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Background: Early diagnosis for a-fetoprotein (AFP) negative hepatocellular

carcinoma (HCC) remains a critical problem. Metabolomics is prevalently

involved in the identification of novel biomarkers. This study aims to identify new

and effective markers for AFP negative HCC.

Methods: In total, 147 patients undergoing liver transplantation were enrolled from

our hospital, including liver cirrhosis patients (LC, n=25), AFP negative HCC

patients (NEG, n=44) and HCC patients with AFP over 20 ng/mL (POS, n=78). 52

Healthy volunteers (HC) were also recruited in this study. Metabolomic profiling

was performed on the plasma of those patients and healthy volunteers to select

candidate metabolomic biomarkers. A novel diagnostic model for AFP negative

HCC was established based on Random forest analysis, and prognostic biomarkers

were also identified.

Results: 15 differential metabolites were identified being able to distinguish NEG

group from both LC and HC group. Random forest analysis and subsequent

Logistic regression analysis showed that PC(16:0/16:0), PC(18:2/18:2) and SM

(d18:1/18:1) are independent risk factor for AFP negative HCC. A three-marker

model of Metabolites-Score was established for the diagnosis of AFP negative HCC

patients with an area under the time-dependent receiver operating characteristic

curve (AUROC) of 0.913, and a nomogram was then established as well. When the

cut-off value of the score was set at 1.2895, the sensitivity and specificity for the

model were 0.727 and 0.92, respectively. This model was also applicable to

distinguish HCC from cirrhosis. Notably, the Metabolites-Score was not

correlated to tumor or body nutrition parameters, but difference of the score

was statistically significant between different neutrophil-lymphocyte ratio (NLR)

groups (≤5 vs. >5, P=0.012). Moreover, MG(18:2/0:0/0:0) was the only prognostic
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biomarker among 15 metabolites, which is significantly associated with tumor-free

survival of AFP negative HCC patients (HR=1.160, 95%CI 1.012-1.330, P=0.033).

Conclusion: The established three-marker model and nomogram based on

metabolomic profiling can be potential non-invasive tool for the diagnosis of

AFP negative HCC. The level of MG(18:2/0:0/0:0) exhibits good prognosis

prediction performance for AFP negative HCC.
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1 Introduction

Liver cancer ranks the 6th most prevalent cancer, and the related

mortality ranks the 4th (1). Hepatocellular carcinoma (HCC)

comprises around 80% of all the liver cancer cases. China has the

heaviest HCC burden worldwide owing to the prevalence of

Hepatitis B. HCC is characterized by insidious onset and rapid

progress, and prone to metastasis (2). Therefore, many HCC

patients are no longer suitable for surgical treatment when they

are diagnosed. Most HCC evolves from liver cirrhosis (3).

Distinguishing HCC from liver cirrhosis, especially in the early

stage, is conducive to clinical decision-making and thus improves

the prognosis. a-fetoprotein (AFP) is the most widely used serologic

marker for the HCC diagnosis. However, its diagnostic power has

been continuously challenged, because up to 50% of small HCC do

not secrete AFP and it is elevated in only 20% of early stage HCC

patients (4). Moreover, AFP may also deviate from normal value in

cirrhosis or hepatitis patients (5). Therefore, the exploration for

novel and effective biomarkers for AFP negative HCC is

critically important.

Metabolomics is a high throughput and quantitative approach to

measure the low-molecular-weight metabolites under specific

conditions (6). It is capable of detecting metabolic changes in

different pathological or physiological status, which has been an

effective tool in disease diagnosis, mechanism study and drug

screening (7). Currently, it has shown great promise as a means to

identify new biomarkers for various types of cancer, including HCC

(8). Acetylcarnitine was identified by metabolomic profiling as a

serum diagnostic marker for HCC (9). Liu et al. identified 32

metabolites by metabolomics that altered between HCC and liver

cirrhosis (LC), and achieve 100% sensitivity with these markers (10).

