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Tumor cells communication with tumor associated macrophages is a highly

important factor of tumor malignant potential development. For a long time,

studies of this interaction were focused on a cytokine- and other soluble

factors -mediated processes. Discovery of exosomes and regulatory RNAs as

their cargo opened a broad field of research. Non-coding RNAs (ncRNAs) were

demonstrated to contribute significantly to the development of macrophage

phenotype, not only by regulating expression of certain genes, but also by

providing for feedback loops of macrophage activation. Being a usual cargo of

macrophage- or tumor cell-derived exosomes ncRNAs provide an important

mechanism of tumor-stromal cell interaction that contributes significantly to

the pathogenesis of various types of tumors. Despite the volume of ongoing

research there are still many gaps that must be filled before the practical use of

ncRNAs will be possible. In this review we discuss the role of regulatory RNAs in

the development of macrophage phenotype. Further we review recent studies

supporting the hypothesis that macrophages may affect the properties of

tumor cells and vice versa tumor cells influence macrophage phenotype by

miRNA and lncRNA transported between these cells by exosomes. We suggest

that this mechanism of tumor cell – macrophage interaction is highly

promising for the development of novel diagnostic and therapeutic

strategies, though many problems are still to be solved.
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Introduction

Macrophages are a heterogeneous cell population consisting of cells of various

phenotypes. Within the continuum of macrophage functional states two extremes are

designated as classically activated M1 macrophages and alternatively activated M2

macrophages. M1 is characterized by the production of signaling molecules that

promote inflammation - TNFa, IL-1beta and others (1). M2 macrophages are

characterized by the production of anti-inflammatory cytokines - TGFb, IL-10 and some
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others (2). However, the macrophage dichotomy is rather

conditional and macrophage phenotype is highly flexible and can

be regulated by various factors.

The molecular basis of macrophage polarization by cytokines is

quite well understood. The IRF/STAT signaling pathway activated

by IFNg, and various bacterial products via TLRs, leads to the

development of M1 polarization, while M2 polarization is induced

by IL-4 or IL-13. These processes are reversible both in vitro and in

vivo (3, 4). Interferons and TLRs activate the IRF/STAT cascade

through STAT1, and M2-stimulating cytokines through STAT6 (2).

Additional cytokines or hormones influence the macrophage

phenotype in their specific ways. Physical factors, such as

hypoxia, may also influence the macrophage phenotype (5).

In the development of solid tumors, macrophages of different

phenotypes can play opposite roles. Thus, pro-inflammatory M1

macrophages can suppress tumor progress ion, whi le

immunosuppressive M2 stimulate angiogenesis and invasion (4, 6,

7). The M1/M2 ratio of tumor associated macrophage population

changes significantly with tumor development and depends on the

disease stage. For the early stages, M1 macrophages are the

predominant population, with tumor development the ratio shifts

towards M2 (7, 8). M1 macrophages are able to prevent tumor

development, largely due to the presentation of antigens on their

surface and the recruitment of CD8+ T cells and NK cells (9).

Although interaction of tumor cells and tumor associated

macrophages (TAMs) is usually studied in regard of cytokines

and other secreted mediators produced by both types of cells,

there are several emerging directions of research including

regulatory RNA molecules.
microRNA in defining
macrophage phenotype

In addition to cytokines, microRNA plays an important role in

macrophage polarization and the performance of the corresponding

functions by these cells. MicroRNA is a sequence of ~22

ribonucleotides, their main function is the inhibition of mRNA

translation. About 60% of all eukaryotic cell mRNAs contain

miRNA complementarity sites, both at the 5’- and 3’-non-coding

regions (10). Pre-miRNAs are assembled into a RISC complex,

which also includes the RNA-specific endonuclease Dicer and

Drosha, which are involved in the processing of pre-miRNA into

a mature form, as well as proteins from the Argonaut family (11).

Guided by miRNA, the RISC complex is involved in the inhibition

of translation of an mRNA (10, 12, 13). RISC can inhibit assembly

of the 80S translational complex. The Ago2 protein in the RISC

complex competes with the 5’ recognition site of the eukaryotic

initiation factor 4G (eIF4G). According to other data, translation

inhibition is associated with the interaction of RISC with the anti-

associating factor eIF6, which also prevents the assembly of the 80S

translation complex (10).

