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Pan-cancer analysis of
chromothripsis-related gene
expression patterns indicates an
association with tumor immune
and therapeutic agent responses

Qin Zhang †, Lujie Yang †, He Xiao, Zhaoqian Dang, Xunjie Kuang,
Yanli Xiong, Jianwu Zhu, Zhou Huang* and Mengxia Li*

Cancer Center, Daping Hospital, Army Medical University, Chongqing, China
Chromothripsis is a catastrophic event involving numerous chromosomal

rearrangements in confined genomic regions of one or a few chromosomes,

causing complex effects on cells via the extensive structural variation. The

development of whole-genome sequencing (WGS) has promoted great progress

in exploring the mechanism and effect of chromothripsis. However, the gene

expression characteristics of tumors undergone chromothripsis have not been

well characterized. In this study, we found that the transcriptional profile of five

tumor types experiencing chromothripsis is associated with an immune evasion

phenotype. A gene set variation analysis (GSVA) was used to develop a CHP score,

which is based on differentially expressed gene sets in the TCGA database,

revealing that chromothripsis status in multiple cancers is consistent with an

abnormal tumor immune microenvironment and immune cell cytotoxicity.

Evaluation using four immunotherapy datasets uncovered the ability of the CHP

score to predict immunotherapy response in diverse tumor types. In addition, the

CHP score was found to be related to resistance against a variety of anti-tumor

drugs, including anti-angiogenesis inhibitors and platinum genotoxins, while EGFR

pathway inhibitors were found to possibly be sensitizers for high CHP score

tumors. Univariate COX regression analysis indicated that the CHP score can be

prognostic for several types of tumors. Our study has defined gene expression

characteristics of tumors with chromothripsis, supporting the controversial link

between chromothripsis and tumor immunity. We also describe the potential value

of the CHP score in predicting the efficacy of immunotherapy and other

treatments, elevating chromothripsis as a tool in clinical practice.
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Introduction

It is widely recognized that the mutations in the genetic material

can result in cancers via activation of oncogenes or inactivation of

tumor suppressors. This conventional paradigm believes the

tumorigenesis is driven by the gradual accumulation of genomic

damage and mutagenesis over time. However, a catastrophic event

that entails extensive breakage and random rearrangements on focal

chromosomes, termed chromothripsis, has been argued to be a novel

targeted event that initiates a considerable number of human cancers

(1, 2). In a single chromothripsis incident, hundreds of DNA breaks

can occur in a short time. Consequently, overwhelmed or erroneous

DNA repair processes lead to oncogenic fusion/amplification and loss

of tumor suppressor genes, seeding the carcinogenic transformation

of normal cells (3). Furthermore, this chromosome rearrangement

phenomenon is considered to be one of the drivers of tumor evolution

and is related to a dismal prognosis for cancer patients (4–6).

Recently, structural variation (SV) viewed by whole-genome

sequencing (WGS) has revealed that the actual prevalence of

chromothripsis is much higher than estimated from earlier

studies (7).

Much of the prior work on chromothripsis had focused on the

complex variation of the resulting chromosome structures; however,

great progress has been made since in exploring the mechanism and

the biological and pathological effects of chromothripsis. Most

notably, studies of micronuclei have revealed novel links between

chromothripsis and the malignant biological behavior of tumors. In

situations of drug selection, continuous genomic breakage-fusion-

bridges cycles produce circular extrachromosomal DNA (ecDNA)

that is encapsulated in micronuclei that further support the

occurrence of chromothripsis. The associated massive chromosomal

rearrangements mediate enhanced drug resistance in turn (3, 8).

Chromothripsis is also frequently observed in highly invasive tumor

subtypes, such as pediatric medulloblastoma or late stage

neuroblastoma, suggesting a connection to a more aggressive

malignant phenotype as well (2, 5).

As recent evidence has revealed, chromothripsis is intricately

associated with immunity. For example, numerous micronuclei are

generated in tumors with chromothripsis, and the rupture of defective

micronuclei envelopes can lead to activation of innate immunity

through the DNA-activated cGAS-STING pathway (9–11).

Additionally, genomic instability can drive immune surveillance (8),

and chromosomal rearrangements can promote the production and

presentation of neoantigens, which can in turn activate immune cells

and the clearance of tumor cells in mesothelioma (12, 13).

Alternatively, cells can limit the initiation of innate pro-inflammatory

signals by inhibiting the release of DNA frommicronuclei (14). A large

sample study found that aneuploidy, a kind of SV, is associated with a

neoantigen editing and presentation deficiency and can lead to a poor

immunotherapy response (15). Thus, differing SVs may impart varying

effects on immunity, emphasizing that the complex interaction between

chromothripsis, genomic abnormalities and biological properties of

tumors requires further clarification.