Wu et al. even established a diagnostic model for HCC from LC based

on GC/MS in urine sample (11). However, metabolomic profiling

specific for AFP negative HCC is still needed to improve the

diagnostic accuracy for HCC. In this study, we enrolled patients of

different status related to HCC. By comparing the metabolomic

profiling between groups, we successfully identified metabolites

capable of screening out AFP negative HCC and further established

a novel model.
02
2 Materials and methods

2.1 Study population and data collection

25 liver cirrhotic patients (LC group) and 122 HCC patients

including 44 AFP negative HCC patients (NEG group), 78 HCC

patients with AFP over 20 ng/ml (POS group) in the First Affiliated

Hospital of Zhejiang University School of Medicine from April 2012 to

December 2016 were enrolled in the study. All Patients in the LC and

HCC group underwent liver transplantation and were diagnosed

according to post-transplant pathological examination. The exclusion

criteria included patients younger than 18 years, undergoing multiorgan

transplantation or re-transplantation, or with missing essential data for

analysis. Another cohort of 52 healthy control samples (HC group)

collected from the same batch of individuals who underwent healthy

examination. We collected the data including demographics, body mass

index (BMI), pre- operative AFP level, alanine transaminase (ALT) level,

aspartate transaminase (AST) level, morphological features (tumor

number and largest tumor size), skeletal muscle index [SMI, to define

sarcopenia (12)], neutrophil-lymphocyte ratio (NLR), post-transplant

recurrence, and patients’ survival for analysis. Informed consent was

obtained from all the participants, and the study protocol was approved

by the Human Ethics Committee of the hospital.
2.2 Sample preparation

Peripheral blood samples (EDTA-K2 anticoagulant) were

collected from fasted patients or healthy volunteers in the morning

of LT or healthy examination, and centrifuged at 3000 rpm for

10 min, then stored the plasma at −80°C, until use. The plasma

samples were thawed at 4°C, and the quality control (QC) samples

were prepared by pooling aliquots (10 ml) of each sample. Acetonitrile

(800 ml) was added to the plasma (200 ml) sample and vortexed for

1 min. We then incubated the mixture at room temperature for 1 min

and centrifuged it at 14000 rpm for 10 min at 4°C. The acquired clear

supernatant was transferred to UPLC vials, and was then stored at 4°C

until detection. The pretreatment of the QC samples was the same as

that for the test samples.
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2.3 UPLC–MS analysis of samples

We performed reversed-phase analysis on a Waters ACQUITY

Ultra Performance LC system using an ACQUITY UPLC BEH C18

analytical column (i.d., 2.1 mm × 100 mm; particle size 1.7 mm; pore

size, 130 Å). We then used water/formic acid (99.9:0.1 v/v) as mobile

phase A and acetonitrile/formic acid (99.9:0.1 v/v) as mobile phase B.

A linear gradient LC system (Waters, Milford MA) was optimized as

follows: the composition of mobile phase B was changed from 3% to

80% in 7 min, reached 98% in 8 min and held for 5 min, and then

reached 100% in 1 min and held for 3 min. The sample manager was

kept at 4°C, with an injection volume of 2 ml for each analysis. The QC
samples were injected at regular intervals (every 14 samples)

throughout the analytical run. These inserted QC samples were

used to evaluate the repeatability of sample pretreatment and

monitor the stability of the LC–MS system during sequence analysis.

We used a Waters Q-TOF Premier mass spectrometer to perform

the mass spectrometry in positive ion electrospray mode. The

instrumental parameters were set as follows: The mass scan range

was 50 m/z–1000 m/z using an accumulation time of 0.2 s per

spectrum; the MS acquisition rate was set to 0.3 s with a 0.02 s

inter scan delay; high-purity nitrogen was used as nebulizer and

drying gas. The nitrogen drying gas was at a constant flow rate of 600

L/h, and the source temperature was set at 120°C. For the positive

mode, the capillary voltage was set at 3.0 kV and the sampling cone

voltage was set at 45.0 V. Argon was used as collision gas. MS/MS

analysis was performed on the mass spectrometer set at different

collision energies of 10 eV–50 eV according to the stability of each

metabolite. The time of flight analyzer was used in V mode and tuned

for maximum resolution (>10,000 resolving power at m/z 556.2771).

The instrument was previously calibrated with sodium formate; the

lock mass spray for precise mass determination was set by leucine

enkephalin at 556.2771 m/z with concentration of 0.5 ng/L in the

positive ion mode. All analyses were acquired using the lock spray to

ensure accuracy and reproducibility.
2.4 Data processing and statistical analysis

We referred to our previously published metabolomic data (13).

