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Backgroud: Oxygen metabolism is an important factor affecting the development

of tumors, but its roles and clinical value in Colorectal cancer are not clear. We

developed an oxygen metabolism (OM) based prognostic risk model for colorectal

cancer and explored the role of OM genes in cancer.

Methods: Gene expression and clinical data obtained from The Cancer Genome

Atlas, Clinical Proteomic Tumor Analysis Consortium databases were consider as

discovery and validation cohort, respectively. The prognostic model based on

differently expressed OM genes between tumor and GTEx normal colorectal

tissues were constructed in discovery cohort and validated in validation cohort.

The Cox proportional hazards analysis was used to test clinical independent.

Upstream and downstream regulatory relationships and interaction molecules

are used to clarify the roles of prognostic OM genes in colorectal cancer.

Results: A total of 72 common differently expressed OM genes were detected in

the discovery and validation set. A five-OM gene prognostic model including LRT2,

ATP6V0E2, ODC1, SEL1L3 and VDR was established and validated. Risk score

determined by the model was an independent prognostic according to routine

clinical factors. Besides, the role of prognostic OM genes involves transcriptional

regulation of MYC and STAT3, and downstream cell stress and inflammatory

response pathways.

Conclusions: We developed a five-OM gene prognostic model and study the

unique roles of oxygen metabolism in of colorectal cancer
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1 Introduction

Colorectal cancer has always been the third largest malignant

tumor in the world (1). Although the treatment level has been

significantly improved in recent years, the morbidity rate remains

high and the 5-year survival rate is still low due to the complex and

elusive mechanism of cancer formation and development (2, 3).

Therefore, finding suitable prognostic markers and new therapeutic

targets is still an urgent problem to be solved in the treatment of

colorectal cancer

Oxygen (O2) is an important catalyst for mitochondria to produce

ATP and other intracellular reactions. Hypoxia can induce adaptive

responses at multiple cell and body levels to enable individuals to

maintain normal metabolism and life activities in a hypoxic

environment (4). When in hypoxia environment, cancer cells utilize

O2-sensing pathways like HIF transcriptional regulators, mTOR and

mitochondrial ROS regulation, to overcome oxygen/nutrient

deprived microenvironment stresses (5, 6). HIF stabilization and

activation are highly responsive to hypoxia and redox stresses, as

well as genetic alterations in oncogene or tumor suppressor signaling

pathways to support tumor cell survival, growth, and proliferation (5,

7). Some regulators of HIF activity like ROS and cellular ascorbate

levels are associated with weaker invasive ability in colorectal cancers

(8). A common feature of tumor cells is that even under the normal

oxygen condition, increased rates of glycolysis (the “Warburg effect”)

which is the critical step for the biosynthesis of ATP and other

compounds essential for cell growth and division (6). Additionally,

hypoxia has been shown to be associated with therapeutic resistance,

including radiation therapy and cytotoxic drugs (9, 10). As an

attractive therapeutic target in cancer (11), drugs target on HIFs

often lack of specificity on inhibiting subunit (12). Thus, finding

credible molecular markers and drug targets related to oxygen

metabolism is still challenging.

