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A novel prognostic model
related to oxidative stress
for treatment prediction in
lung adenocarcinoma

Haijun Peng, Xiaoqing Li, Yanchao Luan, Changjing Wang
and Wei Wang*

Department of Thoracic Surgery, Hebei Chest Hospital, Hebei Provincial Key Laboratory of Lung
Disease, Shijiazhuang, Hebei, China
Background: The prognostic model based on oxidative stress for lung

adenocarcinoma (LUAD) remains unclear.

Methods: The information of LUAD patients were acquired from TCGA dataset. We

also collected two external datasets from GEO for verification. Oxidative stress-

related genes (ORGs) were extracted from Genecards. We performed machine

learning algorithms, including Univariate Cox regression, Random Survival Forest,

and Least Absolute Shrinkage and Selection Operator (Lasso) analyses on the ORGs

to build the OS-score and OS-signature. We drew the Kaplan-Meier and time-

dependent receiver operating characteristic curve (ROC) to evaluate the efficacy of

the OS-signature in predicting the prognosis of LUAD. We used GISTIC 2.0 and

maftool algorithms to explore Genomic mutation of OS-signature. To analyze

characteristic of tumor infiltrating immune cells, ESTIMATE, TIMER2.0,

MCPcounter and ssGSEA algorithms were applied, thus evaluating the

immunotherapeutic strategies. Chemotherapeutics sensitivity analysis was based

on pRRophetic package. Finally, PCR assays was also used to detect the expression

values of related genes in the OS-signature in cell lines.

Results: Ten ORGs with prognostic value and the OS-signature containing three

prognostic ORGs were identified. The significantly better prognosis of LUAD

patients was observed in LUAD patients. The efficiency and accuracy of OS-

signature in predicting prognosis for LUAD patients was confirmed by survival

ROC curves and two external validation data sets. It was clearly observed that

patients with high OS-scores had lower immunomodulators levels (with a few

exceptions), stromal score, immune score, ESTIMATE score and infiltrating

immune cell populations. On the contrary, patients with higher OS-scores were
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more likely to have higher tumor purity. PCR assays showed that, MRPL44 and

CYCS were significantly higher expressed in LUAD cell lines, while CAT was

significantly lower expressed.

Conclusion: The novel oxidative stress-related model we identified could be used

for prognosis and treatment prediction in lung adenocarcinoma.
KEYWORDS

lung adenocarcinoma, oxidative stress, prognostic model, machine learning,

tumor microenvironment
Introduction

According to the global cancer statistics analysis in 2020, the

incidence of lung cancer ranks second only to breast cancer in the

world, accounting for about 18% of all cancer deaths, and being the

leading cause of cancer death in the world (1). The causes of lung

cancer are very complex, including history of exposure to smoking

and secondhand smoke, air pollution, history of pulmonary diseases,

family history of cancer, occupational exposure to silica and asbestos,

poor diet, mental and psychological factors (2–4). The early

symptoms of lung cancer are not obvious. Generally, there are

corresponding clinical symptoms in the middle and late stage, such

as chest pain, hemoptysis, etc. According to relevant studies, 75% of

lung cancer patients have been diagnosed at stage III or IV, at which

time they have lost the opportunity for surgery, and the treatment

means are relatively limited. Conventional radiotherapy and

chemotherapy have no obvious effect, and the survival and

prognosis are very poor (5). The overall 5-year survival rate for

patients with lung cancer is 19%, which drops to 5% if distant

metastasis is present at the time of diagnosis, and approximately

57% for patients in the localized stage (6). The diagnosis and

treatment of lung cancer are still the focus of current research.

According to pathological types, lung cancer can be divided into

non-small cell lung cancer (NSCLC) and small cell lung cancer

(SCLC). NSCLC accounts for about 85% of all cases diagnosed with

lung cancer, which mainly includes lung adenocarcinoma (LUAD),

lung squamous cell carcinoma (LSCC), and large cell lung cancer

(LCLC) (7). LUAD is the most common pathological type of lung

cancer, accounting for approximately 50-70% of surgically resected

lung cancers (8) and almost 50% of all lung cancers (9). Precision
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medicine for disease requires accurate prognostic prediction, such as

the risk of future recurrence after the initial treatment and

responsiveness to different treatments (10, 11). At present, TNM

staging is still the main basis for the treatment of LUAD and has been

used clinically for many years as a prognostic predictor of LUAD (12).

