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Notch signaling is involved in cell fate determination and deregulated in human

solid tumors. Hypoxia is an important feature in many solid tumors, which activates

hypoxia-induced factors (HIFs) and their downstream targets to promote

tumorigenesis and cancer development. Recently, HIFs have been shown to

trigger the Notch signaling pathway in a variety of organisms and tissues. In this

review, we focus on the pro- and anti-tumorigenic functions of Notch signaling

and discuss the crosstalk between Notch signaling and cellular hypoxic response in

cancer pathogenesis, including epithelia-mesenchymal transition, angiogenesis,

and the maintenance of cancer stem cells. The pharmacological strategies

targeting Notch signaling and hypoxia in cancer are also discussed in this review.
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1 Introduction

The discovery of Notch signaling dates back to the early 1900s when a specific Drosophila

wing phenotype showed notches on the wings which resulted from the mutations in the

Notch receptor. Meanwhile, several other mutations have also been identified, such as Delta

and Serrate, which similarly turned out to reside in genes encoding ligands related to the

Notch pathway (1). Studies of the Notch signaling have flourished since then and the

principal components and process of the signaling transduction cascade were identified. As a

juxtacrine signaling, Notch signaling relies on the interaction between receptors and ligands

expressed on juxtaposed cells to initiate signaling. The Notch signaling has been extensively

characterized as a highly conserved pathway involved in cell proliferation, fate,

differentiation, and stem cell maintenance (2). It is universally acknowledged that the

normal Notch signaling is vital to most developmental decision-making in animals, and

that pathway dysfunction is involved in many conditions, including cancer (3).

The Notch signaling pathway plays a critical role in tumor initiation and progression.

Notch can function as an oncogene or a tumor suppressor in different cancers. Hypoxia is a

common feature in a majority of malignant tumors. Hypoxia triggers a complex signaling
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network in tumor cells to alter cell metabolism and regulate

angiogenesis, epithelia-mesenchymal transition (EMT), and the

maintenance and functions of cancer stem cells (CSCs). Hypoxia-

induced factors (HIFs), as global regulators of cellular hypoxia

responses, can interact with Notch and directly regulate the Notch

signaling pathway. This review systematically summarizes the

intersection between Notch signaling and the cellular hypoxic

response and highlights the underlying molecular mechanisms

involved in the cancer pathogenesis, which contributes to the

discovery and development of a combinational strategy targeting

Notch and hypoxia in cancer treatment.
2 Notch signaling pathway

Notch signaling exerts its effect in a canonical or noncanonical

fashion. The specific mechanisms of canonical and non-canonical

Notch signaling are described as follows.
2.1 Canonical Notch signaling

Canonical Notch signaling is initiated by g-secretase-mediated

cleavage of the Notch receptor, resulting in the release of the active

intracellular domain of Notch, which migrates to the nucleus and

interacts with CSL (for CBF1, Suppressor of Hairless, Lag1; also

known as RBPJ), leading to the activation of downstream target genes

(Figure 1). In mammals, there are four Notch receptors (Notch 1/2/3/

4) and five ligands (Delta-like 1/3/4 or Jagged 1/2). The Notch

receptors and ligands are structurally related in some ways. They

both contain a large number of epidermal growth factor (EGF)-like

repeats in their extracellular domains. Briefly, Notch receptors are

produced in the endoplasmic reticulum and synthesized as single

precursor proteins, which are then trafficked to the Golgi

compartment. In the Golgi compartment, Notch receptor

precursors undergo S1 cleavage by a furin-like protease, creating

the heterodimeric Notch receptor consisting of a Notch extracellular

domain (NECD) and a Notch transmembrane and intracellular

domain (TMIC). The part of the extracellular domain of Notch

receptor consists of 36 EGF-like repeats and a negative regulatory

region. EGF-like repeats 11 and 12 function as specific protein

binding domains mediating interaction with ligands (4). The

ligand-receptor interaction triggers proteolytic cleavages by an

ADAM metalloprotease (S2-cleavage). In this process, ligand will be

endocytosed after it binds to Notch receptor. Epsin-dependent ligand

endocytosis exerts force on the negative regulatory region exposing
Abbreviations: HIFs, Hypoxia-induced factors; EMT, Epithelial-mesenchymal

transition; CSCs, Cancer stem cells; EGF, Epidermal growth factor; NICD, Notch

intracellular domain; MAML, Mastermind like transcriptional coactivator; ALL,

Acute lymphoblastic leukemia; TME, Tumor microenvironment; FIH-1, Factor

inhibiting HIF-1; VEGF, Vascular endothelial growth factor; Dll4, Delta-like 4;

GSIs, g-secretase inhibitors; NcRNAs, Non-coding RNAs; MiRNAs, MicroRNAs;

LncRNAs, Long non-coding RNAs; HAPs, Hypoxia activated prodrugs; Hsp90,

Heat shock protein 90; HDACs, Histone deacetylases.
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the S2 site for cleavage (5). Then, the remainder of the receptor

subjected to S3 cleavage by the g-secretase complex releases the Notch

intracellular domain (NICD), which translocates into the nucleus. In

the nucleus, NICD interacts with a DNA-binding protein CSL,

converting CSL from a transcriptional repressor to an activator.