In recent years, cancer omics research reveals several molecular

markers for prognosis monitoring and target therapy of colorectal

cancer (13, 14). However, as far as we know, molecular markers

related to oxygen metabolism have not been studied in colorectal

cancer. A previous study established an eleven gene diagnostic model,

and this metadata gene signature had been developed to have an

excellent ability to predict diagnosis of TCGA colon cancer patients

(15). Another study (16) found that a signature based on 15

metabolites generated from energy supply, macromolecules and

oxidative stress has great prognosis potential for colon cancer. The

genes significantly correlated to the level of oxygen stress are GPX1,

GSTP1, GSR, GSS, GGCT, ANPEP, CAT and ERCC2. Among them,

the genes related to oxygen metabolism, such as GPX1, have been

included in our gene set. Different from us, the author focused on

metabolites, and did not study whether the expression of these genes

in tumors was different from normal tissues (16). These studies

suggest us that the oxygen metabolism is very likely to have high

prognostic and therapeutic value in the colon cancer, but it has not

been studied in colorectal cancer so far. So, our research focused on

genes related to oxygen metabolism. We found more than 3000 genes

related to oxygen metabolism (not just the oxygen metabolism

pathway, see methods). Then we determined that the signature of

five oxygen metabolism genes, such as VDR, has the highest

prognostic potential through DEG analysis, modeling and
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evaluation of prognosis performance. In order to study the possible

mechanism of these genes in colon cancer, we further conducted a

detailed functional analysis of each of them to improve the reliability

and reference of our research.

In this report, we investigated the expression profile of oxygen

metabolism genes, developed and validated a reliable prognostic

model of colorectal cancer using differentially expressed oxygen

metabolism (OM, Table 1) genes. In addition, we set up a protein

regulatory network of prognostic genes and explored its potential role

in tumorigenesis. This study comprehensively uncovered the

prognostic and therapeutic value of oxygen metabolism genes in

colorectal cancer patients.
2 Materials and methods

2.1 Sample collection

The gene expression data and clinical information of Colorectal

cancer patients (n=288) downloaded from TCGA database (https://

portal.gdc.cancer.gov/) were used as discovery cohort. The CPTAC-2

prospective data set including gene expression and clinical data of

Colorectal cancer patients (n=110) obtained from cBioPortal (https://

www.cbioportal.org) were used as validation cohort. Gene expression

of Colorectal tissues obtained from GTEx database (https://

gtexportal.org/home/)was used as normal control in the

downstream analysis (n=253).
TABLE 1 List of abbreviation used in this paper.

Abbreviation Definition

OM oxygen metabolism

TCGA The Cancer Genome Atlas

GTEx Genotype-Tissue Expression

DEG Differential expressed oxygen metabolic gene

MSigDB Molecular SignaturesDatabase

GSEA gene set enrichment analysis

OS overall survival

LASSO Least absolute shrinkage and selection operator

RS Risk score

ROC Receiver operating characteristic curve

AUC area under the ROC

PPI protein-protein interaction

TF transcription factors

K-M Kaplan-Meier

KEGG Kyoto Encyclopedia of Genes and Genomes

GO Gene Ontology

MCODE Molecular Complex Detection
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2.2 Identification of differentially expressed
metabolic genes

We first obtained pathways and biological processes from

Molecular Signatures Database (MSigDB) C2 curated gene sets on

gene set enrichment analysis (GSEA) website. Then, a total of 3524

genes in these gene sets that associated with oxygen metabolism were

identified as oxygen metabolism related genes in our study. Differential

expressed oxygen metabolic genes (DEG) between tumor and normal

samples were analyzed in discovery and validation cohort using ‘limma’

R package, respectively. Genes with FDR< 0.05 and |log2
(FoldChange)| > 1 were extracted as differentially expressed genes.

The “Pheatmap” and “ggplots” package was used to plot heatmaps and

volcano maps for DEGs. Venn plots of up- and down-regulated DEGs

between discovery and validation cohort were achieved using a Venn

online tool (https://bioinformatics.psb.ugent.be/webtools/Venn/)
2.3 Construction of the prognostic model

DEGs significantly associated with overall survival (OS) in the

entire discovery cohort were identified using univariate Cox

proportional hazards regression analyses. A P-value ≤.05 was

considered statistically significant. Then, we performed the least

absolute shrinkage and selection operator (LASSO) penalty Cox

regression analysis to eliminate genes that might overfit the model

(Combined-24). Finally, we calculated risk score (RS) for each patient

by a linear combination of Cox coefficient and expression of optimal

prognostic DEGs identified by multivariate Cox analysis. The risk

score calculation formula was as following:

RS = oN

1
(Ei� Ci)

Ei and Ci represented ith gene expression and corresponding

coefficient value. N is the number of optimal prognostic DEGs. Patients

with RS values greater than the median were defined as high-risk groups,

otherwise as low-risk groups. Kaplan-Meier analysis was conducted using

the “survival” and “survminer” R package. Receiver operating characteristic

curve (ROC) and the “area under the ROC” (AUC) analysis were used to

evaluate the performance of the prognostic model.
2.4 Validation of the prognostic model

We used validation cohort (CPTAC) to verify the prognostic risk

model. RS of each patient in validation cohort was calculated using

formula mentioned above based prognostic DEGs and coefficient

identified in discovery cohort. Survival and ROC analysis were used to

validate the performance of prognostic risk model.
2.5 Independent prognostic value of
prognostic model

To assess the independent prognostic value of oxygen metabolic gene-

based risk models in colorectal cancer, we performed both univariate and

multivariate analyses of prognostic factors using Cox proportional hazards
Frontiers in Oncology 03
regression. Age, gender, pathological stage and TNM stage were treated as

covariates. Factors with p value< 0.05 in both univariate and multivariate

Cox analysis were defined as independent prognostic indicators.
2.6 Protein-protein interaction network
based on prognostic genes

We constructed the PPI network of prognostic oxygen-metabolic

genes using the PathwayCommon (https://www.pathwaycommons.

org/) PPI database. Analysis of functional interactions between

proteins was performed in order to elucidate the potential roles of

prognostic genes in colorectal cancer tumorigenic process. The PPI

networks were visualized using the Cytoscape software.
2.7 Hub prognostic genes and their
upstream transcription factors

The hub genes were identified using DMNC, MNC, Degree, EPC,

BottleNeck, EcCentricity, Closeness, Radiality, Betweenness, Stress

and ClusteringCoefficient algrithms with Cytoscape’s plug-in

cytoHubba in the PPI network. Then, we obtained all possible

transcription factors (TFs) of hub gene from ChiIP seq

experimental data of human samples in the ENCODE project, and

identified upstream TFs that play a role in colon cancer by calculating

the expression correlation between these TFs and hub genes in our

tumor samples. The correlationship of gene expression between hub

genes and their TFs was conducted using the spearman method. The

most relevant TF-hub gene relationship was shown by scatter plots.
3 Results

3.1 Identification of differentially expressed
and survival-related OM genes

The workflow of this study is shown in Figure 1. Tumor samples

(n=288) obtained from the TCGA database were regarded as the

discovery cohort, while tumor samples (n=102) obtained from the

CPTAC project were regarded as validation cohort. We compared

expression levels of 3524 oxygen metabolic genes between tumor and

normal samples in discovery set and validation set, respectively. The

distributions of all genes including identified DEGs according to the

two dimensions of -log10(FDR) and log2(FoldChange) were displayed

by volcano maps (Figures 2A, B). It was found that there were 262 up-

regulated and 188 down-regulated genes in the discovery set, 175 up-

regulated and 27 down-regulated genes in the validation set

(Figure 2C). To obtained the more reliable prognostic gene

signature, we established the prognostic model with 72 DEGs up-

regulated in both the discovery set and the validation set (Figures 1,

2D). We didn't obtaied reliable down-regulated DEGs which were

identified in the discovery and validation cohorts Figure 2E)

Univariate Cox regression analysis revealed that 95 OM DEGs

were significantly (P<.05) associated with OS in the discovery cohort.

