 ± 0.03 0.674 ± 0.03 0.708 ± 0.07 0.66 ± 0.06 0.64 ± 0.08 0.64 ± 0.06 0.71 ± 0.20 0.58 ± 0.26

HRT2 0.57 ± 0.06 0.63 ± 0.05 0.57 ± 0.18 0.65 ± 0.09 0.62 ± 0.02 0.62 ± 0.02 0.58 ± 0.21 0.66 ± 0.22

Merged (DWI+HRT2) 0.59 ± 0.04 0.63 ± 0.07 0.66 ± 0.10 0.62 ± 0.13 0.69 ± 0.04 0.67 ± 0.04 0.70 ± 0.07 0.66 ± 0.06

Clinical 0.81 ± 0.04 0.76 ± 0.05 0.93 ± 0.05 0.72 ± 0.07 0.81 ± 0.06 0.80 ± 0.02 0.96 ± 0.05 0.63 ± 0.07

Clinical-DWI 0.90 ± 0.04 0.84 ± 0.05 0.94 ± 0.03 0.79 ± 0.08 0.81 ± 0.02 0.77 ± 0.03 0.87 ± 0.04 0.68 ± 0.07

Clinical-HRT2 0.83 ± 0.04 0.75 ± 0.04 0.94 ± 0.04 0.69 ± 0.05 0.79 ± 0.02 0.76 ± 0.02 0.77 ± 0.06 0.75 ± 0.07

Clinical-Merged (DWI+HRT2) 0.83 ± 0.05 0.75 ± 0.06 0.97 ± 0.02 0.67 ± 0.08 0.83 ± 0.01 0.74 ± 0.03 0.86 ± 0.08 0.74 ± 0.07
fro
Bold results indicate better results. The integrated model of clinical factors and diffusion-weighted imaging obtained the best performance.
FIGURE 3

ROC curve of the combined model of DWI and clinical factors. The blue dotted lines represent the ROC curve of five-fold cross-validation (CV), and
the red line represents the mean ROC curve of the five-fold CV. ROC, receiver operating characteristic; DWI, diffusion-weighted imaging.
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of the scanner, allowing us to test the model’s robustness across a range

of scanners. We found no significant differences in the radiomics

model across machines (AUCs of the single- and multi-scanner

models: 0.69 ± 0.08 and 0.68 ± 0.03, respectively, with P = 0.69),

indicating good robustness of our radiomics model.

This study has some limitations. First, to our knowledge, this is the

largest study to date on TD radiomics research, but it is still not large

enough to avoid selection bias that compromises the generalization

ability of our models. Second, this retrospective study excluded patients

who had received neoadjuvant chemotherapy or radiotherapy before

surgery, which introduced a further selection bias. Third, this was a

single-center study, and the difference in sample sizes between the TD+

and TD− groups was large. Therefore, further prospective, multicenter

studies with larger cohorts are warranted to improve prediction

outcomes and define the potential standardization of our models.
5 Conclusions

Our integrated model combining clinical variables (tumor

markers and MRI reporting status) and MRI radiomic features in

a DL model can non-invasively and preoperatively predict TDs in

patients with RC. In particular, the model that used DWI and

clinical features showed the highest predictive performance. This

model can serve as a potential preoperative assessment tool in

clinical practice for more effective tumor staging and risk

stratification to provide optimal treatment for patients with RC.
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