By analyzing the tumor gene expression profile (GEP) of tumors

with chromothripsis, we can uncover novel and central features with

respect to tumor immunity and drug tolerance. Here, we performed a

pan-cancer analysis using the GEP of five tumor types and identified
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that chromothripsis is associated with tumor immune evasion. A

chromothripsis related gene signature was then constructed and

confirmed the correlation with immune escape and immunotherapy

resistance. Furthermore, the CHP score was related to resistance

against multiple anti-tumor drugs,e.g., mitosis and DNA replication

inhibitors, whereas epidermal growth factor receptor (EGFR)

pathway inhibitors were identified as potentially therapeutically

beneficial for tumors with a high CHP score. In TCGA database,

the CHP score was found to be a prognostic factor for many types of

cancers, including breast invasive carcinoma (BRCA), endometrial

carcinoma (UCEC), bladder urothelial carcinoma(BLCA), kidney

renal clear cell carcinoma(KIRC), prostate adenocarcinoma(PRAD),

and skin cutaneous melanoma(SKCM). Finally, by analyzing the

mutational signature of the genome, we discovered that defects in

homologous recombination (HR) or the APOBEC cytosine

deaminase likely play important roles in the occurrence of

chromothripsis in breast cancer. The study here has defined a gene

expression signature of tumors with chromothripsis and provides

critical insights into the implications of this event with regards to

tumor cell behavior.
Methods

Data retrieving and preprocessing

Chromothripsis status of five types of cancer including BRCA,

lung adenocarcinoma (LUAD), ovarian cancer (OV), stomach

adenocarcinoma (STAD) and UCEC was retrieved from

compbio.med.harvard.edu/chromothripsis. Of which, 68 samples

indicated with “High confidence” or “Linked to high confidence” in

any chromosome was categorized chromothripsis and 80 samples

with “No” in all chromosomes was categorized as non-

chromothripsis. Clinical information and RNA-seq expression

profiles of TCGA Pan-Cancer Atlas Studies were obtained from

www.cbioportal.org. A total number of 8912 tumor samples with

RNA-seq expression profiles in the format of linear RSEMwere finally

included in pan-cancer analysis. Raw data of GSE194040, GSE91061,

GSE11636 were downloaded from Gene Expression Omnibus (GEO).

Raw count of RNA-seq and responsiveness to atezolizumab

monotherapy in advanced bladder cancer was extracted from R

package “IMvigor210CoreBiologies”. IC50 values in the natural

logarithm of 268 anti-cancer drugs was downloaded from www.

cancerrxgene.org/downloads/. The CEL files of Cancer Cell Line

Encyclopedia(CCLE) cell lines was obtained from www.ebi.ac.uk/

arrayexpress/experiments/E-MTAB-3610/. For RSEM and raw

count data, variation stabilizing transformation (VST) implemented

in DESeq2 was applied prior to calculation of gene signatures and

inference of abundance of infiltrated immune cells. For microarray

profiled with affymetrix, function “rma” in R package limma was used

to obtain expression matrix at probes level with default parameters.

For raw data of Agilent, function “background Correct” and

“normalize Between Arrays” were used to correct background and

normalization. Function “neqc” was used for preprocessing data

profiled with Illumina HumanHT-12 microarrays. The detailed

sample size of each dataset used in this study were summarized in

Supplementary Table 1.
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Identification of differentially
expressed genes (DEGs)
and development of CHP score

Given considerable difference in expression profiles among

various cancers, the differentially expressed genes between

chromothripsis (n=68) and non-chromothripsis (n=80) was

identified regrading each cancer type as block by using edgeR. Gene

set enrichment analysis (GSEA) was used to infer enriched pathways

with gene rank based on log2 fold change and Molecular Signatures

Database hallmark c5 gene sets. DEGs were filtrated with criteria: false

discovery rate < 0.05 and absolute log2 fold change > 1. We took the

advantage of gene set variation analysis (GSVA) by using DEGs listed

in the Supplementary Table 3. The upregulated and downregulated

genes generated two gene sets, which were referred to as “CHPsigP”

and “CHPsigN”, respectively. The CHP score for each sample was

calculated by taking the difference between the enrichment score of

CHPsigP and CHPsigN which were both derived from the GSVA.

Gene set variation analysis(GSVA) was utilized to VST normalized

RNA-seq or microarray expression matrix with these two gene sets.

The parameter mx.diff was set to TRUE in all GSVA analysis. The

CHP score for each sample was calculated by subtracting enrichment

score of CHPsigN from enrichment score of CHPsigP.
Calculation of other gene signatures and
immune cell infiltration

Cytotoxic T lymphocyte (CTL score) (16), interferon-gama(IFN-

g)-related T-cell-inflated gene signature (17), activated dendritic cells

(DC score) (18), pan-fibroblast TGF-b response signature (FTR

score) (19) was evaluated by calculating geometrical mean of

expression of marker genes belonging to corresponding signature.