The dataset was generated based on the retention time, m/z, and

normalized signal intensity of the peaks. The preprocessed data
Frontiers in Oncology 03
obtained by MassLynx were exported and analyzed using SIMCA-P

14.1 (Umetrics AB, Sweden). Firstly, principal component analysis

(PCA) was introduced to evaluate the reliability of the resulting

dataset (including QC samples). Secondly, supervised orthogonal

partial least squares discriminant analysis (OPLS-DA) was

performed to better distinguishing the two groups. Potential

biomarkers of differentiating AFP negative HCC patients from LC

and HC groups were selected according to the Variable Importance in

the Projection (VIP) values, fold change (FC), and Wilcoxon Test.

Statistical analysis including logistic regression and cox regression

was performed using SPSS version 25.0 statistical software (SPSS inc.

Chicago, IL, USA) and GraphPad Prism version 9 (GraphPad, La

Jolla, CA, USA). Random forest analysis and nomogram construction

were performed by R Version 3.6.1. Area under the time-dependent

receiver operating characteristic curve (AUROC) were used to

evaluate discriminative ability. The AUROC difference is performed

using DeLong’s test. The Hosmer-Lemeshow (HL) goodness-of-fit

test was used to assess the calibration of the model. Mann-Whitney U

test were used to compare the Metabolite-Score between different

groups. Kaplan-Meier analysis and Breslow test were used to compare

the survival between groups. P < 0.05 was considered statistically

significant throughout the study.
3 Results

3.1 Baseline characteristics

147 patients included in this study underwent LT for HCC or

cirrhosis treatment, and 52 healthy volunteers were also enrolled. Of

all the patients with different liver diseases, 132 were male (89.8%)

and 15 were female (10.2%), while 14 were male (26.9%) and 38 were

female (73.1%) in healthy controls. The mean age in LC group and

NEG group was 47.9 ± 9.8 and 53.2 ± 8.8 years, respectively

(P=0.021). This could be explained by the fact that cirrhosis is an

intermediate process of chronic hepatic disease developing to HCC.

The AFP level in these two groups was 79.9 ± 275.4 and 8.4 ± 5.5 ng/

mL, respectively (P=0.170). The difference of liver functions

(including ALT and AST) was not significant between the two

groups. Baseline features of all the study subjects including HC

group and POS group were listed in Table 1, and particular features

of tumor patients are listed in Supplementary Table S1.
TABLE 1 Baseline characteristics of patients with liver disease.

Liver cirrhosis
(n=25)

AFP negative HCC
(n=44)

AFP positive HCC
(n=78)

Healthy controls
(n=52) P value*

Age (years) 47.9 ± 9.8 53.2 ± 8.8 51.6 ± 8.1 37.8 ± 10.4 0.021

Male gender, n (%) 22 (88.0) 40 (90.9) 70 (89.7) 14 (26.9) 0.700

AFP (ng/mL) 79.9 ± 275.4 8.4 ± 5.5 7091.4 ± 15697.9 6.3 ± 23.4# 0.170

ALT (U/L) 123.7 ± 197.6 64.1 ± 101.9 50.7 ± 54.8 17.6 ± 12.4 0.836

AST (U/L) 132.8 ± 249.3 94.9 ± 241.1 69.7 ± 62.5 20.4 ± 7.0 0.400
fro
*P: Liver cirrhosis vs. AFP negative HCC group.
#: There was one case of missing data.
AFP, a-fetoprotein; HCC, hepatocellular carcinoma; ALT, alanine aminotransferase; AST, aspartate aminotransferase.
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3.2 Metabolomic markers for AFP negative
HCC

Metabolomic profiling was performed on the plasma of 52 healthy

volunteers and 147 patients with HCC or cirrhosis, and general

workflow of this study is listed as Figure 1A. The total ion

chromatograms of a single sample from each group were acquired

by the UPLC-MS platform. Using MZmine ver. 2.0 software, this pre-

treatment revealed 1242 integral peaks following extraction ion

chromatography detection in all samples, which was reported in

our previous work (13). PCA plot (R2X=0.631, Q2 = 0.421) showed

that QC sample cluster together, indicating the high stability and

reproducibility of the instrument (Supplementary Figure S1). Besides,

HC group showed an obvious separation from NEG HCC group and

LC group, while NEG HCC group was roughly separated from LC

group (Figure 1B).

In order to identify metabolomic markers for AFP negative HCC,

pair-wise comparisons were performed among HC, LC and NEG

group based on OPLS-DA models (Figures 1C–E) and Wilcoxon Test.