Among them, 73 DEGs were associated with good OS, while 22 DEGs

were associated with bad OS.
frontiersin.org

https://bioinformatics.psb.ugent.be/webtools/Venn/
https://www.pathwaycommons.org/
https://www.pathwaycommons.org/
https://doi.org/10.3389/fonc.2023.1072941
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Yuan et al. 10.3389/fonc.2023.1072941
3.2 Construction of a five-OM gene
prognostic model

Based on the discovery cohort, we obtained eight candidate

prognostic OM genes using Lasso Cox regression analysis. Then, we

acquired five optimal genes, including FLRT2 (Fibronectin Leucine

Rich Transmembrane Protein 2), ATP6V0E2 (ATPase H+

Transporting V0 Subunit E2), ODC1 (Ornithine Decarboxylase 1),

SEL1L3 (SEL1L Family Member 3) and VDR (Vitamin D Receptor).

Four of these genes were high hazard genes, and one gene (SEL1L3)

was low hazard gene, and all these genes were up-regulated DE genes

(Table 2). The risk score of each tumor sample was calculated as

follows: risk score = (1.0232× FLRT2exp) + (1.0046 × ATP6V0E2exp) +

(0.9806 × SEL1L3exp) + (1.0015 ×ODC1exp) + (1.0493 ×VDRexp).

Based on the optimized risk score threshold, all colorectal cancer

patients of discovery cohort were divided into a high-risk group (n

= 30) and a low-risk group (n = 252). The K-M survival analysis

shown those OS times of high-risk patients were significantly longer

than that of low-risk patients (p< 0.001) (Figure 3A). The median

survival time of patients in the high-risk group was shorter than 5

years, while that of patients in the low-risk group was longer than 10

years. From the perspective of survival rate, the 1-year, 3-year and 5-

year survival rates of the high-risk group were only 72%, 63% and

35% respectively, while the corresponding survival rates of the low-

risk group reached 91%, 85% and 71% respectively. In addition, the
Frontiers in Oncology 04
AUC values of the five-OM gene prediction model were 0.753, 0.674,

and 0.714 when predicting one -, three -, and five-year OS,

respectively (Figure 3B). To find out whether all 5 prognosis OM

genes are associated with advanced stages and therefore are associated

with worse prognosis, we analyzed the OS time of patients with high-

and low-RS from tumor stage I, II, III and IV. Results indicated that

the OS time of patients with high RS was significantly shorter than

that of patients with low RS in stage II and IV, which proved the

prognostic effectiveness of our 5-OM gene signature in these two

stages. But in stage I and III, there was no significant difference in the

OS time of patients with high- and low-RS, suggesting the prognostic

limitations of the model in these two stages (Figure S1).
3.3 Validation of the prognostic model

We validated the performance of the model using the validation

cohort. Patients in validation cohort were divided into high- and low-

risk groups based on RS threshold determined in discovery cohort.

Results indicated that 12 patients and 90 patients were categorized as

high- and low- risk groups, respectively. K-M survival curves were

significant different between the two risk groups (p < 0.001)

(Figure 3C) and the AUC values at 1- and 3-year were 0.974 and

0.958 in the validation cohort, respectively (Figure 3D). At the same

time, the RSs of patients in the high-risk group were higher than those
FIGURE 1

The workflow of this study. The prognostic model based on oxygen metabolism genes was established and validated in two independent CRC cohorts,
and the roles of prognostic genes in CRC was further analyzed.
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in the low-risk group, which proved that the model had a good

performance in the prognosis evaluation and monitoring of

colorectal cancer.
3.4 Independent prognostic ability of
prognostic model

To assess whether the RS determined by five oxygen-metabolic

prognostic model is an independent prognostic indicator for patients,

we carried out a univariate Cox analysis to assess the impact of risk

scores and clinicopathological parameters on prognosis, such as age,

gender, histological type, longest dimension, pathological stage and so

on. We found that the longest dimension, lymphatic invasion,

pathological stage and risk score were associated with poor

outcomes of prognosis in patients (Table 3). Therefore, these

characteristics were included in a multivariate Cox regression

analysis, which indicated that age, pathological stage and the risk

score estimated based the prognostic model was an independent
Frontiers in Oncology 05
prognostic factor for colorectal cancer (Table 3). This result indicates

that there is significant potential for these oxygen-metabolic genes to

predict the prognosis outcome of patients with the colorectal cancer.
3.5 Transcriptional regulation of prognostic
oxygen-metabolic genes