The gene signature of Cytotoxic T lymphocyte was the marker genes

of cell subcluster “Cytotoxic lymphocytes” originally presented in

MCPcounter (16). For tumor immune dysfunction and exclusion

(TIDE score), only dysfunction of T lymphocyte cells was considered

and measured by calculating Pearson’s correlation coefficients

between gene expression of marker genes and mean z statistic

values of these marker genes from Cox regression in at least two

cancer types as proposed by the original article (20). Abundance of 19

immune cell populations was evaluated with ConsensusTME.

Calculation of all gene signatures and ConsensusTME were

performed in VST normalized RNA-seq or microarray

expression matrix.
Analysis of genomic mutation in BRCA
patients

TCGA dataset of BRCA patients with available mutation data was

used for this analysis. The dataset was composed of 51 patients, which

occurred chromothripsis events (N = 32) or non-chromothripsis events

(N = 19). Analysis, summarize and visualize of mutation data were

performed by maftools (https://github.com/PoisonAlien/maftools).

Mutually exclusive or co-occurring set of genes could be detected

using SomaticInteractions function, which performs pair-wise Fisher’s
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Exact test to detect such significant pair of genes. We also analyzed the

differences in APOBEC enriched samples proportion and identified

differentially altered genes in two cohorts. We took non-negative matrix

factorization to decompose the matrix into n signatures, and shown

comparison of similarities of detected mutational signatures against

validated COSMIC mutational signatures.
Statistical analysis

Kruskal-Wallis test with multiple comparisons or Wilcoxon test

was used to evaluate differences in CHP score and other gene

signatures among groups. In pan-cancer analysis, CHP score was

categorized into high and low group with median value in each cancer

type. Kaplan-Meier curves along with log rank test were used to

evaluate difference of progression free survival(PFS) and overall

survival(OS) between high and low CHP score groups. Univariate

and multivariate Cox regression was used to evaluate hazard ratio and

95% confidence intervals for both continuous and categorized CHP

score and other gene signatures for PFS and OS in pan-cancer

analysis. In GSE194040, the difference in pathologically complete

response (pCR) rate between high and low CHP score groups in each

treatment arm was estimated by using Fisher’s exact probability.

Univariate and multivariate logistic regression was used to evaluate

the association of CHP score and other genes signatures and pCR.

Receiver operating characteristic curve (ROC) analysis was conducted

to evaluate the efficacy of CHP score to discriminate samples with

chromothripsis from samples without chromothripsis or patients

with responsiveness to immune checkpoint inhibitors (ICIs) from

patients without response. All tests were two-sided. P value less than

0.05 was considered statistically significant.
Results

Chromothripsis is associated with
a tumor evasion phenotype

Flow chart of this study was shown in Supplementary Figure 1. To

identify the possible gene expression signature of tumors with

chromothripsis, as defined by the criteria of the Pan-Cancer

Analysis of Whole Genomes (7), patient material that underwent

WGS and was confirmed for chromothripsis status was matched to

their corresponding in-situ sequencing data in the TCGA database.

After excluding tumor types with less than five chromothripsis

positive samples, the expression data of the five remaining tumor

types were collected (Supplementary Table 1): BRCA (n = 57), LUAD

(n = 21), OV (n = 17), UCEC (n = 33) and STAD (n = 21). Patients

were subsequently divided into chromothripsis (n=68) and non-

chromothripsis (n=80) groups, and follow-up GSEA revealed that

many pathways related to anti-tumor immunity, e.g., MHC class II

complex, cytokine activity, and the IFN-g response, were significantly
underrepresented in the chromothripsis group (Figure 1A).

Conversely, pathways related to tumor immunosuppression,

including the transforming growth factor-b(TGF-b) and fibroblast

growth factor receptor(FGFR) signal pathways, were significantly

overrepresented in the chromothripsis group. In addition, we
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https://github.com/PoisonAlien/maftools
https://doi.org/10.3389/fonc.2023.1074955
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Zhang et al. 10.3389/fonc.2023.1074955
observed an overrepresentation of stemness maintenance in the

chromothripsis group (Figure 1B) (Supplementary Table 2). Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway enrichment

analysis revealed that among the top 20 pathways, 7 pathways were

related to tumor immunity and protein-protein interactions

(Supplementary Figure 2).

Further data analysis identified 170 significantly DEGs between

the two groups (Supplementary Table 3). Gene Ontology (GO)

analysis showed that the DEGs, particularly the down-regulated

genes, were significantly enriched in the chromothripsis group for

biological processes related to chemokine receptor (CXCR) binding,

cytokine activity, chemokine activity, chemokine receptor binding,

and MHC class II receptor activity (all adjust p < 0.05) (Figure 1C).