However, the reproducibility and discrimination ability of TNM

staging for prognosis prediction are still not satisfied, and the

prognosis is also different among LUAD patients with the same

pathological type and stage. At the same time, although the

emerging diagnosis and treatment technologies such as gene testing,

targeted therapy and immunotherapy have been applied in the

clinical diagnosis and treatment of lung cancer, the overall survival

rate of lung cancer has only slightly improved compared with other

malignant tumors (6, 13). Therefore, there are individual differences

in LUAD, and prognosis prediction needs individual predictors.

Tumors often have oxidative stress (OXS), which is an imbalance

between oxidation and anti-oxidation in the body that causes aberrant

oxidative signal regulation and macromolecular oxidative damage

(14). Cellular OXS is caused by ROS accumulation (15). OXS is the

principal cause of cell damage, targeting intracellular macromolecules

and promoting and suppressing tumor growth (14, 16–18). Tumor

cell redox homeostasis control may improve tumor therapy. OXS

regulates tumor cell fate in various ways that depend on tumor type

and etiology. Future study will focus on controlling OXS’s anti-tumor

and tumor-promoting effects. We can evaluate OXS heterogeneity in

cancers and find new therapeutic targets using bioinformatics and

other big data analysis methods.

With the emergence of public biomedical databases such as

TCGA (The Cancer Genome Atlas) database, the use of

bioinformatics to mine disease gene data has become an important

direction of disease research (19). TCGA aims to focus on acquired

changes of cancer genes. Up to now, a total of 33 types of cancers have

been included in TCGA database (19). Clinical sample information

and sequencing data (including transcriptome data, epigenetic data,

genomic mutation data, etc.) of more than 20,000 patients can be

accessed openly, which has become an important database for cancer

research (19, 20). The gene expression data and clinical information

of LUAD patients needed in this study were obtained from public

databases. In this study, we obtained transcriptome and

corresponding clinical data from TCGA, Genecards, and GEO

databases. Firstly, Univariate Cox regression analysis was performed

and oxidative stress-related genes (ORGs) affecting overall survival of
frontiersin.org
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LUAD were selected. Random Survival Forest and Least absolute

shrinkage and selection operator (LASSO) analyses were used to

screen and construct the OS-signature. We carried out efficacy

evaluation for the OS-signature of LUAD using Kaplan-Meier and

receiver operating characteristic (ROC) curves and the LUAD-cohort

from GEO was used to validate the OS-signature. In addition, we

evaluated the somatic mutation, genomic mutation, immunological

characteristics, and sensitivity to chemotherapy for OS-signature.

Finally, Quantitative Real-time PCR assays were used to detect the

expression of the three genes establishing the OS-signature in LUAD

cell lines.
Materials and methods

Collection and preprocessing the data of
lung adenocarcinoma

The Cancer Genome Atlas (TCGA) is a major government-

funded research initiative funded by the National Cancer Institute

(NCI) and the National Human Genome Research Institute (NHGRI)

(21). Transcripts and clinical information of lung adenocarcinoma

(LUAD) were extracted from TCGA (https://xenabrowser.OS/) (19,

22). We excluded LUAD patients without information of OS (Overall

Survival), thus obtaining the clinical information and expression

profiles of 502 LUAD patients. The data form of fragments per

kilobase of transcript per million fragments mapped (FPKM) was

transformed into transcripts per kilobase million (TPM) (22). We also

used GEO data, including GSE37745 and GSE31210, generated from

Affymetrix Human Genome U133 Plus 2.0 chip based on GPL570

platform as external validation groups (23). Genecards (https://www.

genecards.org) is a comprehensive searchable gene database, where

we can obtain information about almost all known human genes (24,

25). In order to obtain genes related to oxidative stress (oxidative

stress related genes, ORGs), we set the screening threshold as

relevance score>20 (26).
Establishment of the OS-signature for LUAD

After collection and preprocessing the data of LUAD, the

Univariate Cox regression analysis was performed on the ORGs

collected to identify ORGs with prognostic value (prognostic

ORGs, P<0.05) (27). We used randomForestSRC package in R

to execute Random Survival Forest (RSF) analysis, thus

fi l trating prognostic ORGs with greater value (variable

importance>0.25) (28). Least absolute shrinkage and selection

operator (LASSO) analysis is a compression estimation method

for linear model (29). The regression coefficients can be

compressed by minimizing the sum of residual squares under

the constraint that the sum of absolute values of various

coefficients is less than a constant, thus getting a sparse model

(29). This model can effectively select variables for high

dimensional and collinearity data (30). The Cox regression

model for LASSO analysis provided by glmnet package in R

software (31) was used to calculate the OS-scores and construct

the prognostic OS-signature for LUAD.
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Efficacy evaluation for the OS-signature
of LUAD

