
Frontiers in Oncology

OPEN ACCESS

EDITED BY

Pasquale Cianci,
Azienda Sanitaria Localedella Provincia di
Barletta Andri Trani (ASL BT), Italy

REVIEWED BY

Sara Ahmadi Badi,
Pasteur Institute of Iran, Iran
Vincenzo Lizzi,
Azienda Ospedaliero-Universitaria Ospedali
Riuniti di Foggia, Italy

*CORRESPONDENCE

Yousheng Li

guttx@hotmail.com

†These authors have contributed equally to
this work

SPECIALTY SECTION

This article was submitted to
Surgical Oncology,
a section of the journal
Frontiers in Oncology

RECEIVED 23 October 2022

ACCEPTED 16 February 2023
PUBLISHED 01 March 2023

CITATION

Yu C, Zhou Z, Liu B, Yao D, Huang Y,
Wang P and Li Y (2023) Investigation of
trends in gut microbiome associated with
colorectal cancer using machine learning.
Front. Oncol. 13:1077922.
doi: 10.3389/fonc.2023.1077922

COPYRIGHT

© 2023 Yu, Zhou, Liu, Yao, Huang, Wang
and Li. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

TYPE Original Research

PUBLISHED 01 March 2023

DOI 10.3389/fonc.2023.1077922
Investigation of trends in
gut microbiome associated
with colorectal cancer using
machine learning
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Background: The rapid growth of publications on the gut microbiome and

colorectal cancer (CRC) makes it feasible for text mining and bibliometric analysis.

Methods: Publications were retrieved from the Web of Science. Bioinformatics

analysis was performed, and a machine learning-based Latent Dirichlet

Allocation (LDA) model was used to identify the subfield research topics.

Results: A total of 5,696 publications related to the gut microbiome and CRC

were retrieved from the Web of Science Core Collection from 2000 to 2022.

China and the USA were the most productive countries. The top 25 references,

institutions, and authors with the strongest citation bursts were identified.

Abstracts from all 5,696 publications were extracted for a text mining analysis

that identified the top 50 topics in this field with increasing interest. The colitis

animal model, expression of cytokines, microbiome sequencing and 16s,

microbiome composition and dysbiosis, and cell growth inhibition were

increasingly noticed during the last two years. The 50 most intensively

investigated topics were identified and further categorized into four clusters,

including “microbiome sequencing and tumor,” “microbiome compositions,

interactions, and treatment,” “microbiome molecular features and

mechanisms,” and “microbiome and metabolism.”

Conclusion: This bibliometric analysis explores the historical research

tendencies in the gut microbiome and CRC and identifies specific topics of

increasing interest. The developmental trajectory, along with the noticeable

research topics characterized by this analysis, will contribute to the future

direction of research in CRC and its clinical translation.

KEYWORDS

colorectal cancer, microbiome, bibliometric, Latent Dirichlet Allocation, Web
of Science
Abbreviations: LDA, Latent Dirichlet Allocation; CRC, colorectal cancer; AI, artificial intelligence; SCB,

strongest citation bursts.
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Introduction

Much of what makes colorectal cancer (CRC) studies cutting-

edge has already been contributed by classic oncological

approaches. But certain elements were lacking until the gut

microbiome supplied them. What the gut microbiome contributes

to carcinogenesis and tumor progression may be familiar to other

research topics, but what the gut microbiome achieves in microbes’

contribution to this field is even more exceptional. A large

population of microorganisms accommodated by the gut

constantly interacts with intestinal epithelial cells and influences

the metabolome and immunity throughout the entire

gastrointestinal tract (1–5). Unbiased microbiome profiling and

relevant models have revealed mechanistic insights into the

microbial features associated with CRC (1). Remarkable progress

has been achieved in studies relating to gut microbiota and CRC,

highlighting the distinguished value of diagnosis and therapeutic

prediction of the gut microbiome (6, 7). Bacterial strains such as

Fusobacterium nucleatum, Escherichia coli, and Bacteroides fragilis

are known for their tumor activities (8–10). However, there are

many uncertainties concerning the association between gut

microbiome and CRC, such as the huge number of bacteria

(approximately 100 million) and distinct microbiota signatures,

bacterial interactions, as well as geographical and race differences

(11). Up to now, the gut microbiome remains far from

fully deciphered.

Artificial intelligence (AI) has been one of the mainstays of

cancer research and opens a plethora of technical applications (12).