The NICD-CSL interaction is stabilized by Mastermind like

transcriptional coactivator (MAML), forming a ternary NICD/

MAML/CSL complex to activate the transcription of downstream

genes including Hes (hairy-enhancer of split), Hey (Hes related to

YRPW), and so on (6, 7). Different ligands could generate diverse

Notch activity dynamics in signaling receiving cells, inducing different

cell fates via activating distinct target gene programs (8).
2.2 Non-canonical Notch signaling

Non-canonical Notch signaling is an important arm of Notch

signaling. Notch is proved active in cells where the canonical ligands

and downstream effectors were defective, indicating that Notch acts in

a second way independently (9). Non-canonical Notch signaling can

be initiated by a non-canonical ligand via CSL-independent manner

(10–12).

Notch signaling can be elicited by diverse non-canonical ligands,

including ligands structurally similar to canonical ligands, structurally

unrelated ligands, and secreted proteins (13, 14). Delta like non-

canonical Notch ligand 1 is an integral membrane protein containing

tandem EGF-like repeats in its extracellular domain but lacking the

DSL domain. It can directly interact with Notch1 and act as an

antagonist (14). Another structurally similar non-canonical ligand

Delta/Notch-like EGF-related receptor functioned as a trans-ligand to

affect glial morphological changes (15). A diverse group of

structurally unrelated non-canonical ligands have also been

identified as Notch activators. F3/contactin1 and NB3/contactin6

interacted with Notch EGF-like repeat distal to the DSL domain

binding site to induce oligodendrocyte differentiation (11, 16). In

addition, a number of secreted proteins act as non-canonical ligands

of Notch. In vertebrates, CCN3 and MAGP-2 can bind to the

extracellular domains of Notch receptor, resulting in its cleavage

and activation (17, 18). In Drosophila, Scabrous activated

transcription of the Notch target gene E(spl)C m3 to regulate eye

ommatidia and sensory bristles (19, 20).

In CSL-independent non-canonical Notch signaling, the cleaved

NICD interacts with multiple pathways and regulates cell survival.

The CSL knockout mice developed breast tumors similar to CSL

heterozygous and control mice, indicating that Notch-induced breast

tumor development was CSL-independent (21). Interleukin-6 has

been identified as a novel Notch target in breast tumor cells. The

Notch-mediated interleukin-6 up-regulation required two NF-kB
signaling-related proteins and P53 (22). The membrane-tethered

NICD inhibited cell apoptosis through interacting with mTOR and

Rictor (companion of mTOR) to trigger Akt phosphorylation in

activated T cells (23). Notch activated the PI3K-Akt pathway via

Deltex1 and played oncogenic functions in cervical cancer (24). In

addition, Notch1 was demonstrated to directly regulate vascular

barrier function through a flow-mediated, non-canonical,

transcription-independent signaling mechanism (25, 26).
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3 Notch signaling pathway in cancer

The mutations in the Notch signaling pathway genes and

dysregulated Notch signaling pathways exhibit dual biological

functions in tumorigenesis and cancer progression (Table 1).

Notch1 mutation was first identified in patients with acute T-cell

acute lymphoblastic leukemia (T-ALL) and occurs in approximately

50% of T-ALL (27). Oncogenic and gain-of-function mutations of

Notch genes have been implicated in chronic lymphocytic leukemia

(30), splenic marginal zone B-cell lymphoma (31), squamous cell lung
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carcinoma (44) and salivary adenoid cystic carcinomas (58).

Moreover, aberrant activation of Notch signaling has been found in

many solid tumors including prostate (59), breast (60), cervical (61),

melanoma (62), and lung cancer (63, 64).

In addition, Notch signaling can interact with other signaling

pathways to promote tumorigenesis and cancer progression (Table 2).

The Notch signaling contributed to the development of leukemia and

breast cancer through interacting with the NF-kB pathway (22, 65,

82). Notch inhibited cervical cancer cell apoptosis via the mTOR–

Rictor pathway (23).
FIGURE 1

Overview of the Notch signaling pathway. The Notch receptor is produced in the endoplasmic reticulum (ER) and undergoes S1-cleavage in the Golgi
compartment. The cleavage results in the formation of a heterodimer receptor, consisting of a Notch extracellular domain (NECD) and a Notch
transmembrane and intracellular domain (TMIC), which is then transported to the plasma membrane. Upon interacting with a transmembrane ligand, the
Notch receptor undergoes two sequentially cleavage, releases the Notch intracellular domain (NICD), which translocates into the nucleus. In the cell
nucleus, NICD forms a ternary complex with the DNA-binding protein CSL and MAML to regulate transcription of downstream genes. A detailed
description of the various domains in Notch receptor is presented in the box on the top. Notch receptor consists of a NECD, a transmembrane domain
(TMD), and a NICD. NECD consists of epidermal growth factor (EGF) - like repeats domain, and a negative regulatory region (NRR), which including three
Lin Notch repeats (LNR) and a heterodimerization (HD) domain. EGF-like repeats 11 and 12 function as specific protein binding domains mediating
interaction with ligands. NICD consists of a RBPJ associated molecule (RAM), ankyrin repeats (ANK), a translational active domain (TAD), and a PEST
domain.
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In addition to its oncogenic role in human malignancies, Notch