The survminer package in R software was used to select the best

separated value (cutoff value) of gene expression or OS-scores. The

survival curves (Kaplan-Meier curves) of the high- or low-risk groups

were drawn, and the survival differences between the two groups were

compared (32). The receiver operating characteristic curve (ROC) is

also known as the sensitivity curve (33). The research method is to

analyze the Area Under the ROC Curve (AUC) of the research objects

to judge the recognition ability of different diagnostic test objects for

diseases. The timeROC package of R software was used to draw time-

dependent (1-, 3-, and 5-year) ROC curves to evaluate the diagnostic

efficacy and predictive effect of OS-signature for LUAD.
Genomic mutation analysis for OS-signature
in LUAD

Somatic mutation and copy number variation (CNV) data of

LUAD patients were downloaded from cBioPortal (http://www.

cbioportal.org/datasets) (34) and FireBrowse (http://firebrowse.org/)

(35) respectively. To determine the mutational burden in LUAD

patients, the total number of non-synonymous mutations in LUAD

was calculated. Somatic alterations of driver genes in LUAD were

evaluated by OS-signature grouping. The R software package maftool

was used to identify the driver genes of LUAD and analyze the top 20

driver genes with the highest frequency of change. We assessed

genomic characteristics by Genomic Identification of Significant

Targets in Cancer 2.0 (GISTIC 2.0, https://gatk.broadinstitute.org)

analysis (36).
Characteristic analysis of tumor infiltrating
immune cells

According to the transcriptome expression data from TCGA-

LUAD cohort, the single sample gene set enrichment analysis

(ssGSEA) algorithm in R package GSVA (Gene Set Variation

Analysis) was used to rank the genes contained in the sample

according to their expression level from high to low, and the rank

of all genes was obtained (37). Each type of immune cell is

characterized by a separate subset of genes. In this study, 783 genes

were used to characterize 28 common immune infiltrating cell types.

According to the background gene sets generated by each sample and

arranged according to the expression situation, the enrichment scores

of all samples for 28 types of immune infiltrating cells in each subset

could be obtained by systematic calculation (38, 39). The advantages

of this method are that it uses gene sets instead of single genes to

annotate immune cell subsets and combined with multiple validation

methods to improve the annotation accuracy of enrichment scores.

The ESTIMATE ((The Estimation of Stromal and Immune cells in

Malignant Tumor tissues using Expression) method was used to

evaluate the ESTIMATE score, immune score, and stromal score of

each LUAD patient (40). Besides, we assessed the levels of six kinds

immune infiltrating cells (B cell, T cell CD4, T cell CD8, Neutrophil,

Macrophage, and DC) via Tumor Immune Estimation Resource 2.0
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(TIMER 2.0; http://timer.cistrome.org/) (41). We also used the

MCPcounter algorithm to estimate the relative proportions of ten

immune cells (T cells, CD8 T cells, Cytotoxic lymphocytes, B lineage,

NK cells, Monocytic lineage, Myeloid dendritic cells, Neutrophils,

Endothelial cells, and Fibroblasts) in LUAD (42). We extracted seven

kinds of immunomodulators (Antigen presentation, Cell adhesion,

Co-inhibitor, Co-stimulator, Ligand, Other, and Receptor) from

previous study to explore the association between OS-scores and

immune processes (43).
Chemotherapeutics sensitivity analysis for
OS-signature in LUAD

The Genomics of Drug Sensitivity in Cancer (GDSC) database

was used to screen the wide range of chemotherapeutics for LUAD

(44). The prediction model was constructed based on Ridge’s

regression between drug sensitivity and expression profile of cell

lines using pRRophetic algorithm (45, 46). Subsequently, we

calculated the IC50 value of corresponding chemotherapeutics for

each LUAD patients.
Quantitative real-time PCR assays detecting
gene expression in cell lines

The human normal lung epithelial cells named BEAS-2B was

supplied by Beyotime Biotechnology (Hangzhou, China). The LUAD

cell lines, including A-549 and NCI-H1299, were purchased from

National Collection of Authenticated Cell Cultures (Shanghai,

China). BEAS-2B and NCI-H1299 were cultured in 90% RPMI

(Roswell Park Memorial Institute)-1640 with 10% FBS (fetal bovine

serum). A-549 was cultured in 89% F-12K + 10% FBS + 1% Glutamax.