Consistent with this finding, the IMMPORT database classified the

differentially expressed immunoregulatory genes into four groups:

Chemokines (CK), Antimicrobials (AMB), Antigen processing and

presentation (APP), and Cytokine receptors (CKR). Whereas most of

the immunoregulatory genes were significantly decreased in the

chromothripsis group, the expression of fibroblast growth factor 17

(FGF17) was significantly up-regulated (Figure 1D; Supplementary

Table 3). By analyzing the activation of immune cells, we found that

in the chromothripsis group: (i) T-cell receptor (TCR), B-cell receptor

(BCR) richness was lower (P>0.05); (ii) fraction altered, HR defects,

and intratumor heterogeneity were higher (P>0.05); and (iii) the

aneuploid score, fragments number, TGF-b response and TCR

evenness were significantly increased (P<0.05) (Figure 1E;

Supplementary Table 4). These results indicate a likely association

between chromothripsis and tumor immune evasion.
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Chromothripsis related gene signature
indicates tumor immunosuppression

To further validate the correlation between chromothripsis and

tumor immunity, we used GSVA to develop a CHP score based on a

chromothripsis related gene signature, which encompasses all DEGs

between the chromothripsis and non-chromothripsis groups. The CHP

score for each sample was calculated by subtracting the enrichment score

of the downregulated gene sets from the upregulated gene sets (see

Materials and Methods). Using ROC analysis, our studies show the

ability of the CHP score to distinguish chromothripsis with area under

the curve (AUC) values for BRCA (0.892,95%CI=0.799-0.985), UCEC

(0.892,95%CI=0.799-0.985), LUAD (0.833,95%CI=0.636-1), OV

(0.889,95%CI=0.718-1), and STAD (0.893,95%CI=0.736-1) (Figure 2A).

We next evaluated the CHP score using all 33 tumor types

(n=8912) in the TCGA. First, uveal melanoma (UVM) was found

to have the highest CHP score, whereas hepatocellular carcinoma

(LIHC) had the lowest CHP score (Figure 2B). Second, Thorsson et al.

identified six immune subtypes by pan-cancer analysis (21). We

observed that type C5 (immunologically quiet) had the highest

CHP score, while C2 (IFN-g dominant) and C6 (TGF-b dominant)

have the two lowest CHP scores (Figure 2C). Additionally, we found

that the CHP score was negatively correlated with the IFN-g response,
Immune score, DC score, and CTL score and is associated with a low

abundance of DC cells, NK cells, and monocytes in all 33 tumors. In

partial tumors, such as BRCA and THYM, the CHP score was

positively correlated with the abundance of plasma cells, fibroblasts

and endothelial cells (Figure 2D).
D
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FIGURE 1

Gene expression profile of five types of cancer confirmed for chromothripsis status. (A) GSEA analysis reveals down-regulated pathways related to anti-
tumor immunity in chromothripsis group. (B) GSEA analysis indicates up-regulated pathways related to tumor immune suppression in chromothripsis
group. (C) GO analysis reveals enrichment of DEGs in cancer immune or protein interaction categories. (D) Expression of immune regulatory genes
belonging to Chemokines (CK), Antimicrobials (AMB), Antigen processing and presentation (APP), and Cytokine receptors (CKR) in chromothripsis and
non-chromothripsis groups of in five cancer types. (E) Immune cell activation signature in chromothripsis and non-chromothripsis groups. **p < 0.01.
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We classified tumors into high and low CHP score groups for

each cancer type according to the median value of the CHP score.

Notably, the expression of immune checkpoint genes, including

programmed cell death protein 1 (PD-1), programmed cell death

ligand 1 (PD-L1), and Cytotoxic T-lymphocyte antigen number 4

(CTLA-4), was significantly lower in tumors with a high CHP score in

nearly all cancer types (i.e., in 25, 27 or 28 of 33, respectively)

(Figure 2E), as was the CTL score and the IFN-g signature

(Figure 2F) (Supplementary Table 5). Altogether, the results

indicate that the CHP score reflects a tumor immunosuppression

phenotype, which is characterized by a deficiency in immune cell

infiltration and cytotoxicity.
CHP score is related to poor
immunotherapy response

The efficacy of immunotherapy can be affected by many factors

including tumor immune cell infiltration and/or activation, the

expression of immune checkpoints, and tumor mutational burden.