Driven by algorithms such as convolutional neural networks, a large

quantity of data was used for training and pattern identification. It

is commonly used to extract digital information from medical

images for accurate medical diagnosis, such as MRI and PET/CT

(13, 14). Meanwhile, mucosal visualization and polyp detection in

gastrointestinal endoscopy and hematoxylin–eosin-stained images

in pathological diagnosis can also be facilitated by AI (15, 16).

What occurred was so promising that, until recently,

researchers began to discuss AI and the microbiome for colorectal

cancer (17, 18). It is possible, however, to understand the value of

the gut microbiome in CRC via an AI-dependent approach, and it is

well worth while to do so. Based on megagenomic data and the

antibiotic resistance genomic database, a DeepARG model was

developed for accurate antimicrobial resistance annotation (19).

Another example was a machine-learning-based decision tree

model for prediction of cancer therapeutic responsiveness by gut

microbiota composition and functional repertoire (20). Increasing

volumes of metagenomics data and communications propel AI

research intensity as well as platform-based data management and

reusability (21).

Of note, AI is currently enriched in data-sensitive scenarios, but

rarely covers text-sensitive scenarios of the gut microbiome. The

rapid growth of publications on this research topic makes it feasible

for text mining and bibliometric analysis. However, most analysis of

research trends is mainly performed by literature reviews or meta

statistics, with most word information untouched. Since a huge

amount of wordy data over the decades could be a formidable task

for manual processing, AI techniques are therefore translated for
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unbiased interpretation. Latent Dirichlet Allocation (LDA) is one of

the most powerful machine learning-based approaches to text

mining (22–24). It aids in the topics and relationship findings

among publications and data. Therefore, this study was performed

to characterize the research topics in the field of gut microbiome

associated with CRC over the past twenty years. Topic modeling by

LDA enables us to pinpoint each research topic and provide a more

in-depth interpretation. Thus, the results of this study provide the

developmental trajectory of this field, understandable sub-fields, or

topic connections, as well as how each research topic branches out

and multidisciplinary integration.
Materials and methods

Publications in the field of gut microbiome with CRC were

screened and retrieved via the Web of Science Core Collection

(https://clarivate.com/webofsciencegroup/solutions/web-of-

science-core-collection/) with search terms covering both CRC and

microbiome from 2000 to 30 June 2022. All included publications

were then processed for bibliometric extraction and citation

analysis. Analysis software included R (4.1.1 version), CiteSpace

(5.8 R3), and Gephi (0.9.5 version) (25–29). To identify specific

research topics derived from all publications with insight, LDA, a

machine learning-based algorithm, was used for text mining

(30, 31).
Results

A total of 5,696 publications related to the gut microbiome and

CRC were retrieved from the Web of Science Core Collection from

2000 to 2022 (Figures 1A–C). The most productive countries

included China, the USA, Italy, Japan, Germany, France, Korea,

the UK, Spain, and India (Figure 1A). Although China published

the most publications, the most multi-country publications were

contributed by the USA. Meanwhile, a steady increase in annual

publications was noticed (Figure 1B). Particularly since 2018, the

increment of publications in each year has reached over 100.

To further demonstrate the most influential references,

institutions, and authors, bibliometric analysis was performed on

all 5,696 publications. The top 25 references with the strongest

citation bursts (SCB) were identified from 2000 to 2022. The

reference with the highest strength was published in 2012 by

Arthur JC in SCIENCE, “Intestinal inflammation targets cancer-

inducing activity of the microbiota” (Figure 2A). The top 25

institutions and authors with SCB were also demonstrated.

Harvard University was the top institution with the highest

strength (Figure 2B). Meanwhile, the French National Institute

for Agricultural Research (INRA) displayed the longest and

strongest citation burst period, ranging from 2001 to 2016. Jobin

C was the top author with the highest strength (Figure 2C).

Next, to further characterize the changes in keywords, the annual

counts of keywords, both author keywords and keywords plus, were

calculated from 2000 to 2022 (Figures 3A, B). In the author keywords

such as fatty acid, inflammation, probiotics, colitis, diet, immune,
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metabolism, tumor, dysbiosis, and fusobacterium, biomarkers were

among the top lists across the past twenty years. In keywords plus, not

only similar words in author keywords were identified, but also

keywords such as receptors, nucleatum, protein, and gene were

added. In fact, the top key words can be categorized into four

terms: microbiota composition (such as fusobacterium, nucleatum,

and dysbiosis), microbiota andmetabolism (such asmetabolism, fatty

acids, and protein), microbiota and treatment (such as prebiotics and

probiotics, diet), and microbiota and disease course (such as tumor,

biomarkers, activity, colitis, immune, infection, and risk).