Validation of the OPLS-DAmodel of LC andNEG group was obtained

from 200 permutation tests (Supplementary Figures S2A–C). The

validation plot demonstrated that the original model was valid: the
Frontiers in Oncology 04
Q2 regression line had a negative intercept, and the intercepts of R2

were lower than the original point to the right. S-plots of these OPLS-

DA models were further investigated to acquire the correlation value

of metabolites (Supplementary Figures S2D–F). Ions with a variable

importance value (VIP) >1, fold change (FC) >1.5 and P<0.01 were

selected. Thus, 116 overlapping ions were selected for further

identification (Figure 2A). By excluding those ions with over one

third cases of ‘0 ’ value, 15 metabolites including MG

(monoacylglyceride), PC (phosphatidylcholine), DG (diglyceride)

and SM (sphingomyelin) were finally selected (Table 2 and

Supplementary Table S2), and their VIP values and correlation

values were also listed. In comparison to LC group, 4 metabolites

(Chenodeoxycholic acid glycine conjugate, MG(18:2/0:0/0:0), 1-

Oleoylglycerophosphoserine, PC(16:0/16:0)) were significantly

decreased in NEG group, whereas 11 metabolites (DG(9M5/9M5/

0:0), PC(22:6/16:0), SM(d18:1/18:1), LysoPC(17:0), LysoPC(16:0), PC

(22:6/18:2), PC(18:2/18:2), 3-Methoxybenzenepropanoic acid, PC

(18:2/20:4), 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid, PC

(14:0/20:4)) were significantly elevated (Figure 2B).

The biological pathways involved in the metabolism of these 15

differential metabolites were determined by enrichment analysis using

MetaboAnalyst. All matched pathways were shown according to p
A

B

D E

C

FIGURE 1

The metabolomics profiling for plasma samples. (A) General workflow for this study. (B) PCA score plot for 52 healthy controls, 25 liver cirrhosis patients,
122 HCC patients and 15 quality controls. (C) OPLS-DA score plot for HC and LC group. (D) OPLS-DA score plot for HC and NEG group. (E) OPLS-DA
score plot for LC and NEG group.
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values from the pathway enrichment analysis (y-axis) and pathway

impact values from pathway topology analysis (x-axis) (14), with the

most impacted pathways colored in red. One pathway was considered

specifically related to AFP negative HCC, that is, glycerophospholipid

metabolism (Figure 2C).
3.3 A novel model for the diagnosis of AFP
negative HCC

Random forest (RF) analysis was further used to discriminate

AFP negative HCC patient from liver cirrhosis patients based on 15-

metabolites panel, which showed relatively low error rate of 25.49% in

the training set. Moreover, the prediction of validation data based on

training set RF models also yielded satisfactory results with error rate

of 14.28% for LC vs. NEG. In order to identify potential biomarkers
Frontiers in Oncology 05
for AFP negative HCC, the top 7 ranked differential metabolites in the

respective models were selected according to the mean decrease

accuracy (MDA), which denoted the percent decrease in accuracy

when the trial was performed in the absence of the metabolite

(Figure 3A). The PCoA plot also showed these two groups of

samples could almost cluster separately (Figure 3B). Subsequent

Logistic regression analysis showed that PC(16:0/16:0), PC(18:2/

18:2) and SM(d18:1/18:1) were independent risk factors

distinguishing AFP negative HCC from liver cirrhosis patients

(Supplementary Table S3). Thus, a three-marker model was

constructed: Metabolites-Score = -0.071* PC(16:0/16:0) + 0.038* PC

(18:2/18:2) + 0.293* SM(d18:1/18:1)-0.553.The ROC curve for the

three-marker model was then constructed and a nomogram was then

established as well (Figures 3C, D). The model showed good

discrimination (AUROC=0.913, 95%CI 0.848-0.977, P<0.001) and

calibration (HL P=0.739). According to the model, AFP negative
A

B

C

FIGURE 2

Differential metabolites for AFP negative HCC. (A) Venn diagram of the differential ions in HC vs. LC, HC vs. NEG and LC vs. NEG. (B) Heatmap of 15
differentially expressed metabolites between LC and NEG group according to the normalized intensity. (C) Summary of altered pathways AFP negative
HCC patients compared to liver cirrhosis patients, as analyzed by MetaboAnalyst platform (https://www.metaboanalyst.ca/). .
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TABLE 2 Differential ions and referred metabolites between LC and NEG group.