Our results revealed a relationship between chromothripsis and

tumor immune evasion. We therefore used four GEO datasets, i.e.,

GSE91061, GSE111636, IMvigor210, and the immunotherapy arm of

GSE194040, to validate the association of the CHP score with the

immunotherapy response. The CHP score was found to be

significantly higher in the non-responder group in comparison to

the responder group in the GSE91061 and GSE194040 datasets

(Figure 3A; Supplementary Table 6, 7). Moreover, the

immunotherapy response rate was significantly lower in the high
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CHP score group in these two datasets (Figure 3B). Survival analysis

showed that the CHP score can reveal the prognosis of patients in the

GSE91061 dataset, where patients with higher scores had lower PFS

(log-rank P < 0.001) and OS (log-rank P= 0.0026). However, this

relationship between the CHP score and survival did not hold true in

the IMvigor210 dataset (log-rank P > 0.05) (Figure 3C). ROC analysis,

which was used to verify the above observations, supported the

conclusion that the CHP score predicts immunotherapy

effectiveness. Specifically, the results indicate that the CHP score

achieves good performance in both the GSE91061 (AUC=0.831,95%

CI=0.705-0.956) and the GSE111636 (AUC=0.767,95%CI=0.443-1)

dataset, but not in the IMvigor210 dataset (AUC=0.548,95%

CI=0.466-0.625) (Figure 3D). These findings support the link

between chromothripsis and an impaired response to immune

checkpoint blockades and indicate the potential value of the CHP

score in predicting the efficiency of immunotherapy in LUAD and

BRCA cancers.
CHP score is related to resistance to
multiple anti-tumor agents

Many studies have revealed a close relationship between

chromothripsis and therapeutic resistance. To explore the predictive

ability of the CHP score for other treatments in the setting of

neoadjuvant therapy, we used the GSE194040 dataset, which

contains information on 988 breast cancer patients who received 13

arms of neoadjuvants (Supplementary Table 1). First, we analyzed the

immune cells infiltration and immune activation signatures(see
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FIGURE 2

The construction of CHP score and the link with tumor immune evasion. (A) ROC curve indicates the ability of the CHP score to predict the occurrence
of chromothripsis in five types of cancer. (B) The CHP score in all 33 types of cancer in the TCGA database. (C) The CHP score among all samples
classified into C1, C2, C3, C4, and C5 groups. (D) The Pearson correlation coefficients of CHP score with the abundance of different immune cells and
the immune signature in 33 types of cancer in TCGA database. (E) The expression of immune check-point factors in CHP score high and CHP score low
groups. (F) Immune signature gene expression in CHP score high and CHP score low groups. *p < 0.05, **p < 0.01, ***p < 0.001, **** p < 0.0001.
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Materials and Methods) of all patients. Similar to the results of the

TCGA database, the CHP score is negatively correlated with the

abundance of most immune cells, including cytotoxic cells, dendritic

cells, and CD4+, CD8+ T cells, but positively correlated for the

abundance of fibroblasts (Figure 4A). Next, logistic regression

analysis was performed to determine the correlation between

various immune signatures and the pCR. Like some known

immune signatures (e.g., IFN-g, immune score and T cell
Frontiers in Oncology 06
abundance), the CHP score is significantly associated with the

response to Paclitaxel+Pembrolizumab treatment (R=-3.34,

P=0.002). Furthermore, the CHP score can predict the response to

Paclitaxel (R=-1.62, P=0.03), Paclitaxel+AMG386 (R=-3.25,

P<0.001), Paclitaxel+ABT888+Carboplatin (R=-3.71, P=0.001),

Paclitaxel+Ganetespib (R=-1.62, P=0.038), and Paclitaxel

+Ganitumab (R=-1.75, P=0.05) (Figure 4B) (Supplementary

Table 8). The CHP score was higher in the non-pCR group of
D

A B

C

FIGURE 3

Role of CHP score in predicting the immunotherapy response in four GEO datasets. (A) The CHP score in responder and non-responder groups in four
GEO datasets. (B) Respond rate in CHP score high and CHP score low groups in four GEO immunotherapy datasets. (C) K-M plot showing the PFS or OS
of patients in two GEO immunotherapy datasets. (D) ROC curve indicates the ability of the CHP score to predict the immunotherapy response in three
GEO datasets.
D

A

B

E

C

FIGURE 4

Role of CHP score in predicting the response to multiple-therapies in GSE194040 dataset. (A) Correlation coefficients between CHP score and the
abundance of various immune cells or the expression of the immune signature in the GSE194040 dataset. (B) Correlation coefficients between the CHP
score or specific immune signatures with responses to different treatments in the GSE194040 dataset. (C) The pCR rate of different treatments in CHP
score high and CHP score low groups in the GSE194040 dataset. (D) The CHP score for different treatments between responder and non-responder
groups. (E) ROC curves show the ability of the CHP score to predict the response to Paclitaxel+ Pembrolizumab, Paclitaxel+ABT888+Carboplatin, and
Paclitaxel+AMG386. *p < 0.05, **p < 0.01, ***p < 0.001.
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patients that received one of the above six treatments (Figure 4C).