We investigated the regulatory relationships between TFs and

prognostic genes. Firstly, we obtained upstream TFs of each gene

from the ChIP-Seq experiment in the ENCODE project (https://www.

encodeproject.org). Then, we analyzed expression correlation of

between TFs and genes in TCGA tumor samples to validate the TF

regulation in vivo. We found that 11 cancer-related TFs including

CTBP2, E2F1, EP300, ETS1, FOS, JUN, MYC, RELA, STAT1, STAT3

and TCF7L2 were significantly correlated with our prognostic genes.

Among them,STAT3 and MYC were significantly correlated with all

prognostic genes, in which positively correlated with FLRT2, ODC1,

SEL1L3 and VDR, and negatively correlated with ATP6V0E2
TABLE 2 Five prognostic oxygen-metabolic genes.

Genes HR CI(95%)
Lower

CI(95%)
Upper

pvalue

FLRT2 1.0232 1.0008 1.0461 0.0424

ATP6V0E2 1.0046 1.0015 1.0076 0.0037

ODC1 1.0015 1.0004 1.0026 0.0059

SEL1L3 0.9806 0.9690 0.9923 0.0012

VDR 1.0493 1.0262 1.0731 0.0000
fron
A B

D EC

FIGURE 2

Different expressed gene analysis between tumor and normal samples. Volcanic map showing the difference of gene levels between tumor and normal
samples in the TCGA cohort (A) and CPTAC cohort (B). Genes with |Log2(FC)| >1 and adjust pvalue<0.01 were defined as different expressed genes.
(C), Proportion and number of significantly up-regulated and down-regulated genes obtained from two cohort samples. Venn diagrams of up-regulated
genes (D) and down-regulated genes (E) in TCGA and CPTAC samples.
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(Figure 4).These results indicates that the prognostic genes we

screened are important downstream molecules of classic cancer

driver genes like STAT3 and MYC.
3.6 Functional analysis of prognostic
oxygen-metabolic genes

In order to study the possible function and mechanism of

prognostic oxygen metabolic genes in colorectal cancer, we

screened KEGG cancer pathway genes that can interact with

prognostic genes, and then used the metascape to analyze the gene

ontology (GO) and pathway enrichment of interacting genes It was

found that the interaction genes were significantly enriched in GO

terms including “response to inorganic substance”, “response to

xenobiotic stimulus”, “response to oxidative stress”, and the

enriched pathways were “transport of small molecules”, “ion

channel transport”, “mineral absorption” and so on (Figure 5A). To

further capture the relationships between these enriched terms, we

constructed a network diagram using Metascape analysis. Spots

represented GO terms or pathways. Larger and connected points

represented the presence of more similar genes between the terms or

pathways. The “Transport of small molecules” pathway contained

many genes participating in Ion channel transport, while the

“response to oxidative stress” gene set contained many genes

participating in cell stress and inflammatory response terms or
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pathways (Figure 5B). In addition, the PPI network showed a

relationship between different genes and proteins in two sub-

modules (Figure 5B). The “Fluid shear stress and atherosclerosis”

sub-module seeded by the MYC included IL1B, TP53, PIP, MYC, IL2,

NFKBIA. AGT, CXCL8, BLM and MMP2, which can identify the

structural components of the extracellular matrix to provide tensile

strength; the “extracellular matrix organization” sub-module included

SPP1, IGFBP4, GAS6, MXRA8, and SPARCL1, which play a central

role in vascular biology; the “Signaling by Interleukins” sub-module

seeded by the F2 included KNG1, KRT6B, PARP1, TNFRSF1A.