MicroRNAs can be encoded within introns, exons, and between

different genes (14). The expression of miRNA is under the control

of various transcription factors, but may also depend on the level of
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already expressed miRNA by the feedback principle with its own

transcription factors (11). MicroRNAs can be used as a diagnostic

markers for various diseases (11).

A number of miRNAs control the macrophage phenotype and

function. Here we provide just several examples of those. In the case

of increased expression miR-720 inhibits GATA3 protein, an

important regulator of the M2 polarization of macrophages,

suppresses the manifestation of the M2 phenotype and shifts it

towards M1, and reduces the phagocytic activity of tumor-

associated macrophages. Normally, the expression of this miRNA

is significantly reduced in M2 macrophages in comparison with M0

and practically does not change when the M1 phenotype is induced.

At the same time, stimulation of GATA3 expression in

macrophages overexpressing miR-720 contributed to the

restoration of the M2 phenotype, which indicates a close

relationship between this microRNA and the macrophage

phenotype (15).

Another interesting example is miR-127 that was shown to

inhibit the B-cell lymphoma receptor Bcl6 and Dusp1 phosphatase,

which promotes JNK activation and development of M1

macrophages. The authors demonstrated that overexpression of

miR-127 in macrophages significantly increases the expression of

pro-inflammatory markers such as IL-6, IL-1b, tumor necrosis

factor alpha, and inducible NO synthase (iNOs), typical for M1

polarization (16).

Both miR-720 and miR-127 are expressed in macrophage upon

their stimulation with pro-inflammatory stimuli (15, 16), so they

can be considered a part of the intracellular machinery, necessary

for the macrophage phenotype development. This contribution can

be modulated by transfecting macrophages with corresponding

miRNA inhibitors.

Various miRNA-mediated patterns have also been shown to be

associated with M2 polarization (17). For instance, the miR-23a/

27a/24-2 are overexpressed upon macrophage stimulation with M2-

associated cytokines and down regulated by M1-associated stimuli.

At the same time forced expression of these miRNAs led to M1

phenotype development via different mechanisms. Amplification of

miR-23a expression enhances activation of the NF-kB pathway by

binding to one of the NF-kB suppressors A20 and simultaneously

stimulates the expression of M1 cytokines (18). Therefore, these

miRNAs can be considered as a part of a negative feedback loop of

M2 phenotype development.

MiR-301a was demonstrated to attenuate macrophage

migration and phagocytosis in a mouse KO model. This study

was done without induction of any specific macrophage phenotype

demonstrating that miRNA affects the basic function of

macrophages (19).

There are more studies of miRNAs involved in modulation of

macrophage phenotype, reviewed elsewhere (20, 21) though our

knowledge of the biological significance of observed effects remains

limited due to the absence of unified experimental systems

(Table 1). One of the common shortcomings of many studies on

microRNA role in macrophage activation is the absence of time

course experiments. Especially important this can be for the

induction of M1 phenotype that is in many cases a very rapid event.
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Long noncoding RNA

In addition to miRNAs, long noncoding RNAs (lncRNAs) can

also be involved in macrophage phenotype development (31). Long

non-coding RNAs are sequences of more than 200 nucleotides and

are not used as templates for protein synthesis, while carrying

exclusively regulatory functions (32). It is noteworthy that various

tumors are characterized by impaired expression of lncRNAs

associated with tumor progression (33, 34). As miRNAs

macrophage phenotype modulating lncRNAs can be expressed by

macrophages themselves or delivered to macrophages by exosomes

or artificial delivery systems.

For instance, MM2P lncRNA is overexpressed in macrophages

upon their stimulation with IL-4 and suppressed by LPS

stimulation. Further it was demonstrated that transfection of

macrophages with MM2P lncRNA enhance M2 polarization of

macrophages induced by IL-4 or IL13 (22). The authors also

established that MM2P knockdown leads to a decrease in the

concentration of phosphorylated STAT6 in macrophages and by

this way prevent their M2 polarization (22).