After correcting for hormone receptor and human epidermal growth

factor receptor 2 (HER-2) factors, multivariate logistic regression

analysis validated that the CHP score was significantly correlated with

a poor response to Paclitaxel+Pembrolizumab (R=-2.84, P=0.012),

Paclitaxel+AMG386 (R=-2.56, P=0.014), and Paclitaxel+ABT888

+Carboplatin (R=-3.16, P=0.011) (Supplementary Table 9,

Supplementary Figure 2). Meanwhile, the pCR of patients with a

high CHP score was significantly reduced in these three treatment

groups (all p < 0.05) (Figure 4D, Supplementary Table 10). ROC

analysis confirmed the predictive power of the CHP score with

regards to therapies involving Paclitaxel+Pembrolizumab

(AUC=0.728 ,95%CI=0 .609-0 .848) , Pac l i taxe l+AMG386

(AUC=0.731,95%CI=0.605-0.856), or Paclitaxel+ABT888

+Carboplatin (AUC=0.724,95%CI=0.624-0.824) (Figure 4E). The

results collectively indicate that the CHP score not only associates

with immunotherapy responses but with tolerance to a range of anti-

tumor treatment regimens, particularly anti-angiogenic inhibitors

and platinum-based compounds in cases of breast cancer.
EGFR pathway inhibitors are sensitizing
drugs for tumors with high CHP score

The Genomics of Drug Sensitivity in Cancer (GDSC) database was

next used to screen for potentially sensitizing drugs for tumors with a

high CHP score. After excluding down-regulated genes that are mostly

related to tumor immune regulation, the enrichment score of CHPsigP

was used to identify chromothripsis status instead of the CHP score for

each cell line. The Pearson correlation coefficient was then used to

determine sensitivity to different drugs, where a significant negative
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correlation between the CHPsigP score and the half maximal

inhibitory concentration (IC50) indicates a higher drug sensitivity. As

shown in Figure 5A, the CHPsigP score is positively correlated with the

IC50 of insulin like growth factor 1 receptor (IGF1R), receptor tyrosine

kinase(RTK), DNA replication, and PI3K-mTOR pathway inhibitors,

indicative of a tolerance against these compounds in CHPsigP high

tumors. Notably, there was a negative correlation between the CHPsigP

score and the IC50 of EGFR signal pathway inhibitors, suggesting that

such drugs might be effective sensitizers against CHPsigP high tumors.

Indeed, as revealed in ANOVA analysis, Pearson coefficients of drugs

targeting EGFR signaling were significantly lower than those of drugs

targeting other pathways (Supplementary Table 11). Furthermore, the

IC50 of lapatinib, a HER-2 and EGFR tyrosine kinase inhibitor, is

significantly negatively correlated with the CHPsigP score in breast

(r=-0.457, P<0.001) and gastric cancer (r=-0.529, P=0.004) (Figure 5B).

A similar relationship was also seen for osimertinib in breast (r=-0.490,

P<0.001) and gastric cancer (r=-0.455, P=0.017) (Figure 5C).
CHP score is a prognostic factor for the
outcomes of multiple-cancer types

Many studies have shown that chromothripsis is associated with

poor clinical outcomes (7, 22). Univariate cox regression uncovered

that the CHP score was significantly correlated with worse PFS in

BRCA (HR=1.89,95%CI=1.07-3.36,P=0.029), UCEC (HR=2.79,95%

CI=1.5-5.2,P=0.0012), ACC (HR=35.9,95%CI=7.54-170.86,P<0.001),

BLCA (HR=1.84,95%CI=1.02-3.31,P=0.042), KIRC (HR=1.89,95%

CI=1-3.57,P=0.049), PRAD(HR=3.1,95%CI=1.07-8.95,P=0.038), and

SKCM (HR=1.72,95%CI=1.05-2.8,P=0.031) (Figure 6A) and with

worse OS in BRCA (HR=1.92,95%CI=1.10-3.34,P=0.021), UCEC
A

B C

FIGURE 5

Sensitivity of tumors with high CHP score to different drugs in the GDSC database. (A) Correlation coefficient between the CHP score and the IC50
values of specified drugs in different pathways or targets. (B) Correlation between the CHP score and the IC50 values of Lapatinib in breast cancer (left)
or gastric cancer (right). (C) Correlation between the CHP score and the IC50 values of Osimertinib in breast cancer (left) or gastric cancer (right).
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(HR=2.33,95%CI=1.12-4.86,P=0.024), ACC (HR=11.15,95%CI=1.78-

69.87,P=0.010), KIRC (HR=1.85,95%CI=1.01-3.39,P=0.045), SKCM

(HR=2.37,95%CI=1.34-4.20,P=0.0031), and SARC (HR=2.33,95%

CI=1.05-5.16,P=0.037) (Figure 6B). There was a significant

difference in PFS between CHP score high and low tumors in cases

of ACC, UCEC, BLCA, KICH, and SKCM, and in OS in ACC, KICH,

and SKCM (Figures 6C, D). Thus, the CHP score is a prognostic

factor for several types of cancers, and a high score is associated with a

poor outcome in cases of ACC, UCEC, BLCA, KICH, and SKCM.
HR defect and APOBEC are tightly link to
chromothripsis in breast cancer

