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breast lesions: Potential to avoid
unnecessary biopsies
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Objectives: To investigate whether combining radiomics extracted from ultrafast

dynamic contrast-enhanced MRI (DCE-MRI) with an artificial neural network enables

differentiationofMRBI-RADS4breast lesionsandtherebyavoids false-positivebiopsies.

Methods: This retrospective study consecutively included patients with MR BI-

RADS 4 lesions. The ultrafast imaging was performed using Differential sub-

sampling with cartesian ordering (DISCO) technique and the tenth and fifteenth

postcontrast DISCO images (DISCO-10 and DISCO-15) were selected for further

analysis. An experienced radiologist used freely available software (FAE) to perform

radiomics extraction. After principal component analysis (PCA), a multilayer

perceptron artificial neural network (ANN) to distinguish between malignant and

benign lesions was developed and tested using a random allocation approach.

ROC analysis was performed to evaluate the diagnostic performance.

Results: 173 patients (mean age 43.1 years, range 18–69 years) with 182 lesions (95

benign, 87 malignant) were included. Three types of independent principal

components were obtained from the radiomics based on DISCO-10, DISCO-15,

and their combination, respectively. In the testing dataset, ANN models showed

excellent diagnostic performance with AUC values of 0.915-0.956. Applying the

high-sensitivity cutoffs identified in the training dataset demonstrated the potential

to reduce the number of unnecessary biopsies by 63.33%-83.33% at the price of

one false-negative diagnosis within the testing dataset.

Conclusions: The ultrafast DCE-MRI radiomics-based machine learning model

could classify MR BI-RADS category 4 lesions into benign or malignant,

highlighting its potential for future application as a new tool for clinical diagnosis.

KEYWORDS

ultrafast dynamic contrast-enhanced MRI, radiomics, neural network, breast imaging
reporting and data system, breast cancer
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Introduction

Breast cancer is the most common malignant tumor in women

and the second leading cause of cancer-related death in women (1).

Early cancer detection is beneficial to improve the prognosis of

patients with breast cancer (2). Breast magnetic resonance imaging

(MRI) plays an important role in the diagnosis (3), treatment (4), and

prognostic assessment (5) of breast cancer. American College of

Radiology (ACR) Breast Imaging Reporting and Data System (BI-

RADS) is helpful for clinical decision-making (6, 7). BI-RADS

category 4 lesions with a varying range of probability of malignancy

(2%-95%) (6, 8), however, are regarded as suspicious lesions and

usually recommended for biopsy (7), which may lead to a large

number of negative biopsies (9) as well as the psychological and

financial burden for patients. Therefore, it is necessary to find a

sensitive tool to improve the assessment of BI-RADS 4 lesions. In

order to avoid false positive BI-RADS 4 category assignments,

previous studies utilized either advanced MRI techniques (10–13)

or specific clinical decision rule incorporated morphological and

kinetic BI-RADS descriptors (14, 15). Although these approaches

showed encouraging results, additional measurements increase the

scan time and the decision rule require human image features

interpretation that may lead to inter-reader variation (16).

Radiomics is an emerging field that can non-invasively provide

rich information on lesions by quantitatively analyzing numerous

features extracted from traditional medical images (17). Different

from the conventional visual interpretations of radiologists, this

technique can objectively quantify the heterogeneity of diseases.

Consequently, radiomics has been successfully explored as a means

to aid decision-making for the diagnosis and risk stratification of

several kinds of cancers, for example, glioblastoma (18), lung cancer

(19), cervical carcinoma (20), and hepatocellular carcinoma (21).

Radiomics also shows encouraging results for improving the accuracy

of breast cancer diagnosis, prognosis, and prediction of recurrence

(22–25).