Not only the lncRNAs are expressed in macrophages upon their

stimulation with pro- or anti-inflammatory stimuli. LncRNA

RPPH1 is expressed in colorectal cancer (CRC) cells and may be
Frontiers in Oncology 03
transported to macrophages inside exosomes. In macrophages

lncRNA RPPH1 triggers M2 development contributing to tumor

aggressiveness (23).
Exosomes

Transfer of molecules by extracellular vesicles (EVs) has been

studied as a mechanism of intercellular communication since about 2

decades. EVs is a group of membrane-enclosed vesicles that are

naturally released by almost all cell types. EVs are the most important

carriers that transport “cargo” from parent cells to target cells,

regulating physiological or pathological processes in recipient cells.

By origin and size, EVs were originally divided into exosomes (30–

200 nm), microvesicles (200–1000 nm), and apoptotic bodies (1–5

mm), but not so long ago, with increasing interest in Other EV

subpopulations have also been identified, such as exomers (<50 nm)

and large oncosomes (1–10 µm) (35). It has been shown that

exosomes carry complex and highly cell-specific cargoes, including

DNA, RNA, lipids, metabolites, cytosolic and surface proteins (36).

They can be selectively captured by neighboring cells, or cells far from

the place of release, and reprogram recipient cells with the help of

biologically active molecules contained inside. It is generally accepted
TABLE 1 ncRNA in macrophage polarization and TAM-tumor cells interaction.

ncRNA Source Effect Experimental system Reference

miR-720 macrophages, upon
inflammatory stimulation

M1 polarization Human cell lines (15)

miR-127 macrophages upon stimulation M1 polarization Mouse cell lines (16)

miR-23a/27a/24-2 macrophages upon IL-4
stimulation

M1 polarization Mouse cell lines, mouse BMDM (18)

miR-301a macrophages decrease of migration and
phagocytosis

Mouse cell lines, mouse BMDM (19)

lncRNA MM2P macrophages upon IL-4
stimulation

M2 polarization Mouse cell lines, mouse BMDM (22)

lncRNA RPPH1 CRC cells exosomes M2 polarization Human peripheral blood monocytes (23)

miR-155, miR-181, miR-
451

M1 macrophages M1 polarization Mouse BMDM (24)

miR-146a, miR-125a,
miR-145-5p

M2 macrophages M2 polarization Mouse BMDM (24)

miR-511-3p M2 macrophages M2 polarization Mouse BMDM, mouse TAMs (25)

miR-193a-5p TAMs Renal cell carcinoma
progression

Human cell lines (26)

miR-501-3p TAMs Pancreatic cancer
progression

Human cell lines (27)

miR-223 TAMs Breast cancer progression Human peripheral blood monocytes derived
macrophages

(28)

miR-155-5p and miR-
21-5p

TAMs Colorectal cancer
progression

Human TAMs (29)

miR-181a Tumor-associated fibroblasts
educated TAMs

Breast cancer progression Human peripheral blood monocytes derived
macrophages, human cell lines

(30)
f
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that their content can vary greatly depending on the types of cells,

their secretion and their current physiological state. Thus, exosomes

represent a mechanism of intercellular communication that plays an

important role in many cellular processes, including the immune

response (37, 38). Exosomes and the molecules they contain may be

of prognostic value in chronic inflammation, cardiovascular and

renal diseases, lipid metabolism disorders, and cancer (39, 40).

Thus, through exosomes, tumor cel ls influence their

microenvironment, which leads to adaptation of the tumor stroma

with subsequent stimulation of tumor growth. On the other hand,

exosomes secreted by cells of the tumor microenvironment, in

particular tumor-associated macrophages (TAMs), may affect

tumor growth.
TAM exosomes

The functions of macrophage exosomes have been widely

studied, and the data obtained indicate their key role in disease

progression. It should be noted that in recent studies, macrophage

extracellular vesicles (EV) are considered to be one of the most

important mediators of inflammatory diseases and cancer. As well

macrophage EV are thought to be mediators of a positive effect on

immunoregulation, tumor therapy, protection against infections,

and tissue repair (41).