We extracted the total RNA of the cell lines by RNAsimple Total RNA

Kit (Tiangen, China). Whereafter, to acquire cDNA, we reverse

transcribed the cell RNA that we have obtained applying PrimeScript

RT reagent Kit (Takara, Otsu, Japan). Finally, based on the premixed

system of 2 mL cDNA with SYBR Premix Ex Taq (Takara, Otsu, Japan)

and primers, we detected the expression values of related genes in cell

lines by Applied Biosystems StepOne Plus Real-Time PCR system (Life

Technologies, Grand Island, NY, USA). The primers of the target gene

were supplied by Sangon Biotech (Shanghai, China). The sequences of

the primers used were listed in Table 1.
Results

Establishment of OS-signature for patients
with LUAD

For LUAD, we carried out the Univariate Cox regression analysis

on a total of 80 OXRGs matched (relevance score>20). We identified a

total of ten OXRGs with prognostic value (Figure 1A), including eight

prognostic genes with HR>1 (MRPL44, CYCS, G3BP1, GFM1, SOD1,

TXN, OSGIN2, and CRP) and two prognostic genes with HR<1 (CAT
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and XBP1). Hence, we observed eight malignant factors and two

protective factors for patients with LUAD (Figure 1A). Whereafter,

we conducted Lasso (Figures 1–C) and RSF (Figures 1D–E) analyses

on the ten prognostic ORGs gained. The OS-signature ended up

containing three genes: CAT, CYCS, and MRPL44 (Figures 1B–E).

The three prognostic ORGs selected above were weighted by the

regression coefficients of Lasso regression model, and finally the

calculation formula of OS-signature for prognosis assessment of

LUAD was obtained: OS-score =1.0002*CYCS - 0.9272*CAT +

1.7096*MRPL44. Figures 1B, C displayed the lambda selection

diagram of the three genes in the OS-signature. The distribution of

error rates generated by RSF analysis was shown in Figures 1D, E.
Evaluating the efficacy of OS-signature
for LUAD

After establishing the OS-signature based on three prognostic

ORGs (CAT, CYCS, and MRPL44) for LUAD, we computed the OS-

score for each LUAD patient based on the LASSO coefficients and

expression value for each ORG. We compared the OS-score of LUAD

patients in TCGA database among clinical features (Stage, Gender,

Age and Survival Status) and the expression values of the three ORGs

included in the OS-signature, which was shown in the heatmap

(Figure 2A). Overall, patients with high OS-scores were more likely

to have high expression of MRPL44 and CYCS, whereas patients with

high OS-scores were strongly associated with low expression of CAT

(Figure 2A). Kaplan-Meier analysis was used to analyze the survival

and prognosis of LUAD patients in TCGA. As shown in the

Figure 2B, patients with low OS-score had a better prognosis, while

patients with high OS-score had a worse prognosis (Figure 2B). The

AUCs of 1-year (AUC=0.688), 3-year (AUC=0.668), and 5-year

(AUC=0.660) survival ROC curves predicted by the OS-signature

were all larger than 0.66, suggesting the efficiency of OS-signature in

predicting prognosis for LUAD to a certain extent (Figure 2C). To

further verify the conclusion, two independent external datasets

(GSE37745 and GSE31210) were included in our study, and the

significantly better clinical outcomes of LUAD patients with lower

OS-scores were observed (Figures 3A, B). Therefore, OS-signature

may serve as a malignancy factor for LUAD.
TABLE 1 The primer sequences in PCR analysis.

Symbol Sequences (5’-3’)

MRPL44-F TTGAAGACGAGTACCCAGACA

MRPL44-R GGGCTCCAATAACTGCAAAGAA

CYCS-F CTTTGGGCGGAAGACAGGTC

CYCS-R TTATTGGCGGCTGTGTAAGAG

CAT-F TGGGATCTCGTTGGAAATAACAC

CAT-R TCAGGACGTAGGCTCCAGAAG

GAPDH-F GGAGCGAGATCCCTCCAAAAT

GAPDH-R GGCTGTTGTCATACTTCTCATGG
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Genomic mutation analysis for OS-signature
in LUAD

We carried out genomic mutation analysis for OS-signature in

LUAD. From the waterfall diagram (Figures 4A, B), we could find that

TP53, TTN, CSMD3, MUC16, RYR2, ZFHX4, LRP1B, USH2A,

SPTA1, XIRP2, KEAP1, KRAS, FLG, CSMD1, MUC17,

ADAMTS12, APOB, PAPPA2, COL11A1, and FAT3 were the top

20 genes with the highest mutation rate in LUAD patients with high

OS-scores (Figure 4A). TP53, TTN, MUC16, RYR2, CSMD3, LRP1B,

USH2A, KRAS, FLG, ZFHX4, ANK2, SPTA1, XIRP2, ZNF536,

NAV3, COL11A1, FAT3, PCDH15, PCLO, and TNR were the top

20 genes with the highest mutation rate in LUAD patients with low

OS-scores (Figure 4B). Thus, the mutation rates of TP53, TTN,

MUC16, RYR2, ZFHX4, LRP1B, USH2A, SPTA1, XIRP2, KRAS,

FLG, COL11A1, and FAT3 in the two subgroups were both relatively

high. We performed Pair-wise Fisher’s Exact test to detect mutually
Frontiers in Oncology 05
exclusive or co-occurrence events (Figures 4C, D). We also Draw

forest plot for mutation differences between cohorts.