KRT2, ZBTB16. ABCB1, BCL2, KRT1. PML, C3, TXN, KRT6C, F2,

PTK2, TNF, which could enable HIF-mediated inflammatory

response during cancer development (Figure 5C).
4 Discussion

The colorectal cancer is the malignant tumor with the third

highest incidence rate and the second highest mortality rate in the

world (17). In 2020 alone, 1.9 million people were diagnosed, of which

0.9 million died (1). Several prognostic models have been established

in colorectal cancer (18–20). However, there are some drawbacks in

currently existing prognostic risk models of colorectal cancer. Firstly,

the sample sizes are insufficient to represent the whole disease

population, which makes the risk score summarized from the level

of gene expression uncertain for clinical personalized prognosis.
A B

DC

FIGURE 3

Performance of prognostic risk model in discovery and validation cohort. Kaplan-Meier curves shown the overall survive among patients classified into
high- and low- RS groups in discovery (A) and validation (C) cohorts. The difference of survival time between the two groups was tested by log rank
method. ROC curves and their AUC value shown the performance of the prognostic risk model in predicting the one, three and five years survive time in
discovery (B) and validation (D) cohort.
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Because patients’ risk scores often depend on other samples used for

normalization data (21). Secondly, most of the existing prognostic

models are based on the expression of all genes. Because there is no

focus on a certain biological process, it is difficult to study the

relationship between prognostic genes and explain the biological

mechanism behind the prognostic model. Thirdly, those prognostic

models based on non-coding genes or omic modification features

have the problem of high detection cost and easy to produce bias

during applications (18, 19). Several studies have reported the roles of

the oxygen metabolism in tumorigenesis and development of cancer

(6, 7, 22). In this study, we built and validated a prognostic model

using five oxygen metabolic genes higher expressed in tumor samples.

The survival time of high-risk patients predicted by the model is

significantly shorter than that of low-risk patients. At the same time,

the model is good in predicting the survival time of patients stratified
Frontiers in Oncology 07
by survival time. Additionally, Multivariate cox analysis indicates that

the model can predict overcome of CRC patients independently when

mixed with age, stage, pathological grade and other factors. So, we

demonstrate the important but long neglected clinical prognostic

value of OM genes in CRC.

Five oxygen metabolic genes named FLRT2, ATP6V0E2, ODC1,

SEL1L3 and VDR were prognostic genes determined by the

prognostic model. The expression of these genes was all higher in

tumor than in normal tissues, which might play important roles in

CRC progression and contribute to the early diagnosis. The FLRT2 is

highly expressed in tumor neovascularization and forms abnormal

endothelial adhesion to prevent oxidative stress of cells. Its expression

level is positively correlated with the short-term survival in the

advanced colorectal cancer (23). The expression of FLRT2 is

dependent on oxidative stress but not on VEGF (24), indicates that
A B D E

F G IH J

C

FIGURE 4

Expression relationships between prognostic OM genes and upstream TFs. Significant correlations of gene expression between five prognostic OM genes
and their common upstream TFs: STAT3 (A-E) and MYC (F-J).
TABLE 3 Cox regression analyses of RS and clinicopathological parameters related to prognosis in CRC patients.

Variables
OS

Univariate analysis Multivariate analysis

HR (95% CI) P HR (95% CI) P

Gender(male/female) 1.160 (0.495-2.717) .733

Age (>70/≤70) 1.013 (0.990-1.038) .072 2.205 (1.200-4.052) .011

Longest_dimension
(>1 cm/≤ 1 cm)

2.275 (1.296-3.994) .004 1.835 (1.295-3.650) .067

Histological type
Adenocarcinoma
Mucinous

1.323 (0.526-3.328) .552

Lymphatic_invasion (Yes/No) 1.000 (1.081-3.281) .025 1.984 (1.043-3.601) .051

pathologic_stage
(I/II/III/IV)