Ultrafast dynamic contrast-enhanced magnetic resonance

imaging (DCE-MRI) is a newly proposed imaging protocol that can

provide improved temporal resolution while maintaining reasonable

spatial resolution (26, 27). Several fast acquisition techniques have

played an important role in ultrafast imaging, consisting of view

sharing, sophisticated parallel imaging, and compressed sensing (27–

29). Differential sub-sampling with cartesian ordering (DISCO),

which utilizes pseudorandom segmentation of the k-space and two-

point Dixon fat-water separation, is a type of view-sharing technique

(30). All the methods with 3-10 s of temporal resolution can capture

kinetic information of a lesion in the very early post-contrast phase.

Many studies have demonstrated that the early image features of

ultrafast imaging are beneficial for breast cancer diagnosis and

characterization (27, 29, 31).

The radiomics models have been developed by some studies to

improve the assessment of BI-RADS 4 lesions (32–34). However, they

examined the features from conventional sequences including ADC

maps, T1W images, T2W images, or T1 contrast-enhanced images.

Few studies have reported the diagnostic efficiency of radiomics

features based on ultrafast imaging in distinguishing breast
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suspicious lesions. Therefore, the purpose of this study was (a) to

investigate if combining radiomics features extracted from ultrafast

imaging (using the DISCO technique) with an artificial neural

network (ANN) can differentially diagnose the MR BI-RADS 4

breast lesions, (b) to determine whether and how many false-

positive biopsies could be potentially avoided by comparing the

results with prospectively prescribed biopsy indications by

experienced breast radiologists.
Materials and methods

Patients

This retrospective study was approved by the Institutional Review

Board of our institution and written informed consent was waived.

We consecutively reviewed 365 patients who presented suspicious

lesions by mammography or breast ultrasonography and underwent

breast MRI for diagnosis or preoperative staging from April 2020 to

May 2021. Samples of all lesions were obtained by biopsy or surgery

and analyzed subsequently by an experienced pathologist. The

pathological results of all lesions were regarded as the reference

standard. 192 patients were excluded due to the following reasons

(1): poor image quality fails to satisfy the diagnostic requirement (n =

10) (2); no pathological results available (n = 39) (3); prior biopsy or

chemotherapy before MRI examination (n = 60) (4) BI-RADS

category 3 or 5 lesions (n = 83). Finally, 173 patients with 182 MR

BI-RADS category 4 lesions were included. Nine patients had breast

lesions in both breasts. The flowchart of patient selection is shown

in Figure 1.
MRI acquisition protocol

All patients underwent breast MRI in a prone position using a 3.0-

T scanner (SIGNA Pioneer, GE Healthcare, Waukesha, WI, USA)

with an 8-channel breast coil. The MRI protocol included axial T1-

weighted imaging, axial T2-weighted imaging with fat suppression,

diffusion-weighted imaging, and dynamic contrast-enhanced (DCE)

imaging. DCE-MRI consisted of a pre-contrast image of conventional

DCE-MRI, followed by 15 phases of ultrafast DCE-MRI, and then five

conventional DCE-MRI. Ultrafast imaging that utilized the DISCO

technique was performed with the start of gadolinium-based contrast

medium injection. Utilizing an MR power injector, gadolinium

diamine (GE Healthcare, Shanghai, China) was administered at a

dose of 0.1 mmol/kg of body weight and a rate of 2.5 ml/s, followed

immediately by a 20-ml saline flush with the same rate. Only the

DISCO images were used for radiomics analysis. The acquisition

parameters are shown in Supplementary Material 1 Table S1.
Image segmentation and feature extraction

The tenth and fifteenth postcontrast DISCO images (hereafter

DISCO-10 and DISCO-15, respectively), which were acquired
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respectively at ~70 and ~105 seconds after contrast was injected,

were selected for analysis since the peak contrast time between the

lesion and the background peaked was approximately 60-120

seconds (35).