Genomic characterization landscapes of LUADpatients with highOS-

scores or patients with low OS-scores were analyzed by GISTIC algorithm

and shown in Figure 5A. Figure 5B showed the plots significantly altered

cytobands as a function of number samples in which it is altered and

number genes it contains. Figure 5C showed a genomic plot with segments

highlighting significant Amplifications and Deletion regions. Further, we

drew the detailed amplificated or deleted CNV onco-plots of high OS-

score and low OS-score subgroups (Figure 5D).
Characteristic analysis of tumor infiltrating
immune cells

Since immunomodulators (IMs) play a critical role in tumor

immunotherapy, we assessed the correlation between the IMs
B C

D E

A

FIGURE 1

Establishment of OS-signature for patients with LUAD. (A) Forest plot for Univariate Cox regression analysis identifying ten oxidative stress related genes
(MRPL44, CYCS, G3BP1, GEM1, SOD1, TXN, OSGIN2, CRP, CAT, and XBP1). (B, C) Lambda selection diagram for Least Absolute Shrinkage and Selection
Operator (Lasso) analysis identifying three oxidative stress related genes (CAT, CYCS, and MRPL44) in the OS-signature. (D) The distribution of error rates
in Random Survival Forest model. (E) The distribution of the variable relative importance of 12 TRP-related genes (variable importance>0.25).
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levels (Antigen presentation, Cell adhesion, Co-inhibitor, Co-

stimulator, Ligand, Other, and Receptor). It was clearly

observed that patients with high OS-scores had lower IMs

levels, with a few exceptions, such as CD276, TNFSF9, and

HMGB1 (Figure 6A). From a general view, the level of stromal
Frontiers in Oncology 06
score, immune score, ESTIMATE score and infiltrating immune

cel l populat ions decreased as the OS-scores increased

(Figure 6B). It was worth mentioning that patients with

higher OS-scores were more likely to have higher tumor

purity (Figure 6B).
B C

A

FIGURE 2

Evaluating the efficacy of OS-signature in TCGA for LUAD. (A) The heatmap displaying the distribution of the three oxidative stress related genes (CAT,
CYCS, and MRPL44) in the OS-signature, clinicopathological characteristics (Stage, Gender, Age, Survival Status), and OS-score. Red represents high
gene expression and blue represents low gene expression. (B) Kaplan-Meier curves displaying the correlation between the OS-score and LUAD patients.
The blue curve represents the patients with lower OS-score, and the red curve represents patients with higher OS-score. (C) The 1-year (0.688), 3-year
(0.668), 5-year (0.660) survival ROC curves predicted by the OS-signature. Different colored curves represent different years. ****p<0.0001.
BA

FIGURE 3

Evaluating the efficacy of OS-signature in GEO for LUAD. (A, B) Kaplan-Meier curves displaying the correlation between the OS-score and LUAD patients in
GSE37745 (A) and GSE31210 (B). The blue curve represents the patients with lower OS-score, and the red curve represents patients with higher OS-score.
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Chemotherapeutics sensitivity analysis for
OS-signature in LUAD

In order to find more effective chemotherapeutics drugs for

LUAD patients with high OS-scores, we evaluated the differences in

chemotherapeutics sensitivity between subgroups with high OS-score

or low OS-score as described in the MATERIALS AND METHODS.

The IC50 levels of nine chemotherapy drugs (Osimertinib_1919,

Sapitinib_1549, Acetalax_1804, Ibrutinib_1799, Erlotinib_1168,

Gefi t i n i b_1010 , AZD3759_1915 , A f a t i n i b_1032 , and

Lapatinib_1558) were compared between subgroups with high OS-

score or low OS-score. We found that the IC50 values of the nine

chemotherapy drugs were lower in LUAD patients with high OS-

scores than that of LUAD patients with low OS-scores, suggesting

LUAD patients with high OS-scores may be more sensitive to these

nine chemotherapeutics drugs (Figure 7).
Quantitative real-time PCR

We selected the three genes in the OS-signature to detect their

expression in cell lines.
Frontiers in Oncology 07
As could be seen from the survival curves, the higher the