Genome mutation profiles were used to analyze the potential

mechanisms underlying chromothripsis. Due to the limited numbers

of chromothripsis positive samples in most cancer type collections, we

were restricted to analyzing genomic mutation features in breast

cancer only. As shown by Figure 7A, compared with the non-

chromothripsis group (n=19), tumors with chromothripsis (n=32)

have a higher frequency of mutations in the VCAN and KIAA1109

genes, which are related to immunotherapeutic efficiency and

prognosis in several types of cancer (23, 24). Somatic Interactions

analysis showed that the chromothripsis group has more co-mutation

patterns than the non-chromothripsis group, possibly related to the

hallmark chromosome rearrangements (Figure 7B). For instance,

BRCA2-MUC16, PI3KCA-MUC17, ATRX-ATP1A4 et al. co-

mutations were identified in chromothripsis group.
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Signature of single base substitution (SBS) analysis was next

performed, and the signatures of SBS1 (Spontaneous or enzymatic

deamination of 5-methylcytosine), SBS2 (C > T mutation mediate by

APOBEC cytidine deaminase), and SBS3 (Defects in DNA-Double

strand break(DSB) repair by HR) were found in the chromothripsis

group, whereas non-chromothripsis was enriched in SBS5 (Aetiology:

Unknown) and SBS13 (C > G mutation mediate by APOBEC cytidine

deaminase) (Figure 7C). Moreover, the proportion of APOBEC

enriched samples is significantly higher in the chromothripsis group

than in the non-chromothripsis group (37.5% vs. 15.8%) (Figure 7D),

and the TCW motif burden of APOBEC enriched samples is also

higher in the former group (0.35 vs. 0.24) (Figure 7E). These results

reveal a specific mutation signature in breast cancers with

chromothripsis and indicate that HR defect and APOBEC may play

important roles in the occurrence and process of chromothripsis.
Discussion

A great deal of evidence has shown that SVs associated with

chromosome instability can have great impact on cells and are one of

the main drivers of tumorigenesis (25). Chromothripsis is an extensive

chromosomal rearrangement event, which typically has more complex

effects than comparatively simple changes in a single chromosome

segment, such as amplification, deletion or insertion. At present,

chromothripsis is far less understood than other chromosome

aberration events and has not been described as a potential

biomarker to aid clinical treatment. Thus, using transcriptional
D

A B
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FIGURE 6

Evaluation of the correlation between CHP score and survival in 32 types of cancers. (A-B) Correlation between the CHP score and PFS (A) and OS (B) of
32 tumor types in the TCGA Database. (C) Kaplan-Meier curves of PFS in ACC, BLCA, KICH, UCEC, and SKCM. Patients were classified into CHP score
high or low groups according to the median value of the CHP score. (D) Kaplan-Meier curves of OS in ACC, KICH, and SKCM, after patients were
classified into CHP score high or low groups.
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profiling, we aimed to establish a comprehensive picture of gene

expression characteristics for tumors with chromothripsis.

In analyzing gene expression profiles and evaluating tumor

immune cell infiltration and activation, we report herein that

chromothripsis is associated with a tumor immune evasion

phenotype. Additionally, a decoded chromothripsis related gene

signature, i.e., the CHP score, supports an immune escape phenotype

of tumors with chromothripsis and correlates with a poor

immunotherapy response. Although chromothripsis is a complex

chromosomal rearrangement event that has neoantigenic potential,

our results show an obvious suppression of immune cell infiltration and

activation in chromothripsis tumor samples, echoing the complex

relationship between aneuploid events, neoantigen editing/

presentation and tumor immune escape seen in an earlier large

sample study (15). A similar phenomenon is seen in colorectal

cancer, where tumors with low immune cytolytic activity undergo

more chromothriptic events and benefit little from immunotherapy

(26). Notably, both the IFN-g signature and immune cell activation

were significantly reduced in tumors with chromothripsis, whereas the

TGF-b signalling pathway was up-regulated. TGF-b plays a key role in

cancer progression by reshaping the tumor immunemicroenvironment

and promoting drug tolerance, angiogenesis and other cancer-

beneficial effects (27). The low expression of immune checkpoint

pathways might also contribute to the poor immunotherapy

response. In rectal adenocarcinoma, chromothripsis on chromosome

9 results in the deletion and low expression of CD274 and PDCD1LG2

genes, which may play important roles in the poor response to

immunotherapy (26).