also functions as a tumor suppressor (83). Nicolas et al. has

demonstrated that Notch1 deficiency in skin resulted in the

sustained expression of Gli2 and derepressed b-catenin signaling,

causing the development of tumor (84). In addition, Notch was

reported to play a suppressive role in B cell ALL (85), human

hepatocellular carcinoma (86), small cell lung cancer (41), and

neuroendocrine tumors (87). In a word, Notch acts as an oncogene

or tumor suppressor in cancer depending on different contexts. To

comprehend the full spectrum of Notch effects, efforts were required

to identify the specific ligand-receptor interactions, the downstream

targets of Notch signaling, and the functions of Notch modifiers (88).
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Tumor microenvironment is comprised of a complex network,

including stromal cells, immune cells, fibroblasts, blood vessels, and

secreted factors (89). The interaction between tumor cells and tumor

microenvironment (TME) is interdependent. A normal TME has a

potential to suppress tumors. Lim et al. has suggested that tumor-

stroma interactions can drive disease progression in squamous cell

carcinoma arising in different tissues, indicating that the tumor

context defines metastatic progression (90).

Accumulating evidence suggested that Notch signaling plays a

role in regulating the immune responses in tumors, which may be

associated with the critical role of Notch signaling in hematopoiesis

and immune development (88, 91). A single-cell RNA-sequencing
TABLE 1 The Oncogenic and tumor suppressive roles of Notch signaling in human cancers.

Tumor Type Oncogenic or Tumor Suppressive Mutations

Acute lymphoblastic T-cell leukemia Oncogenic Notch1 (27), Notch3 (28), FBXW7 (29)

Chronic lymphocytic leukemia Oncogenic Notch1 (30)

Splenic marginal zone lymphoma Oncogenic Notch2 (31)

Diffuse large cell B lymphoma Oncogenic Notch1 (32), Notch2 (33)

Adenoid cystic carcinoma Oncogenic Notch1, Notch2 (34, 35)

Breast cancer Oncogenic Notch1, Notch2 (36)

Infantile myofibromatosis Oncogenic Notch3 (37)

Glomus tumors Oncogenic Notch1, Notch2, Notch3 (38)

Head and neck squamous cell carcinomas Tumor Suppressive Notch1 (39, 40)

Small cell lung cancers Tumor Suppressive Notch1, Notch2, Notch3, Notch4 (41)

Bladder cancer Tumor Suppressive Notch1, Notch2, Notch3, MAML (42, 43)

Cutaneous and lung squamous cell carcinoma Tumor Suppressive Notch1, Notch2 (44)

Cholangiocellular carcinoma Oncogenic No mutations (45)

Hepatocellular carcinoma Oncogenic and Tumor Suppressive No mutations (46–48)

Pancreatic ductal adenocarcinoma Oncogenic and Tumor Suppressive No mutations (49, 50)

Melanoma Oncogenic No mutations (51, 52)

Prostate cancer Oncogenic No mutations (53, 54)

Glioblastoma Oncogenic No mutations (55–57)
MAML, Mastermind like transcriptional coactivator.
TABLE 2 The cross-talk between Notch signaling and other pathways in cancers.

Interaction with other pathways Tumor Type

NF-kB pathway Leukemic T cells (65), prostate cancer (66), breast cancer (22)

PI3K/Akt pathway Cervical cancer (24), melanoma (67), breast cancer (68), lung adenocarcinoma (69)

Wnt/b-catenin pathway Colorectal cancer (70)

HIF pathway Pancreatic cancer (71), breast cancer (72), glioblastoma (73)

MAPK pathway Melanoma (67), thyroid papillary cancer (74), breast cancer (75), head and neck squamous cell carcinoma (76)

TGF-b/smad pathway Breast cancer (77), clear cell renal cell carcinoma (78)

mTOR pathway Cervical cancer (23)

P53 pathway Lung adenocarcinoma (79), keratinocyte cancer (80), T-cell lymphoma (81)
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analysis has revealed that Jagged1-Notch pathway regulated immune

cell homeostasis during minimal residual disease in hematologic

neoplasm, which was a potential target to delay tumor recurrence

(92). In breast cancer, the Jagged1-Notch pathway regulated tumor-

associated macrophage differentiation towards M2 phenotype to

induce aromatase inhibitor resistance (93). Activation of the Notch

signaling in triple-negative breast cancer resulted in the secretion of

pro-inflammatory cytokines and the recruitment of pro-tumoral

macrophages to the TME (94). Delta-like 1 (Dll1)-mediated Notch

signaling was implicated in the crosstalk between tumor cells and

cancer-associated fibroblasts to promote radio-resistance in breast

cancer (95). In general, Notch signaling plays a critical role in

regulating tumor cells and TME, which may provide new strategies

for Notch-targeted cancer therapy.
4 Hypoxia in cancer

Oxygen is indispensable for mammals that maintain intracellular

ATP levels and serves as an electron acceptor in a large number of

biochemical reactions (96). Hypoxia is a major feature of solid tumor

and associated with poor prognosis and resistance to therapy (97–99).

Under hypoxic condition, tumor cells undergo various biological

processes including cell proliferation, migration, apoptosis, and

EMT (100). Hypoxia also triggers multiple signaling pathways to

regulate advanced but dysfunctional vascularization in TME (101).

The transcriptional factor HIFs are principal regulators and

orchestrate cellular adaptive mechanisms in responses to hypoxia.