expression of MRPL44 (Figure 8A) and CYCS (Figure 8B), the

worse the prognosis, while the opposite was true for CAT

(Figure 8C). Compared with control cell lines (BEAS-2B), MRPL44

(Figure 8D) and CYCS (Figure 8E) were significantly higher expressed

in cancer cell lines (A549 and H1299), while CAT (Figure 8F) was

significantly lower expressed.
Discussion

Lung cancer is a malignant tumor originating from the bronchial

epithelium. According to histopathological classification, lung cancer

is divided into non-small cell lung cancer (NSCLC) and small cell

lung cancer (SCLC). NSCLC is the main pathological type of lung

cancer, and lung adenocarcinoma (LUAD) accounts for the vast

majority of NSCLC. Lung cancer ranks second only to breast

cancer in incidence and is the most important cause of cancer-

r e l a t ed d e a th s . L a t e d i a gno s i s , p oo r s en s i t i v i t y t o

chemoradiotherapy, acquired resistance to targeted therapy and

other related factors can lead to poor prognosis of patients with

lung cancer (47, 48). At present, histopathological diagnosis and
B

C D

A

FIGURE 4

The somatic mutation features of the established OS-signature for LUAD. (A, B) The waterfall plot of somatic mutation features established with high (A)
and low (B) OS-score. (C) We performed Pair-wise Fisher’s Exact test to detect mutually exclusive or co-occurrence events. (D) Forest plot for mutation
differences between cohorts.
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tumor staging system are still the main basis for predicting the

prognosis and survival of lung cancer patients. However, traditional

methods cannot accurately assess the prognosis of patients with

LUAD. In addition, Computed Tomography (CT) and serum

tumor markers such as carcinoembryonic antigen (CEA) are often

used to determine the prognosis of lung cancer. However, traditional

methods are limited by cumulative radiation damage, low sensitivity

and specificity (49, 50). Therefore, clinicians need an accurate

prognostic prediction model to help optimize the treatment strategy

of LUAD patients. Bioinformatics is one of the emerging fields of

biological research. It uses mathematics, statistics and computer

technology to process and analyze biological data. In our study,

extracting data from public database, we identified eight prognostic

genes with HR>1 (MRPL44, CYCS, G3BP1, GFM1, SOD1, TXN,
Frontiers in Oncology 08
OSGIN2, and CRP) and two prognostic genes with HR<1 (CAT and

XBP1). And the OS-signature could be used for prognosis and

treatment prediction in LUAD.

Because of the functional correlation between genes in a cell,

diseases are rarely the result of abnormalities in a single gene, but

rather result from abnormalities in a complex intracellular gene

network (51–53). Like most diseases, the occurrence and

development of LUAD is a complex process involving multiple

genes and multiple pathogenic mechanisms, involving the

activation of proto-oncogenes and the inactivation or mutation of

tumor suppressor genes (54, 55). Therefore, the application of

network for gene interaction in LAC research can simplify and

visualize complex and high-throughput data. Compared with the

focus on local gene function in single gene and single molecule
B

C

D

A

FIGURE 5

The genomic mutation analysis of the established OS-signature for LUAD. (A) Genomic characterization landscape of groups with high OS-scores or low
OS-scores. (B) Plots significantly altered cytobands as a function of number samples in which it is altered and number genes it contains. Size of each
bubble is according to -log10 transformed q values. (C) A genomic plot with segments highlighting signififcant Amplifications and Deletion regions.
(D) The detailed amplificated or deleted CNV onco-plots of groups with high OS-scores or low OS-scores. #p<0.05.
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biological research methods, network analysis focuses more on the

integrity and systematization of biological processes (51). In the OS-

signature, there were three ORGs (CAT, CYCS, and MRPL44),

forming a network to predict the prognosis of LUAD. It is more

reliable to explore the occurrence and development of LUAD from

the perspective of multiple genes.