For lesion segmentation, three steps were performed: first, two

experienced radiologists (reader 1 with 5 years and reader 2 with 10

years of experience in reading breast images, respectively) reviewed

the images in consensus identifying the location of the targeted lesion

before sketching the region of interest (ROI). Both readers were

blinded to initial radiological reports and the pathologic outcomes.

Second, reader 1 manually sketched the ROI by using ITK-SNAP

software (version 3.6.0, www.itksnap.org). The ROI traced the borders

of each lesion and included the entire enhancing area. This step

yielded a 3-dimensional (3D) ROI. Third, all segmentations were

reviewed by a senior radiologist (reader 3 with more than 15 years of

experience) and revised as necessary by adding or replacing

seed points.

To evaluate the intra- and interobserver consistency of image

segmentation and feature, 50 cases were randomly selected. Reader 1

repeatedly draw the ROIs four weeks later. Reader 3 (with more than

experience of 15 years) who was blinded to pathological information

independently outlined the ROIs according to the same procedure.

The intraclass correlation coefficient (ICC) was used to evaluate intra-

and interobserver agreement and ICC > 0.75 was regarded as a

satisfactory result (20, 36).

In this study, radiomics extraction was performed by using a

freely available software named FeAture Explorer version 5.0 (FAE

5.0) (37). A total of 107 features were automatically extracted from

each lesion ROI, consisting of 18 histogram features, 14 shape

features, and 75 texture features. The texture features included gray

level co-occurrence matrix (GLCM) (24 features), gray-level

dependence matrix (GLDM) (14 features), gray level run length

matrix (GLRLM) (16 features), gray level size zone matrix

(GLSZM) (16 features), neighboring gray-tone difference matrix

(NGTDM) (5 features). The details of the features are summarized

in Supplementary Material 1 Table S2.
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Feature selection and model development

For feature selection, we performed the principal component

analysis (PCA) with varimax rotation using SPSS software (version

26.0, IBM) and utilized Kaiser’s criterion (eigenvalue > 1) to select the

components for further analysis. Three different kinds of principal

components were obtained from the features of DISCO-10, DISCO-

15, and their combination, respectively (Figure 2).

A multilayer perceptron (MLP) artificial neural network (ANN)

was performed to develop the predictive models using the selected

components as input. The output layer of the model was the

likelihood of malignancy using histological results as the gold

standard. The ANN architecture was determined using an

automatic selection method based on optimal diagnostic efficiency.

The number of units in the hidden layer was set between 1 and 50. To

improve inter-reader comparability, we set a seed of 20220928 as a

random number generator. The training was performed in batch

mode utilizing the scaled conjugate gradient as an optimization

algorithm. The initial lambda was set to 0.0000005, sigma to

0.00005, interval center to 0, and interval offset to 0.5. For stopping

rules, the maximum steps without a decrease in an error of 1, the

minimum relative change in training error of 0.0001, and the

minimum relative change in training error ratio of 0.001 were

adopted. The data of computing prediction error and the number

of training epochs were automatically chosen. The dataset was

randomly split into a training set and a testing set in a ratio of

approximately 7:3. All radiomics models were trained based on the

training set, and then tested based on the testing set. All analyses were

performed using SPSS software (version 26.0, IBM).
Statistical analysis

The receiver operating characteristic (ROC) curve analysis was

performed to assess the diagnostic performance using histopathology

as the reference standard. The area under the curve (AUC),
FIGURE 1

Flowchart of patient selection in this study.
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sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV) were calculated. The exploratory cutoff value

was selected within the training dataset with a sensitivity of

approximately 90% or above and validated using the testing dataset.

When the AUC in the training dataset is significantly higher than in

the testing dataset, the model is assumed to be overfitted. The

differences in AUCs and specificity for different models were

compared using the Delong test and McNemar test, respectively.