To fully characterize the most investigated fields and to make

research categorizations more precise within the gut microbiome

and CRC, a LDA algorithm was employed. Abstracts from all 5,696

publications were extracted for a text-mining analysis. The results

identified the top 50 topics in this field with increasing interest

(Figure 4). In fact, topics such as colitis in mice, expression of

cytokines, microbiome sequencing and 16s, gut microbiome

composition and dysbiosis, and cell growth inhibition were

dramatically increased during the last two years. Reasonably
Frontiers in Oncology 03
presumed, increasing studies in those subfields have achieved

remarkable progress relating to CRC and gut microbiota.

To further complement the categorization of keywords

aforementioned, the 50 topics were also categorized into several

groups for analysis and developmental management. A total of four

clusters were determined and colored, including “microbiome

sequencing and tumor,” “microbiome compositions, interactions, and

treatment,” “microbiome molecular features and mechanisms,” and

“microbiome and metabolism” (Figure 5). The cluster “microbiome

sequencing and tumor” was established by topics including

microbiome sequencing and 16s, bacterial species, fecal sample

collection, prediction, and identification of various tumors. The

cluster “microbiome compositions, interactions, and treatment” was

established by topics including human and animal models, treatment

effects, immune responses to cancer immunotherapy, and others. The

cluster “microbiome molecular features and mechanisms” was

established by topics including expression of cytokines,

carcinogenesis and cancer promotion and inflammation, regulation

of pathway signals, and others. The cluster “microbiome and
A B

C

FIGURE 1

Publications of studies on the gut microbiome associated with colorectal cancer (CRC) from 2000 to 2022. (A) Top 10 countries with most
publications of gut microbiome in CRC; SCP (green), single country publication; MCP (red), multiple country publication; (B) annual publications
from 2000 to 2022; (C) contributing countries visualized by map; the number of publications was marked by color, with red to yellow indicating
high to low publications.
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metabolism” was established by topics including dietary intake and

consumption, bile acids and butyrate, activities of oxidative stress, and

others. Based on those categorizations, several study areas for future

studies have also been listed (Table 1), including four major areas:

investigation models, microbiome sequence techniques, clinical trials,

and microbiota metabolism.

To visualize the citation pattern, a dual-map thematic overlay

portfolio analysis was performed. The discipline distribution of

publications associated with the gut microbiome and CRC was

represented (Figure 6).
Discussion

Up to 2021, the publication of gut microbiome in CRC has

significantly increased by 200 times compared to 2000. A faster
Frontiers in Oncology 04
growth pace was found from 2015 to 2021, with significant

increments in 2017 and 2020. The 50 predominant research

topics identified in this study were clustered into four, including

“microbiome sequencing and tumors,” “microbiome compositions,

interactions, and treatment,” “microbiome molecular features and

mechanisms,” and “microbiome and metabolism.”

Regarding microbiome sequencing and tumors, research is

intensely focused on F. nucleatum in tissue, disease development

and progress, microbiome sequencing and 16S, bacterial species,

CRC, and colorectal adenoma. F. nucleatum had been reported to

be closely associated with tumor subtypes as it induced diverse

immune responses with respect to the microsatellite instability

status of CRC (32). Interestingly, high levels of F. nucleatum

improved the overall anti-tumor effects of PD-L1 blockade

therapy with prolonged survival. Microbiome sequencing is

another key topic identified in this analysis. Crucial alterations in
A

B C

FIGURE 2

Top-listed references, institutions, and authors with the strongest citation bursts (SCB). (A) Top 25 SCB references; (B) top 25 SCB institutions; (C)
top 25 SCB authors; red bar to green bar indicates high frequent occurrence of citation period compared to common frequent citation occurrence.
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carcinogenesis and treatment effects could be monitored by

microbiota metagenomic profiling (33). 16S rRNA sequencing

techniques have contributed to the identification of several key

bacterial strains, including F. nucleatum, E. coli, Streptococcus

intermedius, Gemella haemolysans, and B. fragilis (34). Another

16S rRNA amplicon sequencing study from Korea observed three

phyla were less found in tumor tissues, along with intensely

enriched metabolic pathways of the bile acid section or bacterial

motility proteins related to CRC (35). In addition, F. nucleatum and

B. fragilis were also found more abundant in recurrent individuals

compared to nonrecurrent ones (35). Besides, based on the

keywords heatmap (Figure 3), F. nucleatum, a gram-negative,

anaerobic opportunistic bacterium, is most likely to be associated

with CRC. This kind of bacterium is common to the oral cavity and

is associated with periodontal disease. Interestingly, one of the

topics identified by LDA algorithms is “patient oral health

control,” covering studies of the association between oral health

and CRC risk. Accumulating evidence has also concluded that

mucosa-associated Escherichia coli (E. coli) is involved with the

tumorigenesis and progression of CRC, particularly some strains of

E. coli , including enteropathogenic E. coli (EPEC) and

cyclomodulin-positive E. coli (13). Based on the topic terms, both
Frontiers in Oncology 05
E. coli and Fusobacterium are the main gut microbiota members

associated with CRC.