For early and mid-stage NSCLC that cannot be completely

resected by surgery, and for some locally evolved or metastatic

NSCLC that is advanced or advanced (stage IIIA-IV),

comprehensive systemic and local combination therapy can be

used, including surgical resection, chemotherapy, radiotherapy,

targeted therapy and immunotherapy. At present, the 3rd

generation chemotherapy drugs, including Docetaxel, Vinorelbine,

Gemcitabine and Paclitaxel, have been widely used in clinical practice,

combining platinum drugs to develop personalized treatment plans

for patients. Radiotherapy is an effective means of local treatment of

lung cancer, which plays a positive role in slowing down the clinical

symptoms, prolonging the survival time and improving the quality of

life of patients with advanced lung cancer. These treatment methods

have been widely studied and applied at home and abroad. Genomic

studies have shown that adenocarcinoma and squamous cell

carcinoma have significantly different gene mutation types, and

tyrosine kinase inhibitor (TKI) can be used to inhibit the catalytic

phosphorylation of the corresponding kinases in the treatment of

NSCLC patients with significant clinical benefits. Genomic studies

have shown that adenocarcinoma and squamous cell carcinoma have

significantly different gene mutation types, and tyrosine kinase

inhibitor (TKI) can be used to inhibit the catalytic phosphorylation

of the corresponding kinases in the treatment of NSCLC patients with
Frontiers in Oncology 09
significant clinical benefits (56, 57). A variety of effective and well-

tolerated TKIs targets, including EGFR, ALK, ROSI, HER2, etc., have

emerged continuously, and promoted significant progress in cancer

treatment. For example, EGFR driver gene mutations have a high

incidence in various subtypes of NSCLC. The most common EGFR

mutations include exon19 deletion (delE746-750, etc.) or exon 21

arginine substitution leucine (L858R) mutation. EGFR inhibitors such

as Gefitinib, Erlotinib, Afatinib, or Osimertinib play an important role

in the treatment of NSCLC patients (58). However, some studies have

shown that the proportion of NSCLC patients carrying EGFR

mutations is about 30-40%, and there are still a large number of

patients who cannot benefit directly from targeted therapy (59). With

the development of Crizotinib and next-generation ALK-TKIs,

considerable progress has been made in the treatment of patients

with ALK recombinant NSCLC (60). Crizotinib, a first-generation

ALK inhibitor originally approved for patients with ALK-positive

NSCLC, was found to have a median progression-free survival of 8-10

months in treated patients (61). Subsequent randomized controlled

trials compared Crizotinib with chemotherapy in patients undergoing

treatment with a significant improvement in progression-free

survival. Subsequently, second-generation ALK inhibitors Ceritinib,

Alectinib and Brigatinib were developed to overcome Crizotinib

resistance in patients (62). So far, other treatments, including third-

generation ALK inhibitors Lorlatinib, Entrectinib and Ensartinib,

have shown better results (60). For the above mentioned

chemotherapeutic drugs and small molecule targeted therapy drugs,

the Genomics of Drug Sensitivity in Cancer (GDSC) database was

created. The immediate goal is to identify potential therapeutic

biomarkers that may predict drug response (chemotherapeutic
BA

FIGURE 6

Evaluation of immunological characteristics for OS-signature. (A) Correlation of OS-scores with seven immunomodulators in LUAD. Red represents high
enrichment score, and blue represents low enrichment score. (B) Heatmap displaying the abundance of infiltrating immune cell populations with
different OS-scores. *p<0.05, ***p<0.001, ****p<0.0001.
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drugs, small molecule targeted drugs, and other drugs), while the

ultimate goal is to improve the current status of cancer treatment

based on biomarkers (44, 63). It has been shown that changes in the

tumor genome directly affect the therapeutic effect of the tumor (64).

With the emergence of novel compounds, the screening of predictive

biomarkers in their early development process will have a profound

impact on the entire process of new cancer drug development,

including its design, development cost and final outcome (64).

Based on the clinical and basic research background, researchers

present the results of large-scale drug screening in human cancer cell

lines in GDSC, a database that combines detailed genomic profiles

and gene expression analysis to systematically provide biomarker

identification patterns for drug sensitivity science for a variety of

cancer drugs. In our study, we compared the IC50 levels of

Osimertinib_1919, Sapitinib_1549, Acetalax_1804, Ibrutinib_1799,

Erlotinib_1168, Gefitinib_1010, AZD3759_1915, Afatinib_1032, and

Lapatinib_1558 between subgroups with high OS-score or low OS-

score based on GDSC database. We found that LUAD patients with

high OS-scores may be more sens i t ive to these nine

chemotherapeutics drugs. Our study will provide reference for the

treatment of LUAD.

Recent studies have shown that tumor microenvironment (TME)

plays an important role in the development and treatment of tumors

(65). TME refers to the microenvironment surrounding the occurrence,
Frontiers in Oncology 10
growth and metastasis of tumor cells, including not only the tumor cells

themselves, but also the immune cells, inflammatory cells, fibroblasts,

various signaling molecules, extracellular matrix and blood vessels (66).