HIFs contain two different subunits: a and b. The a-subunit protein
is regulated by cellular oxygen levels, whereas the b subunit is

constitutively expressed (102, 103). HIF-a proteins are oxygen-

sensitive that contain an oxygen-dependent degradation domain

with target prolyl residues, and a C-terminal transactivation

domain which contains the target asparaginyl residue. Under

normoxic condition, HIF-a subunits are hydroxylated by prolyl

hydroxylases. After hydroxylation, the von-Hippel Lindau tumor

suppressor gene interacts with HIF-a and tags it for 26s

proteasomal degradation (104, 105). Under hypoxic condition, HIF-

a hydroxylation is prevented due to the inactivation of prolyl

hydroxylases, resulting in the inhibition of ubiquitin-mediated

proteasome degradation of HIF-a. HIF-a is stabilized and form the

HIF heterodimer, which then enters the nucleus and combines with

hypoxia-response elements to activate the downstream genes (106).

Moreover, HIF transcriptional activity is modulated by factor

inhibiting HIF-1 (FIH-1), which hydroxylates an asparagine residue

in the transactivation domain of HIF-a subunits, thereby blocking its

transactivation function (107, 108).

There are three known a subunits (HIF-1a, HIF-2a, and HIF-3a)
and three b subunits (HIF-1b, HIF-2b, and HIF-3b). HIF-1a is widely

expressed in most human tissues, while HIF-2a and HIF-3a are

detected in more restricted tissues, such as lung, kidney, and so on

(109, 110). In canonical HIF signaling, hypoxia leads to the

stabilization of the labile protein HIF-1a or HIF-2a which

complexes with HIF-b, forming heterodimers that bind to hypoxia-

response elements in target genes (111). HIF-1a and HIF-2a are
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structurally closely related and share both common and distinct target

genes (112). The role of HIF-3a in the regulation of the HIF pathway

is not completely understood and mainly regarded as a negative

regulator of HIF-1a and HIF-2a (113).

HIFs are overexpressed and significantly associated with poor

prognosis in a variety of cancers (114–117). HIFs-regulated genes

encode proteins involved in critical aspects of cancer biology,

including energy metabolism, cell survival and invasion,

angiogenesis, EMT, and so on. Tumor cells tend to turn

metabolism from an oxygen-dependent tricarboxylic acid cycle to

glycolysis (118). HIF-1 regulates glycolytic enzymes, including

hexokinase 2 and phosphofructokinase 1, which involved in tumor

initiation and growth (119, 120). A number of growth factors

regulated by HIFs played a role in cell survival, such as

transforming growth factor-b, insulin-like growth factor 2,

endothelin-1, erythropoietin, and epidermal growth factor receptor

(100, 121–123). HIFs mediated angiogenesis via activating the

transcription of multiple angiogenic growth factors, including

vascular endothelial growth factor (VEGF), placenta-like growth

factor, angiopoietin (124, 125). HIF-1 can directly induces the

transcription of ZEB1, TWIST, and TCF3, which promote EMT in

cancers (126–128). In a word, HIFs play a key role in cancer initiation

and progression.
5 Crosstalk between Notch signaling
and hypoxia pathway

HIF signaling pathway is the primary regulator in the

physiological and pathological response to hypoxia. The Notch

signaling pathway plays a critical role in cell fate control, including

tumorigenesis and progression. The link between Notch signaling and

hypoxia was first described in a transcriptomic analysis, in which the

Notch target gene Hes1 was upregulated in hypoxic neuroblastoma

cell lines (129). Thereafter, a study of Notch and hypoxia-activated

genes in glioblastoma tumor confirmed a combined gene signature of

these two pathways and their role in tumor prognosis (130).

Gustaffson et al. provided important evidence that hypoxia directly

regulated Notch signaling (131). In this study, HIF-1a was recruited

to Notch-responsive promoters and interacted with NICD, leading to

stabilization of NICD and activation of Notch downstream genes

(Hes and Hey). HIF-1a can also be recruited to the Hey-2 promoter

in myogenic cell (131). The up-regulation of the Notch ligands

(Jagged 2 and Delta-like 4) induced by hypoxia leaded to activation

of Notch signaling (132–134). HIF-2a promoted stem phenotype

conversion and resistance to Paclitaxel by activating Notch and Wnt

pathways in breast cancer cells (72). Besides, HIF-1a was revealed to

interact with g-secretase and upregulate g-secretase activity to

promote cell invasion and metastasis through a novel function

independent of transcription factor (135). HIF-1a and HIF-2a
synergized with the Notch co-activator MAML1 to potentiate

Notch activity in breast cancer cells (136). The indirect regulation

of Notch signaling by HIF was reported in lung cancer cells that HIF-

mediated miR-1275 up-regulation exerted its tumorigenic effect
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through co-activating Notch and Wnt/b-catenin signaling

pathways (137).

On the other hand, Notch signaling can also regulate hypoxic

response. Notch was demonstrated to transcriptionally upregulate the

expression of HIF-2a in certain tumor cells via a HIF1a-to-HIF2a
switch (138). The g-secretase inhibitor of Notch decreased the mRNA

expression of the HIF-1 target PGK-1 (131).