The content of macrophage exosomes may differ depending on

the macrophage phenotype or the composition of their

microenvironment. Since macrophages can form a complex

mixed phenotype in various diseases or even at different stages of

the same disease in vivo, it is quite difficult to identify the

composition of their exosomes. Proteome analysis revealed

different proteins, including cathepsins, 20S proteasome subunits,

ribosomal proteins, and heterogeneous nuclear ribonucleoproteins

in exosomes released from TAMs, indicating that macrophages may

release exosome proteins with increased proteolytic activity and

reduced RNA binding capacity (42).

Among the most important molecules contained in

macrophage exosomes are various types of RNA molecules. Being

protected from ribonuclease degradation within exosomes, ncRNAs

can be secreted into various body fluids. MicroRNAs appear to be

the most abundant regulatory RNAs in exosomes. In a study by

Zhang et al. 109 microRNAs were identified that are differentially

expressed in M1- and M2-polarized human and mouse

macrophages, including miR-155, miR-181, miR-451 in M1

macrophages and miR-146a, miR-125a, miR-145-5p in M2

macrophages (24). Several miRNAs, miR-146 and miR-155, affect

the activation of pathways associated with immune control and the

consequences of inflammation (43). Other miRNAs highly

expressed in M2 macrophages are miR-511-3p, miR-223 and let-

7c, all of which promote M2 polarization (20). MiR-511-3p, which

is highly expressed in TAM, targets ROCK2 (Rho-associated helical

coil containing protein kinase 2) and maintains the expression of

genes associated with M2 polarization (25). TAM-secreted

exosomes downregulate TIMP2 expression in RCC cells,

promoting vasculogenic mimicry and invasion by miR-193a-5p

transfer, which ultimately promotes metastasis (26).
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miR-501-3p miRNA isolated from exosomes secreted by

tumor-associated M2 macrophages promotes tumor growth and

progression of pancreatic cancer. This microRNA inhibits the

expression of the TGFBR3 gene, which is an important tumor

suppressor, which stimulates an increase in the rate of cell

migration and metastasis (27). A decrease in TGFBR3 expression

is observed in a number of tumors, which indicates the importance

of this cascade in the context of tumor development (44, 45).

The transmission of various microRNAs from macrophages to

tumor cells was demonstrated in a study by Mei Yang et al. IL-4

polarized M2 macrophages secrete exosomes containing miR-223.

As a result of cocultivation of macrophages with breast cancer cells,

it was possible to detect the appearance of this miRNA in tumor

cells (28). Data on the differential expression of miR-223 in normal

and tumor cells indicate that this miRNA can contribute to the

progression of tumors of various types, including renal cell

carcinoma and bladder cancer (46, 47).

M2 macrophages are also able to stimulate tumor invasion and

angiogenesis through exosomal miRNAs. According to a study by

Jingqin Lan et al., in the case of colorectal carcinoma, miR-155-5p

and miR-21-5p are transported from M2 macrophages to tumor

cells via exosomes. In turn, the target of these miRNAs is the BRG1

sequence: this gene is recognized as one of the important

suppressors of metastasis in colorectal carcinoma. When miR-

155-5p or miR-21-5p interact, a significant drop in the level of

BRG1 expression is observed, which may be associated with an

acceleration of tumor progression and invasion (29).

Not only tumor cells can modulate TAM phenotype in a way

that these cells produce miRNA supporting tumor growth. It was

demonstrated that cancer associated fibroblasts stimulate TAMs to

express high levels of miR-181a. These TAMs produce miR-181

containing exosomes that activate AKT signaling in breast cancer

cells and increase the aggressiveness of the tumor (30).

Recent studies have shown that TAM exosomes also contain

various long non-coding RNAs (lncRNAs). The interactions of

lncRNA with RNA, DNA, and proteins allow them to regulate

gene expression at several levels, so roles in gene regulation are

usually divided into epigenetic, transcriptional, and post-

transcriptional levels. LncRNAs reside either in the cytoplasm or

in the nucleus, where they can interact with miRNAs, mRNAs,

RNA-binding proteins (RBPs), transcription factors, and

chromatins and act as enhancer-like RNAs (48). Accumulated

data have shown that cytoplasmic lncRNAs can be involved in

gene regulation at the post-transcriptional level, including acting as

ceRNAs and protecting target mRNAs from repression (49).

Accumulated data show that lncRNAs are actively involved in

the regulation of many fundamental biological processes of

development. At the moment, their participation in epigenetic

regulation (gene dosage compensation, genomic imprinting), cell

differentiation, and organogenesis has already been shown (50).