Regarding microbiome compositions, interactions, and

treatment, research is more likely to focus on human and animal

models, treatment effects, inflammation bowel disease, immune

responses to cancer immunotherapy, microbiome interactions in

the host, microbiome dysbiosis, and infections. In fact, increasing

experimental models have been developed to support rising

research on microbiota in cancer studies, including a germ-free

humanized microbiota sample transfer model and an antibiotic

regiment-based animal model (Table 2). Effective animal models

serve as an essential component of preclinical studies and critical

evidence for mechanistic insights (36). Specific functional proteins

such as FadA and Fap2 have been identified through successful

experimental models (37–39). Interestingly, systemic, and mucosal

immune status remains largely stable in the antibiotic treatment-

based animal model, thereby making it a potential approach for

immunotherapy evaluation. Soon, humanized microbiota animal

models will be crucial to immunotherapy research (40–43)

(Table 2). By far, studies are only beginning to scratch the surface

of the nature of the association between the microbiome and CRC.

It is reasonable to presume that microbiota-related treatment,

immune response, and animal models will be some of the key

developments in the future.

Regarding microbiome molecular features and mechanisms,

research topics are focused on regulation of pathway signals,

expression of cytokines, colitis in mice, intestinal barrier, and

gene and miRNA expression. Several pathway signals relating to

tumorigenesis have been involved in the gut microbiota, including

the toll-like receptors (TLRs), KRAS, NF-kappa B, SARS-CoV-2,

G protein-coupled receptors, and Wnt pathways (44–49). Chronic

inflammation was taken as a major cause of tumorigenesis and

progression. Therefore, the colitis model has been an opportunity

to reveal the contribution of microbiota to colitis-associated

CRC (50).

Regarding the microbiome and metabolism, topics include

activities of oxidative stress, metabolism, bile acids and butyrate,

cell growth inhibition and potential effects of compounds,

probiotics and prebiotics, dietary intake, and consumption. From

a metabolic point of view, the microbiome and metabolism

demonstrated a dramatic research market with huge potential.

Bile acid–gut microbiome interaction constitutes one of the most

intensively investigated topics, with increasing publications over the

years (51–54). The metabolism of bile acids and their symbiosis was

commonly associated with a low-fiber diet. Moreover, researchers

indicated bidirectional regulatory effects of bile acids on CRC along

with its progression (55). Butyrate, one of the main short-chain fatty

acids, serves as an effector for anti-inflammation and anti-tumor

(56). Increasing levels of omega-3 polyunsaturated fatty acids may

promote the bacteria that produce butyrate, lowering the risk of

CRC (57). Although the overall trend in the gut microbiome has

been positive, some specific topics indicated that research processes

were lagging, including dietary intake and consumption, pathogen

strains, and activities of oxidative stress, all of which belong to

this cluster.
A

B

FIGURE 3

Heatmap of the annual occurrence of top keywords derived from
the gut microbiome in the CRC. (A) Annual occurrence of author
keywords from 2000 to 2022; (B) annual occurrence of keywords
plus from 2000 to 2022.
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The most influential reference was identified as “Intestinal

inflammation targets cancer-inducing activity of the microbiota” by

Arthur et al., published in SCIENCE 2012. In this study, Arthur et al.

reported that Escherichia coli NC101 (E. coli) was significantly enriched

in inflammatory bowel disease and CRCmucosa. Intestinal microbiota

was identified as a key target of intestinal inflammation, further

affecting the disease course of CRC (58). This study for the first time

answered the critical question of whether the gut microbiota was

actively involved in the progress of carcinogenesis.

Among all the leading institutions, INRA showed the longest

period in SCB. As one of the top research institutions in France,

INRA has made a considerable contribution to the field of gut

microbiota. To achieve deep knowledge of health-related challenges

affected by the gut microbiota, INRA also launched a nationwide

collaborative project called Le French Gut on 15 September 2022,

continuing to support the “Million Microbiome of Humans
Frontiers in Oncology 06
Project,” an international project to build up a world-class human

microbiota database for public use.