1.516 (1.156-1.987) .003 1.962 (1.196-3.684) .031

number_of_lymphnodes 1.017 (0.913-1.038) .242

postoperative_rx_tx 1.032 (0.826-1.328) .552

Risk score (high/low) 2.497 (1.380-4.516) .002 1.896 (1.004-3.481) .021
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FLRT2 may play an important role in oxygen metabolism. The

ATP6V0E2 might promote cancer cell death and tumor suppression

with high levels of ROS (reactive oxygen species) through inhibition

of lysosomal function (25). ODC1 activity is frequently elevated in

cancer through deregulation of MYC, resulting in higher polyamine

content to support rapid tumor cell proliferation (26). A study has

shown that the expression of SEL1L3 is elevated in endometrial

cancer. In white patients with low mutation load, the expression

level of this gene is related to the patient’s recurrence free productivity

and is considered as a potential driver and tumor marker of

endometrial cancer (27).. SEL1L3 was also positively correlated with

reactive oxygen species such as hydrogen peroxide (28). An elegant

series of studies found that the VDR signaling affect tumor

development by the delicate interplay with E-cadherin and the Wnt

signaling pathway (29–32). All five identified prognostic genes are

proved to play certain roles in tumors, which prove the reliability of

our prognosis model in biological sense.

Transcriptional regulation and functional analysis gives us an in-

depth understanding of the possible molecular mechanisms behind

the prognostic model. An upstream regulatory factor MYC and

STAT3 are constitutively activated in many cancers and plays a

pivotal role in tumor growth and metastasis by regulating cell

proliferation, invasion, migration, and angiogenesis (33–36). Myc

promotes the transcription of STAT3 (37), then hypoxic stress

markedly increased phosphorylated STAT3 level in a time-

dependent fashion, and activated STAT3 was translocated into the

nucleus (38). After that, the lysosomal activation was blocked by

down-regulating ATP6V0E2 through the JAK2-STAT3-VEGFA
Frontiers in Oncology 08
singling pathway, to inhibit cell apoptosis in human colon cancer

(25). SEL1L3 which is a target of transcript factor STAT3 and MYC

plays important roles in oxygen metabolism related pathway “

SUNG_METASTASIS_ STROMA_UP”. Downstream interaction

genes are mainly enriched in angiogenesis and inflammatory

response in tumors. Angiogenesis is a critical step in cancer

progression and is considered one of the hallmarks of cancer, and

validated as an independent prognostic factor and the culprit of drug

resistance in a variety of solid malignancies including colorectal

cancer (39–42).

This study has several advantages. Firstly, we constructed a

prognostic model based on DE OM genes in colorectal cancer for

the first time. Secondly, the prognostic model was proved to be

accurate and reliable using an independent cohort. Thirdly, the risk

score determined by the model could be used as an independent

prognostic index in predicting OS. Finally, we found that five

prognostic OM genes regulate angiogenesis and inflammatory

response in colorectal cancer. However, in our study, the RNA-seq

data was used to obtain the gene expression levels in tumor and

normal tissues, and determined the risk thresholds of patients with a

prognosis model based on expression levels of the gene signature.

Studies (21, 43, 44) have shown that RNA-seq data set-generated risk

thresholds cannot be directly applied to independent microarray data

sets because the gene expression levels are sensitive to systematic

biases of microarray measurements owing to batch effects and

platform differences. We also did not verify our prognostic risk

model at the protein level in an independent cohort. So, we have

started to collect patients and CRC samples so that we can obtain the
A B

C

FIGURE 5

Enrichment and interact network of prognostic OM genes participating. (A) Bar graph of terms enriched across prognostic OM genes and their
interacting genes. (B) Network of enriched terms colored by cluster ID, where nodes that share the same cluster ID are typically close to each other.
(C), Densely connected network components identified by the Molecular Complex Detection (MCODE) algorithm.
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protein levels by IHC and verify the risk model in an independent

cohort in the future.
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