Some lncRNAs—MALAT1, HOTAIR, and ANRIL—are associated

with various pathologies, including cancer (51). Extracellular

vesicular transmission of myeloid-derived HIF-1a-stabilizing long

non-coding RNA (HISLA) is positively correlated with poor overall

survival in breast cancer patients. It has also been shown that

HISLA within TAM-derived exosomes can promote aerobic
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glycolysis, apoptosis resistance, and chemoresistance in breast

cancer cells (52).
Tumor cell-derived exosomes

Studies have shown that tumor cells produce much more

exosomes than normal cells. Due to the presence of adhesion

receptors and ligands specific for various types of cells and tissues

on their membranes, these exosomes “target” certain types of cells,

delivering the widest spectrum of biological molecules. Exosomes

secreted by tumor cells carry various proinflammatory and

immunosuppressive factors, such as macrophage migration

inhibitory factor (MIF) and PD-L1, which act in nearby or distant

tissues or organs to induce vascular permeability, inflammatory

infiltration, extracellular matrix remodeling, and downregulation.

immune response. Activated stromal cells can release a variety of

cytokines and chemoattractants via exosomes, such as IL-6, IL-8 and

S100A9, which promote tumor cell proliferation and invasion, as well

as the acquisition of chemoresistance and stem cell phenotype (53).

In addition to proteins, miRNAs contained in tumor cell-

derived exosomes may affect macrophage polarization. Exosomal

miR-301a-3p stimulates macrophage polarization to the M2

phenotype via the PTEN/PI3Kg signaling pathway. Circulating

miR-301a-3p levels are positively correlated with later tumor

stage, TNM grade; an increase in the level of circulating this

microRNA is associated with a worse prognosis of survival in

case of pancreatic cancer (54). Tumor cell derived exosomal miR-

138-5p inhibits KDM3B expression, thereby promoting the M2

phenotype and blocking M1 polarization. In the case of breast

cancer, an increase in the content of exosomal miR-138-5p was

associated with a worse prognosis (55). Considering the plasticity of

macrophage phenotype it would be important to investigate the

stability of macrophage phenotype change induced by tumor cell-

derived miRNA.
Conclusions

The investigation of exosome-mediated intercellular

communication between tumor cells and tumor-associated

macrophages (TAMs) has provided valuable insights into the

potential for identifying new targets for anticancer therapy,

particularly regulatory RNAs. The results of this research suggest

that the inhibitory effects mediated by M1-like macrophages

can be a promising approach for cancer therapy. Macrophage

reprogramming towards the M1 phenotype, through the

modification of exosomal cargoes, may serve as a strategy for

suppressing tumor growth.

However, despite the extensive research in this field, there are

still many gaps in our understanding of the complex exosome-

mediated communication process between tumor cells and

macrophages. One of the main challenges is the lack of

comparability between different experimental systems, particularly

with regards to non-coding RNAs in macrophages and the limited
Frontiers in Oncology 05
comparability between mouse and human macrophage cell lines

(Table 1). Additionally, there is a need for a more nuanced

approach to the selection of macrophage phenotype markers,

rather than relying solely on the M1/M2 dichotomy. Further

research in this area should consider the dynamic changes in

macrophage phenotype that can occur in response to different

stimuli, and the use of multiple markers to accurately characterize

macrophage phenotype.

In order to fully understand the impact of non-coding RNAs on

macrophages and tumor cells, extensive kinetics studies are crucial.

Studies have been performed to assess the kinetics of LPS-induced

TNF production (56) and the cytokine production induced by IFN-

g or IL-4 in macrophages (57), revealing the complexity of

macrophage behavior over time. Similar studies of ncRNAs can

provide insight into the regulatory networks controlling

macrophage biology and identify key hubs that can be targeted

for therapeutic intervention. Additionally, further investigation into

the role of exosomes in tumor progression and the cross-talk

between different cell types within the tumor microenvironment

will provide a more comprehensive understanding of the complex

interplay between tumor cells, macrophages, and the surrounding

microenvironment. This knowledge can be leveraged to design

more effective, targeted therapeutic strategies for cancer treatment.
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