Circular ecDNA provides another possible signal for the

amplification/fusion of oncogenes and inactivation of suppressor

genes, outcomes that can induce drug tolerance in tumors (3). In

addition to immune escape, we observed that the CHP score
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correlates with resistance to multiple drugs, including anti-

angiogenic inhibitors and the genotoxin platinum. Importantly, we

found that EGFR pathway inhibitors were possibly beneficial for the

treatment of tumors with a high CHP score. Seemingly consistent

with this finding, chromothripsis is frequently detected in lung

cancers driven by EGFR mutations (28), and mutation of EGFR

and ERBB2 is associated with more rearrangement events in LUADs

(29). A correlation between EGFR amplification and chromothripsis

has also been detected in glioblastoma (30). However, in our study of

breast cancer, no significant association has been observed in EGFR

or ERBB2 mutations and chromothripsis, potentially because of

technical limitations or insufficient sample size. More extensive

analysis of the relationship between EGFR status and therapeutic

targeting with chromothripsis is clearly warranted.

DNA repair processes are indispensable for the chromosome

reassembly during chromothripsis, especially in the context of the

widely-accepted micronucleus theory (31). TP53, a prominent tumor-

suppressor gene, is closely associated with the level of aneuploidy and

chromothripsis in many cancers, especially in several types of

pediatric tumors (2, 32–35). Homologous recombination deficiency

(HRD) is broadly defined in clinic, ranging from deleterious

mutations in single HRR genes (i.e. BRCA1/2) to complex genomic

scars (36). Our results found mutation of BRCA2 in chromotripsis

group (Figure 7B).

Consistent with our result, a previous study demonstrated that

BRCA2/p53-deficient mice enhance the probabil i ty for

chromothripsis events (37). A high frequency of chromothripsis has

also been detected in acute lymphoblastic leukemia with mutations in

Ataxia-telangiectasia mutated (ATM), a key signaling kinase of HR

(38). Indeed, a wide spectrum of DNA repair gene mutations are

commonly associated with increased micronuclei and genomic

rearrangements, including the Rad3-related protein (ATR), Nibrin
D
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FIGURE 7

Genomic mutation characteristics of breast cancer in TCGA database. (A) Difference in mutation frequency between chromothripsis and non-
chromothripsis groups in breast cancer. (B) Common mutation profiles of chromothripsis and non-chromothripsis groups in breast cancer. (C) Mutation
signature of chromothripsis and non-chromothripsis groups in breast cancer. (D) Samples enriched or not for APOBEC in the chromothripsis and non-
chromothripsis groups. (E) TCW motif burden in samples enriched or not for APOBEC in the chromothripsis and non-chromothripsis groups.
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(NBN) and RecQ protein-like 3 (RECQL3) (39–42). On the flip side,

variation in DNA repair-related genes can be the result of

chromothripsis, for instance, in colorectal cancer (43). Our results

show that an HR defect signature is enriched in breast cancers with

chromothripsis, suggesting that impairment in the faithful resolution

of DSBs plays a prominent role in chromothripsis. Tumors with an

HR defect may call upon more imprecise processes, such as non-

homologous end joining (NHEJ) and/or microhomology-mediated

end-joining (MMEJ), to repair DNA DSBs, resulting in abnormal

processing or unwanted rearrangements. In fact, NHEJ or MMEJ

signatures are frequently associated with abberant rearrangement

events (44), and NHEJ is central to the formation of ecDNA (3)

and appears to be the main repair mechanism for chromothripsis

(45, 46).

Aberrant expression of the APOBEC family of proteins is an

important driver of genome mutation and tumor evolution (47).

Localized regions of hypermutation in certain cancer genomes,

referred to as katagies, are thought to be the result of erroneous

APOBEC activity (48). The accompanying C to T transition

mutations are the outcome of cytosine deamination mediated by

APOBEC enzymes that are enriched in the chromothripsis group,

whereas uracil-initiated base excision repair mediated by uracil-DNA

glycosylase (UNG) likely drives C to G transversion mutations in

non-chromothripsis tumors (49, 50). Whether the APOBEC enzymes

participate directly in chromothripsis and chromosome reshuffling

warrants further investigation.

An increase in aneuploidy is related to poor prognosis of multiple

tumor types (15, 51). Chromothripsis is associated with a worse

prognosis in cases of multiple myeloma (4), neuroblastoma (5), and

acute myeloid leukemia (6). This association was also suggested

following two pan-cancer studies (7, 22). Multiple factors, including

aggressiveness, tumor heterogeneity, and drug tolerance, can

contribute to a poor outcome. A tumor-supportive immune

microenvironment and dysfunctional immune cells can also lead to

worse survival (52). Considering the limitation of WGS in clinical

applications, the CHP score, which is based on transcript profiles, has

potential use in predicting the prognosis of many types of tumors.

While our investigations have revealed novel associations of

chromothripsis with tumor phenotypes, patient prognosis, and

treatment efficacy, there important limitations of the current work

worth pointing out. First, the CHP score does not perform well in

predicting immunotherapy or prognosis of all tumor types, which

indicates that more samples are needed to understand the heterogenous

response of different tumor types. Second, the result of drug response in

tumors with chromothripsis is based on cancer cell lines. More clinical

trials are needed to verify the therapeutic utility of EGFR pathway

inhibitors in cancer cases involving chromothripsis.
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