FIH-1 is involved in the crosstalk between hypoxia and Notch

signaling pathways. Both HIF-1a and Notch are substrates for the

asparagine hydroxylase FIH-1. Two asparagine residues in the NICD

ankyrin repeat domain are hydroxylated by FIH-1, leading to
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inactivation of Notch signaling. FIH-1 binds to NICD more

efficiently than HIF-1a, indicating that NICD sequesters FIH-1

away from HIF-1a, which results in an under-hydroxylation on

HIF1a (139, 140). This may shed light on another oxygen-

dependent interface that modulates HIF signaling.

To summarize, the crosstalk between Notch signaling and the

cellular hypoxic response is extensive and the underlying molecular

mechanism is complex (Figure 2). A Notch-hypoxia crosstalk has

been involved in a variety of physiological situations and

pathological conditions, including vascular diseases and cancers

(64, 141).
FIGURE 2

A Crosstalk between Notch signaling and hypoxia pathway. Upon activation of the Notch receptor, the Notch intracellular domain (NICD) accumulates in
the cell nucleus and activates target genes. Hypoxia induces the canonical hypoxia response pathway, which involves the activation of hypoxia response
element (HRE)-driven target genes. Under hypoxic conditions, hypoxia-induced factors-1a (HIF-1a) potentiates Notch-dependent activation of target
genes through interaction with the NICD. Besides, HIF-1a interacts with g-secretase and upregulated g-secretase activity. Factor-inhibiting HIF-1 (FIH-1)
hydroxylates the asparagine residues of HIF-a and NICD, leading to inactivation of Notch and hypoxia signaling pathways. Hypoxia decreases the activity
of FIH-1. In addition, FIH-1 binds NICD more efficiently than HIF-1a. NICD sequesters FIH-1 away from HIF-1a, indirectly resulting in an activation of
HRE-driven target genes.
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6 Biological processes in cancer
regulated by a Notch-hypoxia crosstalk

A functional relationship between hypoxia and Notch signaling

pathways has been observed in many types of tumors. Accumulating

evidences have revealed that the crosstalk between Notch and the

cellular hypoxic response has diverse roles in cancer pathogenesis by

regulating several important biological processes, including EMT,

angiogenesis, the maintenance of CSCs, and so on.
6.1 A Notch-hypoxia crosstalk in
cancer EMT

EMT is one of the critical mechanisms of cancer metastasis (142,

143). The hallmark of EMT is the loss of E-cadherin expression

through the up-regulation of its repressors (144, 145). E-cadherin

repressors are classified into two groups depending on their effects on

the E-cadherin promoter. Snail, Zeb, E47, and KLF8 bind to and

repress the activity of the E-cadherin promoter (146, 147), whereas

several factors such as Twist, Goosecoid, E2.2, and FoxC2 indirectly

repress E-cadherin transcription (148).

HIF-1 was reported to upregulate the expression of Twist to

promote EMT (149). A number of studies suggested that hypoxia

induced EMT via activating Notch signaling in tumor cells (136, 150–

152). Notch can regulate the expression of Snail-1 via two distinct

mechanisms in hypoxia. One relied on the transcriptional up-

regulation of Snail-1. The other concerned the protein stabilization

of Snail-1 via the increase of lysyl oxidase which was transcriptionally

regulated by HIF-1a and potentiated by Notch (150). Hypoxia-

mediated increase in Snail and Slug required Notch pathway in the

initiation of EMT in breast cancer cells (136). HIF-1a can also exert a

non-transcriptional function in regulating the expression of NICD

and E-cadherin in lung cancer cells (153).
6.2 A Notch-hypoxia crosstalk
in angiogenesis

Tumor growth is fed by nearby blood vessels. Hypoxia occurs as

the tumor grows. New blood vessels are essential for continued

primary tumor growth. The ability of forming vasculature has been

termed angiogenesis. Activation of endothelial cells was a key step of

angiogenesis and a number of growth factors upregulated by HIF

were involved in the process, such as VEGF (154).

Notch signaling was activated and played an important role in the

process of angiogenesis (155). The expression of Notch ligand Dll4

was much higher in the endothelium of tumor blood vessels

compared to nearby normal blood vessels, indicating that Notch

signaling were implicated in tumor angiogenesis (132, 156, 157). Dll4

was upregulated by VEGF as a negative feedback modulator, which

prevented VEGF-induced overexuberant angiogenic sprouting and

branching via Notch signaling, guaranteeing the formation of a well-

differentiated vascular network (158, 159). HIF1a-induced basic

fibroblast growth factor and VEGF were reported to play a

synergistic role in the regulation of Dll4 in tumor cells (156).
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Hypoxia-induced up-regulation of Dll4 and Hey repressed COUP-

TFII (known as a regulator of vein identity) in endothelial progenitor

cells, which may contribute to tumor angiogenesis (160). Another

Notch ligand Jagged 2 was transcriptionally activated by HIF-1a,
which triggered Notch signaling and activated Hey1 to promote

vascular development and angiogenesis (133).
6.3 A Notch-hypoxia crosstalk in the
maintenance of CSCs