To fully understand and overcome the complexity of TME is helpful for

clinicians to provide more feasible and precise individualized treatment

plan for tumor treatment. The rapid development of single-cell

sequencing, second-generation sequencing and other technologies has

gradually deepened researchers’ understanding of the relationship

between T cells and other immune cell populations and

immunotherapy. Tumor-associated immune cells play an important

role in tumor spread, recurrence, metastasis and influencing

immunotherapy treatment (67). They can be used as biomarkers to

predict the efficacy of immunotherapy drugs or predict the prognosis of

patients (67). Increased levels of tumor-infiltrating lymphocytes (TILs),

such as CD4+T cells and CD8+T cells, are associated with

immunotherapy response and longer survival (68). Immune

checkpoint inhibition activates existing TILs, which recognize and

eliminate abnormal and tumor cells, and TILs play a key role in

immunotherapy response. Studies have shown that increased T-cell

infiltration and increased IFN-g-related mRNA expression can increase

ICIs (immune checkpoint inhibitors) benefit and significantly improve

patient prognosis in a variety of tumor types (69, 70). In advanced

NSCLC patients, increased expression of CD8+ TILs detected by IHC or

CD8A mRNA transcripts was associated with prolonged PFS treatment
FIGURE 7

Evaluation of sensitivity to chemotherapy for OS-signature.
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with PD-L1 inhibitors, especially in combination with PD-L1 mRNA

and protein expression, suggesting that integrated biomarkers may

provide higher predictive value (71). Another study using multiple

quantitative immunofluorescences to detect TIL in paraffin tumor

specimens found that ICI treatment resulted in lasting clinical benefits

and longer OS in NSCLC patients with increased CD3+ T-cell

infiltration (72). In addition, studies have found that tumor-associated

macrophages (TAMs) secrete interleukin-10 (interleukin-10), Il-10,

Transforming growth factor-B (TGFb) and other immunosuppressive

cytokines play a variety of tumor-promoting effects, which increase the

density of TAM and inhibit other related immune cells (73).

The limitations this study remain. The OS-signature we

constructed and validated by retrospectively using the public

database hence, more prospective studies are needed for clinical

practicability. We selected the three genes in the OS-signature to

detect their expression in cell lines. Biological experiments in this

study are lacking, and more wet experiments are needed to explore

the function of related genes.

In conclusion, immunotherapy by regulating the immune

microenvironment may become a promising new strategy for cancer

treatment. The precise regulation of immune gene expression is the key

to generate strong immunity and intervene the development of cancer.

In our study, we found that patients with high OS-scores had lower

immunomodulators levels except CD276, TNFSF9, and HMGB1. From

a general view, the level of infiltrating immune cell populations

decreased as the OS-scores increased. It is necessary to further study

the tumor microenvironment (TME) of lung cancer.
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Data availability statement

The raw data supporting the conclusions of this article will be

made available by the authors, without undue reservation.
Author contributions

WW conceived, designed, and supervised the study. HP

performed data analysis and drafted the manuscript. XL performed

PCR experiments. YL and CW assisted with the analysis. All authors

contributed to the article and approved the submitted version.
Acknowledgments

We greatly thank the Research on application of public welfare

technology of Zhejiang Province (GF22H085719) and Health Science

and Technology Plan of Zhejiang Provincial (2021KY400) for

supporting the research and work.
Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.
B C

D E F

A

FIGURE 8

Quantitative Real-time PCR. (A–C) Kaplan-Meier curves displaying the correlation between the expression of the signature genes, including MRPL44 (A),
CYCS (B), and CAT (C), and the survival status of LUAD patients. The blue curve represents the patients with lower gene expression, and the red curve
represents patients with higher gene expression. (D–F) Quantitative Real-time PCR assays using cell lines for MRPL44 (D), CYCS (E), and CAT (F).
**p<0.01, ***p<0.001, ****p<0.0001.
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18. Sosa V, Moliné T, Somoza R, Paciucci R, Kondoh H, LLeonart ME, et al. Oxidative
stress and cancer: an overview. Ageing Res Rev (2013) 12:376–90. doi: 10.1016/
j.arr.2012.10.004

19. Wang Z, Jensen MA, Zenklusen JC. A practical guide to the cancer genome atlas
(TCGA). Methods Mol Biol (2016) 1418:111–41. doi: 10.1007/978-1-4939-3578-9_6

20. Yuan Q, Deng D, Pan C, Ren J, Wei T, Wu Z, et al. Integration of transcriptomics,
proteomics, and metabolomics data to reveal HER2-associated metabolic heterogeneity in
gastric cancer with response to immunotherapy and neoadjuvant chemotherapy. Front
Immunol (2022) 13:951137. doi: 10.3389/fimmu.2022.951137
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