Of all the 50 topics, some showed remarkable progress during

the last few years, for example, the role of colitis in a mouse model

associated with gut microbiota and CRC. A few noticeable

achievements had been made by several studies (59, 60). Zhu

et al. reported that by precisely editing the microbiota

composition in mouse models, the risk of tumor development in

colitis-associated CRC could be reduced (59). Particularly,

Enterobacteriaceae was identified as the key target in this

intestinal inflammation course. By using a similar colitis cancer

mouse model, Ji et al. highlighted the modulatory role of jujube

polysaccharides in ameliorating colitis-related cancer and

microbiota dysbiosis. Firmicutes and Bacteroidetes were also

significantly reduced in this model (60).
FIGURE 5

Network correlational and cluster analysis of the 50 topics. Four main
clusters were identified and colored, respectively. Green, microbiome
sequencing and tumor; violet, microbiome compositions, interactions,
and treatments; blue, microbiome molecular features and
mechanisms; orange, microbiome and metabolism.
FIGURE 4

Fifty topics identified by the Latent Dirichlet Allocation (LDA)
algorithm in publications of the gut microbiome in the CRC from
2000 to 2022. Blue, low occurrence value; yellow, high occurrence
value.
TABLE 1 Gut microbiome research for future guidance.

Study area Research topics

Human or animal models 1. Optimize the humanized microbiota-associated animal models
2. Establish animal model study on response to immunotherapy
3. Improving imaging techniques, such as animal endoscopy or MRI or tumor-specific markers

Microbiome sequencing 1. Machine learning application in next generation sequencing for gut microbiome
2. Microbiota dysbiosis and causes
3. Sample collections for sequencing

Clinical trials with gut microbiota 1. Specify the contribution of fecal microbiota transplantation (FMT)
2. Specify the association between FMT and immunotherapy
3. Application of microbial ecosystem therapeutics and its mechanisms
4. Association between probiotics and microbiota

Microbiota metabolism 1. Gut microbiota-derived short-chain fatty acids
2. Diet researches and tumorigenesis
3. Chemical-microbiota interaction for precancerous study
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Colitis-associated colorectal cancer (CAC) is a critical

complication of inflammatory bowel disease, accounting for

around 15% of mortality. However, the molecular mechanisms

underlying the carcinogenesis of CAC remain largely unclear

and are deemed different from other types of CRC (61). In fact,

previous clinical and experimental clues have indicated that

inflammation serves as a key to initiating CAC, while it may

not be a decisive trigger for common CRC. Thus, investigation

into the role of the gut microbiome in CRC and CAC is highly

valuable. Research progress relating to gut microbiota and CAC

is mostly represented by two types of studies. Type I is the

mechanistic interaction between members of the microbial

community and the intestinal tract. Microbial community

members produce and release genotoxins in the gut to

exasperate inflammation or induce carcinogenesis. Type II is

the well-established animal model used for CAC. Of note, there

is a high-value unanswered question: could an inflammatory

bowel disease-driven microbe be able to automatically promote
Frontiers in Oncology 07
CAC and, in a broader sense, CRC? In fact, there are several

types of microorganisms that are both linked to the disease

courses of inflammatory bowel disease and CRC, including

Fusobacterium species and Streptococcus bovis. Other types of

microorganisms, such as the enterotoxic strain of B. fragilis, are

only associated with CRC. Up until now, a disputate remains as

to whether microbes are vital to the carcinogenesis of CAC and

other types of CRC or just innocent bystanders. Animal models

of CAC may be the key to that question.
Conclusion

This bibliometric analysis explores the historical research trends in

gut microbiome and CRC and identifies specific topics with increasing

interests. The developmental trajectory, along with the noticeable

research topics characterized by this analysis, will contribute to the

future direction of research in CRC and clinical translation.
TABLE 2 Humanized microbiota-associated animal models.

Animal models Stability Features

Human microbiota samples transferring to germ-free animal model Short term 1. Germ-free condition with specialized equipment
2. Expensive maintenance
3. Experimental genotyping
4. Developmental defects
5. Targeting specified microbes

Antibiotics treatment-based animal model Potential long-term 1. Cost effective
2. Feasible to alternative types of antibiotics
3. Applicable to multiple genotypes
4. Bacterial or other microorganism bias to antibiotics treatment
5. Host health concerns in response to antibiotics treatment
FIGURE 6

Dual-map citation portfolio analysis with thematic overlays. The publications and cited results were visualized. Wider edges a indicated higher value
in occurrence. The left part of the plot indicated citing journals, and the right part of the plot indicated cited journals.
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