CSCs represent a discrete subpopulation of cancer cells with stem

cell properties, which is responsible for tumor growth. CSCs are self-

renewal and can produce more committed progenitor or “transit-

amplifying” cells whose progeny differentiate aberrantly to promote

the tumorigenesis (161, 162). Stem cell “niches” are considered as

particular microenvironments that maintain the combined properties

of CSCs self-renewal and multipotency. The Notch signaling is highly

conserved and is critical for cell fate decisions and the maintenance of

stem cells (163). HIF stabilization in hypoxic tumor cells can promote

stem cell properties, including self-renewal and multipotency partly

via inducing the expression and activity of the Notch signaling

pathway (164–167). Hypoxia-induced the 66-kDa isoform of the

SHC gene controlled the expression of Notch3 to regulate the stem

cell properties (168). In glioblastomas, HIF-1a played an important

role in the hypoxia-mediated maintenance of glioma stem cells via the

interaction with NICD (73). A further study suggested that hypoxia

can promote glioma stem cells proliferation and maintain the

characteristics of stem cells through activating Notch1 and Oct3/4

(169). In addition, HIF-1a was reported to promote pancreatic cancer

cell dedifferentiation into stem-like cell phenotypes by activating

Notch signaling, revealing a novel regulatory mechanism (71).
7 Strategies for cancer therapy

7.1 Therapeutic targets in the Notch
signaling pathway

In view of the critical role of Notch signaling in tumor

pathogenesis, Notch is regarded as a promising therapeutic target.

Numerous approaches have been developed to inhibit different steps

of Notch signaling pathway for therapy: g-secretase inhibitors (GSIs),
antibodies targeting ligands or receptors, compounds targeting

transcription activation, and so on (Figure 3). The drugs are listed

by therapeutic category in Table 3.

GSIs were the first and most extensively studied small-molecule

Notch inhibitors. Initially, GSIs were developed for treating

Alzheimer’s disease because g-secretase catalyzed the production of

the b-amyloid peptide from amyloid precursor protein (196). The use

of GSIs for cancer treatment is based on inhibiting the cleavage of g-
secretase which mediates S3 cleavage to generate NICD, resulting in

blocking Notch signaling. However, studies have shown that systemic

inhibition of Notch signaling by GSIs results in “on-target”

gastrointestinal toxicity because of the accumulation of secretory

goblet cells in the intestine. The above observation can be explained

by alterations in the differentiation of intestinal stem cells following
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the dual inhibition of Notch1 and Notch2 (197). Co-administration of

glucocorticoid may alleviate the toxicity through inducing

transcriptional up-regulation of cyclin D2 and protecting mice from

developing the GSIs-induced intestinal goblet cell metaplasia in a

preclinical mouse model of T-ALL (198).

Considering the inherent mechanism-based toxicity caused by

pan-Notch inhibitor GSIs, novel inhibitors that selectively target

individual Notch ligands and receptors have been developed.

Selective blocking of Notch1 signaling inhibited cancer cell growth

and deregulation of angiogenesis (199). The antibodies against Notch

receptors are divided into two classes, one directed against the EGF-

like repeat region and the other directed against the Notch negative

regulatory region (200). Several potent and selective inhibitors against

Notch1, Notch2, and Notch3 have been developed (199, 201, 202).
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However, there is a lack of inhibitor against Notch 4. The antibodies

that selectively target the canonical ligands have also been

investigated, such as Jagged antagonism (203).

In the past decades, several molecules targeting Notch trafficking

and processing have been developed. The dihydropyridine FLI-06 as

the first small molecular chemical compound functioned at an early

stage in secretory traffic through disrupting the Golgi apparatus and

inhibiting general secretion before exiting from the endoplasmic

reticulum (204). FLI-06 was also demonstrated to block Notch

activation and decrease the self-renewal ability of tongue CSCs

(205). In addition, direct inhibition of the CSL/NICD complex has

been reported to treat cancers. SAHM1, as a high-affinity binding of

the hydrocarbon-stapled peptide, could prevent the assembly of the

active transcriptional complex, resulting in genome-wide suppression
FIGURE 3

The potential therapeutics targeting Notch signaling pathway. Here are several strategies to modulate Notch signaling pathway: (I) inhibitors of Notch
pre-processing, (II) receptor and ligand antibodies blocking ligand-receptor interaction, (III) inhibitors of the trimeric transcriptional complex assembly,
(IV) molecules activating Notch signaling. ER, endoplasmic reticulum; NICD, Notch intracellular domain; NRR, negative regulatory region; NMHC, N-
methylhemeanthidine chloride; MAML, Mastermind like transcriptional coactivator; GSIs, g-secretase inhibitors.
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of Notch-activated genes for the treatment of leukemia (206). There

are other small molecules inhibiting the transcriptional activation

complex, which have been investigated, such as IMR-1, CB-103, and

RIN1 (175, 176, 207). However, given that loss of CSL derepressed

target gene promoter and promoted tumorigenesis, targeting CSL

may bring potential problems (208).

As mentioned above, Notch can act as a tumor suppressor in

specific contexts, thus enhancing Notch signaling activation is a

potential therapeutic strategy for cancer. A study demonstrated that

N-methylhemeanthidine chloride, a novel Amaryllidaceae alkaloid,

activated the Notch signaling via docking in the hydrophobic cavity

within the Notch1 negative regulatory region and promoting Notch1

proteolytic cleavage (189). A monoclonal antibody was reported to

enhance Notch3 cleavage and mimic the effects of ligand-induced

Notch activation via binding to overlapping epitopes within negative

regulatory region (202).