All statistical analyses were performed using the statistical software

SPSS version 26.0 (IBM) and MedCalc version 19.8 (MedCalc). P <

0.05 was considered statistically significant.
Results

Population and lesion descriptors

A total of 173 patients (mean age, 43.1 ± 11.7 years; range 18-69

years); with 182 lesions were included in the study. Histopathology

identified 95 (52.2%) benign and 87 (47.8%) malignant lesions,

including invasive ductal carcinoma 68 (78.2%), ductal carcinoma

in situ 14 (16.1%), mucinous carcinoma 4 (4.6%), invasive lobular

carcinoma 1 (1.1%). The mean lesion size was 2.3 ± 1.6 cm. After the

random split, approximately 70% (127/182) of cases were regarded as

the training dataset and 30% (55/182) as the testing dataset. The

detailed results are summarized in Table 1.
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PCA of radiomic features

We obtained excellent intra- and inter-observer consistency in

214 (107 × 2) features and no feature was removed. The mean ICCs

were 0.96 (P < 0.001) and 0.92 (P < 0.001) for intra- and inter-

observer, respectively.

PCA was performed and yielded three categories of principal

components (PC), consisting of eleven PC for DISCO-10, eleven PC

for DISCO-15, and sixteen PC for their combination, respectively.

The PC was utilized as input layers for the multilayer perceptron

ANN. The detailed results of the PCA are summarized in

Supplementary Materials 2–4.
Diagnostic performance of ANN

Figure 3 illustrates the ROC curves of different models within the

training and testing dataset. The AUC of DISCO-10, DISCO-15, and

their combination was 0.817 (95%CI, 0.739-0.880), 0.889 (95%CI,

0.821-0.938), and 0.902 (95%CI, 0.836-0.948) in training dataset and

0.937 (95%CI, 0.838-0.985), 0.915 (95%CI, 0.808-0.973), and 0.956

(95%CI, 0.864-0.993) in the testing dataset, respectively (Table 2).

Compared with the training dataset, the AUC values in the testing

dataset were higher for DISCO-10 (P = 0.012), DISCO-15 (P = 0.625),

and the combined method (P = 0.127), which indicated that

classification models were not overfitted. On the testing dataset, the
FIGURE 2

Flowchart of radiomics analysis in this study. DISCO, Differential sub-sampling with cartesian ordering; PCA, principal component analysis; MLP ANN,
multilayer perceptron artificial neural network.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1074060
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lyu et al. 10.3389/fonc.2023.1074060
combined scheme yielded the highest AUC value compared with the

single sequence radiomics model based on DISCO-10 (P = 0.294), and

DISCO-15 (P = 0.122). DISCO-10 achieved a slightly higher AUC in

comparison with DISCO-15 (P = 0.411). The details of the ANN

architecture are provided in Supplementary Materials 5.
Potential of the ANN to avoid
unnecessary biopsies

In this study, three exploratory cut-off values (> 0.144, > 0.171, >

0.459) predicted probability of malignancy were identified in the

training dataset, yielding the sensitivity of 95.16%, 93.55%, 90.32%,

and the specificity of 20.69%, 38.46%, and 70.77%, respectively

(Table 3, Figure 4).

In the testing dataset, evaluating the diagnostic performance of

the DISCO-10 using the predefined cut-off value (> 0.144) showed a

sensitivity of 96% and a specificity of 63.33%. For the diagnostic

performance of DISCO-15, applying the cut-off value (> 0.171)

resulted in a sensitivity of 96% and a specificity of 70%. When

using the exploratory cut-off value of 0.459 of the combined
Frontiers in Oncology 05
method, the sensitivity and specificity were 96% and 83.33%,

respectively (Table 3, Figure 4). By means of three ANN models,

nineteen of 30, twenty-one of 30, and twenty-five of 30 benign breast

lesions were correctly diagnosed, while leading to one false-negative

diagnosis respectively (Table 3). The combined scheme showed

slightly higher specificity compared with DISCO-10 (P = 0.109) and

DISCO-15 (P = 0.289), but not significantly. The false-negative and

false-positive diagnoses using different ANN models within the

testing set at a sensitivity of 96% are summarized in Table 4.