Accumulating evidence demonstrated that the non-coding RNAs’

(ncRNAs) played a critical role in cancer therapy. NcRNAs are a class

of RNAs including microRNAs (miRNAs) and long ncRNAs

(lncRNAs) and other short ncRNAs. miRNAs and lncRNAs

regulated cell fate determination via various signaling pathways

(209). miRNA-34 was reported to suppress Notch1 expression,

inducing ovarian cancer cell death (210). In contrast, miRNA-223

as an oncogene activated Notch signaling to induce tumor cell

proliferation in colorectal cancer (211). The versatility is one of the

advantages of miRNA therapeutics, which can suppress or mimic the

activity of a miRNA. However, the delivery of miRNA remains an

important challenge. LncRNAs mostly act as oncogenes in cancers.

LncRNAs can interact with Notch or act as competing endogenous

RNAs for miRNAs to indirectly induce Notch signaling in various

cancers (212–214). Besides, other therapeutics targeting Notch are

currently under investigation, such as natural products, virotherapy,

and so on.
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7.2 Hypoxia targeting strategies

Considering the critical role of hypoxia in tumor initiation,

progression and therapy resistance, a growing number of preclinical

and clinical cancer studies targeting hypoxia have been performed. In

general, the strategies can be classified into hypoxia activated

prodrugs (HAPs) and pharmacological inhibitors of the HIF

signaling pathway.
7.2.1 Hypoxia activated prodrugs
HAPs are bioreductive drugs which are reduced by specific

reductases under hypoxic conditions and release cytotoxins to kill

cells (215). Five different chemical entities have the potential to target

hypoxia based on their enzymatical reductive reaction under hypoxic

conditions (216), including nitro groups, quinones, aromatic N-

oxides, aliphatic N-oxides and transition metals. To date, several

HAPs have been developed, including EO9 (apaziquone), RH1, SR

4233 (tirapazamine), SN30000, AQ4N (banoxantrone), PR-104, and

TH-302 (evofosfamide) (Table 4). The effects of HAPs are different

depending on the degree of hypoxia and the activity of reductase

enzymes. The selection of the appropriate agents in different patients

is dependent on the clinical context and requires predictive

biomarkers (225).
7.2.2 Inhibitors of HIF signaling
HIF signaling is an attractive target for cancer treatment.

Several inhibitors have been developed to directly bind to HIF-1a
or HIF-2a, resulting in inhibition of their heterodimerization with

HIF-b, such as acriflavine (226), PT2385 (227) and PT2399 (228).

Heat shock protein 90 (Hsp90) can bind to HIF-1a and block the

VHL-dependent proteasomal degradation of HIF-1a. A number of
TABLE 3 Therapeutic approaches targeting Notch signaling pathway.

Class Target Tumor type

GSIs g-secretase T-cell acute lymphoblastic leukemia (170), breast cancer (171), lung adenocarcinoma (172), colorectal cancer
(173), prostate cancer (174)

Transcription blocker CSL/NICD complex Hematologic cancer (175), breast cancer (176)

Antibodies against Notch
receptors

Notch1 T-acute lymphoblastic leukemia (177), adenoid cystic carcinoma (178)

Notch2/Notch3 Untreated metastatic pancreatic cancer (179), small cell lung cancer (180), and other solid tumors (181)

Notch3 Advanced breast cancer and other solid tumors (182)

Antibodies against Notch
ligands

Jagged-1 Breast cancer (183), and other malignant tumors (184)

Delta-like ligand 3 Small cell lung cancer (185)

Delta-like ligand 4 Ovarian cancer (186), Metastatic non-squamous non-small cell lung cancer (187), and other advanced solid
tumors (188)

Enhance Notch signaling
activation

Notch negative regulatory
region

Acute myeloid leukemia (189)

Therapeutic non-coding
RNAs

MiRNAs Prostate cancer (190), breast cancer (191), ovarian cancer (192), pancreatic cancer (193)

LncRNAs Ovarian cancer (194), nasopharyngeal carcinoma (195)
GSIs=g-secretase inhibitors; miRNAs=microRNAs; lncRNAs=long non-coding RNAs.
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Hsp90 inhibitors have been developed during the past two decades.

Hsp90 was identified as the biological target of the ansamycin class

of natural products and derivatives, which has been extensively

studied in cancer treatment (229). Hsp90 inhibitors apigenin and

radicicol reduced hypoxia-induced VEGF expression to decrease

angiogenesis (230, 231). Hsp90 can also modulate the

conformation of the HIF-1 heterodimer, increasing its interaction

with hypoxia-responsive elements, inducing HIF-1 transcriptional

activity (231). Hsp90 can be regulated by posttranslational

modifications, including acetylation. The process of histone

acetylation is regulated by opposing activities of histone

acetyltransferases and histone deacetylases (HDACs). HDAC6

functions as an Hsp90 deacetylase (232). HDAC inhibitor

vorinostat was developed to inhibit HIF-1 transcriptional activity

via direct Hsp90 acetylation, decreasing Hsp90-HIF-1 affinity and

the interaction between HIF and hypoxia-responsive elements

(233). Chetomin, a small molecule blocking the transcriptional

co-activation of HIF-1 pathway, was evaluated as a promising

candidate treatment for several types of cancers (234).

Paradoxically, the stabilization of HIF-1a through inhibition of
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prolyl hydroxylase domain-containing protein 2 has antitumor

effects in certain context. The loss of EGLN1 which encodes

prolyl hydroxylase domain-containing protein 2 inhibited the

proliferation of clear cell ovarian cancer cells (235). In general,

anti-HIF agents are classified by different molecular mechanisms,

including inhibition of HIF protein synthesis, degradation, and

transcriptional activity. A detailed review of experimental chemical

compounds and approved drugs directly targeting HIF pathway are

presented in Table 5.