Representative clinical cases are illustrated in Figure 5.
Discussion

We demonstrated that the investigated ultrafast DCE-MRI-based

radiomics combined with ANN could be used to differentially

diagnose the MR BI-RADS 4 lesions. The constructed classifiers

showed good discriminative performance with the AUC values

ranging from 0.915 to 0.956. Rather than assigning a category that

was only associated with a variable range of malignant tumor rates,

the MLP classifier provided individually predicted likelihood of
BA

FIGURE 3

ROC curves of the ANN for the training (A) and testing (B) datasets.
TABLE 1 Histopathology results in this study.

Histology Training (n = 127) Testing (n= 55)

Malignant 62 (48.8%) 25 (45.5%)

Invasive ductal carcinoma 47 (75.8%) 21 (84%)

Ductal carcinoma in situ 10 (16.1%) 4 (16%)

Mucinous carcinoma 4 (6.5%)

Invasive lobular carcinoma 1 (1.6%)

Benign 65 (51.2%) 30 (54.5%)

Fibroadenomas 34 (52.3%) 19 (63.4%)

Adenosis 15 (23.1%) 8 (26.7)

Papilloma 9 (13.9%) 1 (3.3)

Inflammation 6 (9.2%) 1 (3.3)

Phyllodes tumor 1 (1.5%) 1 (3.3)
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malignancy. Applying the high-sensitivity cutoffs for breast cancer

might have avoided 63.33%-83.33% of all unnecessary biopsies at the

price of one false-negative diagnosis.

Although MR BI-RADS category 4 lesions show varying

malignancy rates, biopsies are usually recommended in clinical

practice, resulting in a substantial number of false positive lesions

and a waste of medical resources. Therefore, methods for improving

pre-interventional lesion assessment are warranted. Radiomics is

increasingly considered an important diagnostic tool, providing

quantitative multi-dimensional features extracted from imaging

data that may reflect the potential phenotype of tumor disease (17).

Many studies have shown that radiomics is useful in evaluating MR

BI-RADS 4 lesions. Hu et al. (32) developed a radiomics nomogram

based on an apparent diffusion coefficient map to differentially

diagnose BI-RADS 4 findings and found a moderate diagnostic

performance with an AUC of 0.79, which was lower compared to

our results. The possible reason may be that the ultrafast DCE series

could provide more information in differentiating breast lesions
Frontiers in Oncology 06
compared with ADC (38). Zhang et al. (34) and Cui et al. (33)

applied MRI-based radiomics models to predict the benignity and

malignancy of BI-RADS 4 lesions and yielded a good diagnostic

efficiency with the AUC of 0.939 and 0.94, respectively, which were

comparable to our results. While in this study, the radiomics were

extracted from ultrafast DCE-MRI, which appeared to reduce greatly

magnet time.

Avoiding unnecessary biopsies remains a hot topic in the clinical

management of breast lesions. Currently, a clinical decision rule

named the Kaiser score has been proposed to assess breast lesions,

with improved diagnostic accuracy and the potential to avoid

unnecessary biopsies (14, 39–43). Although this method may

simplify the image interpretation compared with BI-RADS

assignment, differences resulting from experience at different levels

(44) and inter-observer variation (16) remain. Interestingly, our

results showed that there was no significant difference in the

diagnostic performance between the radiomics models and the

Kaiser score (Supplementary Materials 6). This indicated that the
TABLE 3 Diagnostic performance of the ANN models.

Criterion Sensitivity (%)
(TP/TP + FN)

95% CI Specificity (%)
(TN/TN + FP)

95% CI PPV NPV

Training (n = 127)

DISCO-10 >0.144 95.16
(59/62)

86.5-99.0 27.69
(18/65)

17.3-40.2 55.7 85.7

DISCO-15 >0.171 93.55
(58/62)

84.3-98.2 38.46
(25/65)

26.7-51.4 59.2 86.2

Combined >0.459 90.32
(56/62)

80.1-96.4 70.77
(46/65)

58.2-81.4 74.7 88.5

Testing (n = 55)

DISCO-10 >0.144 96.00
(24/25)

79.6-99.9 63.33
(19/30)

43.9-80.1 68.6 95.0

DISCO-15 >0.171 96.00
(24/25)

79.6-99.9 70.00
(21/30)

50.6-85.3 72.7 95.5

Combined >0.459 96.00
(24/25)

79.6-99.9 83.33
(25/30)

65.3-94.4 82.8 96.2
frontier
Comparison of specificity for different models within the testing set: Combined vs. DISCO-10 (P = 0.109); Combined vs. DISCO-15 (P = 0.289); DISCO-10 vs. DISCO-15 (P = 0.727).
TP, true positive; FN, false negative; TN, true negative; FP, false positive; CI, confidence interval; PPV, positive predictive value; NPV, negative predictive value; DISCO, Differential sub-sampling with
cartesian ordering.
TABLE 2 Comparison for AUCs of different models within the training and testing set.

AUC SE 95%CI

Training (n = 127)

DISCO-10 0.817 0.037 0.739 - 0.880

DISCO-15 0.889 0.030 0.821 - 0.938

Combined 0.902 0.025 0.836 - 0.948

Testing (n = 55)

DISCO-10 0.937 0.030 0.838 - 0.985

DISCO-15 0.915 0.044 0.808 - 0.973

Combined 0.956 0.025 0.864 - 0.993
Pairwise comparison of ROC curves within the testing set: Combined vs. DISCO-10 (P = 0.294); Combined vs. DISCO-15 (P = 0.122); DISCO-10 vs. DISCO-15 (P = 0.411).
AUC, area under the curve; SE, standard error; CI, confidence interval.
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radiomics-based machine learning model might provide comparable

results compared with the Kaiser score method while not required to

perform image feature interpretation.

The exploratory cutoff at high sensitivity may be used to evaluate

the number of avoidable false-positive biopsies (15, 16, 45). Utilizing

the radiomics derived from ultrafast DCE-MRI combined with the

MLP ANN classifier, we identified that about 63.33%-83.33% of

unnecessary biopsies might have been avoided in the testing dataset

while maintaining a high sensitivity (96%, 24/25). This was an

encouraging result, which had the potential to provide more

valuable information to support clinical decision-making.

Currently, abbreviated breast MRI, which can substantially

shorten examination and reading times, has been proposed for

increasing access to screening for women at average risk of breast

cancer. Many studies have demonstrated that abbreviated MRI can

improve cancer detection in women with dense breasts (46, 47).

However, this protocol may result in unnecessary biopsies because of

the lack of kinetics information provided by DCE-MRI. Ultrafast

imaging can fill this gap. The features including maximum slope and

time to enhancement derived from ultrafast sequences have shown

important value in improving tumor characterization, identifying
Frontiers in Oncology 07
prognostic factors, and assessing treatment (29, 31, 48, 49). But the

calculation of these parameters requires commercial software that

may not be universally available. In the present study, we explored a

more intuitive and easy-to-apply method in a representative patient

population and analyzed its clinical utility. To make the proposed

approach available to every physician, open-source software was used

to perform radiomics extraction from the initial DICOM images.

Exporting the learned weights of a well-trained ANN classifier into

excel would allow our findings to be quickly integrated into clinical

workflows and make it easy to obtain personal predictions of the

malignant rates in patients with MR BI-RADS category 4 lesions.

However, it should be noted that this is only a preliminary study in

the investigated setting and larger patient cohorts are required to

validate the results.

While DISCO-15 might have avoided more unnecessary biopsies

compared with DISCO-10, not significantly. And the former showed

a higher AUC value. In addition, combining DISCO-15 features with

DISCO-10 did not yield significantly improved AUC and specificity.