Targeting HIF signaling can be performed via interfering with

other signaling pathways. PI3K/AKT/mTOR and MAPK/ERK

pathways can increase HIF-1a synthesis in a cell type-specific

manner (253). PI3K inhibitors LY294002 and wortmannin have

been recognized as the synthesis inhibition of HIF-1a protein in

the prostate carcinoma-derived cell lines PC-3 and DU145 (254).

Temsirolimus, everolimus, and sirolimus as mTOR inhibitors are

currently in clinical development for the treatment of solid tumors

(255). The phase III clinical trials for temsirolimus and everolimus

have been completed and showed a significant gain in survival for

patients of metastatic renal cell carcinoma (256).
TABLE 4 Hypoxia-activated prodrugs in clinical development.

Class Prodrug Current status Tumor type

Quinone E09 (Apaziquone) III Bladder cancer (217)

RH1 I Solid tumors (218)

Aromatic N-oxide SR 4233 (Tirapazamine) III Non-small-cell lung cancer (219)

SN30000 Preclinical Triple-negative breast cancer (220)

Aliphatic N-oxide AQ4N (Banoxantrone) I Solid tumors (221, 222)

Nitro PR-104 II Acute myeloid leukemia/lymphoblastic leukemia (223)

TH-302 (Evofosfamide) III Soft-tissue sarcomas (224)
TABLE 5 Inhibitors directly targeting the HIF pathway in cancers.

Mechanism of inhibition Compound/drug name Current status Tumor type

Inhibit HIF-1a mRNA expression EZN-2698 I Advanced malignancies (236)

Inhibit HIF-1a protein expression Digoxin II Biochemically relapsed prostate cancer (237)

2-methoxyestradiol II Multiple types of cancer (238)

PX-478 I Advanced solid tumors and lymphomas (239)

Increased HIF-1a degradation YC-1 Preclinical Several solid tumors (240)

PX-12 II Previously treated advanced pancreatic cancer (241)

LW6 Preclinical Colon cancer (242)

Inhibit HIF heterodimerization Acriflavin Preclinical Prostate cancer (226)

PT-2385 I Advanced clear cell renal cell carcinoma (243)

PT-2399 Preclinical pVHL-defective clear cell renal cell carcinoma (244)

Inhibit HIF-1/DNA binding Echinomycin II Several advanced cancers (245–249)

Inhibit HIF-1 transcriptional activity Chetomin Preclinical Multiple myeloma (250)

Bortezomib FDA approved Multiple myeloma and several solid tumors (251)

Vorinostat II Metastatic urothelial cancer (252)
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7.3 Combination therapy

Combination therapy is an important trend in the development of

anticancer agents, and targeting hypoxia is critical in the new strategy

(225). The anti-hypoxia agents were combined with immune

checkpoint inhibitors to enhance the effect of immune checkpoint

inhibitors in cancer treatment, which was based on hypoxia-induced

expression and activity of immune checkpoints and immune

checkpoint ligands on immune-cells and tumor cells (257). A phase

II clinical trial of pembrolizumab and HDAC inhibitor vorinostat

demonstrated the combination was active for patients with recurrent/

metastatic squamous cell carcinomas of the head and neck, and

salivary gland cancer (258). In a neuroblastoma xenograft model,

the combination of anti-angiogenic drug sunitinib with hypoxia-

activated prodrug evofosfamide was demonstrated to improve

survival of mice (259).

Hypoxia and cellular interaction between tumor and non-tumor

cells are two important TME. There are strong links between these

two themes, and hypoxia contributes to TME to adversely affect

therapeutic outcomes. Notch signaling plays an important role in

regulating the crosstalk between the different compartments of the

TME. Therefore, a combination of targeting Notch and hypoxia

implies a potential treatment strategy of cancer to alter TME. In

addition, hypoxia and Notch signaling have been shown to form a

complex web of interaction in cancer, providing new insights into the

combination therapeutics. Notch is a key regulator of tumor

angiogenesis (260). The anti-angiogenesis drugs aggravated tumor

hypoxia (261), indicating that targeting Notch may induce hypoxia.

While, hypoxia activated Notch signaling pathway and may reduce

the effect of Notch signaling inhibitors. Therefore, the combination of

anti-hypoxia and Notch-targeted agents may present a new strategy

for addressing the adverse effect of hypoxia.
8 Conclusion

The Notch signaling, as an evolutionarily conserved pathway, is

usually activated and extensively involved in tumor initiation and

progression. Notch signaling plays a critical role in the interaction

between the tumor cells and the surrounding TME, acting as an
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oncogene or a tumor suppressor. Hypoxia is recognized as a hallmark

of TME and the HIF pathway is a master regulator of the cellular

hypoxic response. The interaction of Notch and HIF pathways played

a key role in multiple biological processes in hypoxic tumor, including

EMT, angiogenesis, and the maintenance of CSCs. A broad spectrum

of anti-hypoxia agents and Notch signaling inhibitors have been

developed during the past decades. The combination therapy has

been an important trend of cancer treatment. Considering the

complex web of hypoxia and Notch signaling, the combination of

them implies a potential treatment strategy of cancer.
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