This might suggest that the late postcontrast phase of ultrafast DCE-

MRI could provide little information for significantly improving

diagnostic performance.
TABLE 4 False-negative and false-positive diagnoses using different models within the testing set at high level of sensitivity (96%).

False negatives n False positives n

DISCO-10 1 11

Invasive ductal carcinoma 1 Fibroadenoma 7

Adenosis 3

Inflammation 1

DISCO-15 1 9

Invasive ductal carcinoma 1 Fibroadenoma 8

Adenosis 1

Combined 1 5

Invasive ductal carcinoma 1 Fibroadenoma 4

Adenosis 1
frontiersin
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FIGURE 4

Estimated proportion of sensitivity, specificity, PPV, and NPV (y-axis) at different predicted probability thresholds (x-axis) for training dataset (A-C) and
testing dataset (D-F). (A-C) The vertical blue lines indicate the cutoff values of 0.144, 0.171, and 0.459 at high sensitivity (>90%) for DISCO-10, DISCO-15,
and combined methods within the training dataset, respectively. (D-F) The vertical blue lines indicate the diagnostic performance within the testing
dataset using the predefined cutoff values. PPV, positive predictive value; NPV, negative predictive value.
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There are several limitations in this study. First, the number of

cases was relatively small, and it was a retrospective study merely

performed in our institution. In order to validate the robustness of the

classifier, larger datasets from multicenter are needed in further

research. Second, only ultrafast imaging was used to perform
Frontiers in Oncology 08
radiomics analysis, other sequences, such as DWI, T2WI, and high-

spatial-resolution DCE sequences were not included and required

further investigation. Third, we analyzed the features of BI-RADS 4

lesions, and other category lesions consisting of category 3 or 5 were

not included. We believe that the proposed ANN classifier might also
FIGURE 5

False-negative and false-positive results. (A, B) False-negative case: A 51-year-old female patient: MRI showed an irregular lesion in the left breast (white
arrow. The lesion demonstrated heterogeneous internal enhancement (A, B). (A) DISCO-10, (B) DISCO-15. The ANN classifiers predicted a low likelihood
of malignancy (14.3% for DISCO-10, 4.2% for DISCO-15, and 15.2% for combined, respectively). Histology revealed an invasive ductal carcinoma. (C–F)
False-positive cases. (C, D) A 34-year-old female patient: MRI showed an irregular lesion in the right breast (blue arrow). The lesion demonstrated
heterogeneous internal enhancement (C, D). (C) DISCO-10, (D) DISCO-15. The ANN classifiers predicted a high likelihood of malignancy (65.6% for
DISCO-10, 64.0% for DISCO-15, and 75.4% for combined, respectively). Histology revealed an adenosis. (E, F) A 35-year-old female patient: MRI showed
an irregular lesion in the left breast (red arrow). The lesion demonstrated heterogeneous internal enhancement (E, F). (E) DISCO-10, (F) DISCO-15. The
ANN classifiers predicted a high likelihood of malignancy (78.0% for DISCO-10, 97.2% for DISCO-15, and 78.7% for combined, respectively). Histology
revealed a fibroadenoma.
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be beneficial in evaluating these lesions and we are currently

examining this assumption (4). In this study, the risk factors such

as patient age, personal disease history, and gene mutation that are

highly associated with breast cancer were not included. The fusion of

these features with principal component analysis might yield more

stable and trustable diagnostic performance.

In conclusion, our preliminary results indicated that radiomics

extracted from ultrafast DCE-MRI imaging combined with the

multilayer perceptron artificial neural network could differentially

diagnose MR BI-RADS category 4 breast lesions with excellent

diagnostic performance, and have the potential to avoid more than

63.33% of unnecessary biopsies. Further investigation with larger

patient cohorts is warranted to validate our results in the future.
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