Ions Mean (LC) Mean (NEG) logFC P value VIP value Correlation value Metabolites

var297 97.351 44.007 -1.145 3.38E-03 1.336 -0.631 Chenodeoxycholic acid glycine conjugate

var499 7.985 3.980 -1.004 1.15E-03 1.468 -0.383 MG(18:2/0:0/0:0)

var634 10.424 5.654 -0.883 1.93E-04 1.468 -0.677 1-Oleoylglycerophosphoserine

var690 60.707 34.012 -0.836 1.08E-05 1.772 -0.783 PC(16:0/16:0)

var350 1.321 2.069 0.648 2.46E-03 1.226 0.335 DG(9M5/9M5/0:0)

var265 69.075 111.190 0.687 5.81E-04 1.413 0.577 PC(22:6/16:0)

var61 7.749 12.562 0.697 6.87E-06 1.419 0.473 SM(d18:1/18:1)

var380 2.362 4.057 0.780 5.08E-04 1.387 0.557 LysoPC(17:0)

var4 31.630 57.377 0.859 8.63E-04 1.347 0.528 LysoPC(16:0)

var169 3.388 6.484 0.937 9.04E-06 1.545 0.574 PC(22:6/18:2)

var325 24.917 51.680 1.052 1.94E-04 1.333 0.436 PC(18:2/18:2)

var312 2.192 6.600 1.590 1.76E-04 1.184 0.346 3-Methoxybenzenepropanoic acid

var905 3.500 11.605 1.729 9.60E-04 1.191 0.472 PC(18:2/20:4)

var898 0.150 0.645 2.107 2.50E-03 1.089 0.378 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid

var810 0.441 1.942 2.140 2.35E-04 1.360 0.547 PC(14:0/20:4)
F
rontiers in
 Oncology
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FC, fold change; VIP, Variable Importance in the Projection; MG, monoacylglyceride; PC, phosphatidylcholine; DG: diglyceride; 9M5, 9-(3-methyl-5-pentylfuran-2-yl)nonanoic acid; SM, sphingomyelin.
A B

DC

FIGURE 3

Diagnostic model for AFP negative HCC based on Random Forest (RF) analysis. (A) MDA plot of 15 differentially expressed metabolites based on RF
analysis between LC and NEG group. (B) Predictors and PCoA plot based on RF analysis, and Scatter plots showing correlation distribution between each
feature and PCoA1/2 axes. (C) ROC curve showing the ability of three-marker model to distinguish AFP negative HCC patients from liver cirrhosis
patients. (D) Diagnostic nomogram for AFP negative HCC based on the three-marker model.
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patients but with Metabolites-Score more than 1.2895 could be

regarded as having a high risk of HCC. The sensitivity and

specificity for the model were 0.727 and 0.92, respectively.
3.4 Model for the diagnosis of HCC

We further validated our three-marker model in all patients with

HCC or cirrhosis. The diagnostic value of this model was assessed,

showing a good discrimination (AUROC=0.912, 95%CI 0.857-0.967,

P<0.001) and calibration (HL P=0.645). The cut-off value of

Metabolites-Score was also set at 1.2895 with a sensitivity of 0.713

and a specificity of 0.92. To compare the diagnostic performance

between our model and AFP, we also performed ROC analysis for

AFP and the AUROC was 0.812 (95%CI 0.716-0.909, P<0.001). When

the cut-off value was set at 3.7 ng/ml, the sensitivity and specificity were

0.91 and 0.6, respectively. Though the AUROC of our three-marker

model was higher than that of AFP, the difference was not significant

between them (DAUROC=0.1, P=0.13). By combining AFP with three-

marker model, we are able to achieve a higher accuracy for diagnosis

with an AUROC of 0.951 (95%CI 0.917-0.986, P<0.001, Figure 4) and a

HL P value of 0.216. The diagnostic performance of the combination

model was significantly better than three-marker model

(DAUROC=0.039, P=0.006) or AFP along (DAUROC=0.139,

P=0.014), with a positive predictive value of 0.981 and a negative

predictive value of 0.575 (Supplementary Table S4).
3.5 Correlation between the metabolites-
score and clinical parameters

We further explore the relationship between Metabolites-Score

and clinical parameters, and 122 HCC patients were enrolled. We
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stratified all HCC patients into two groups according to AFP level

(≤400 ng/mL and >400ng/mL), tumor number (single and multiple)

and largest tumor size (≤5cm and >5cm), though no statistically

significant difference in Metabolites-Score were found between any

two groups (P>0.05, Figures 5A–C). In addition, we analyze the

relationship between Metabolites-Score and body nutrition status in

all HCC patients. In overweight patients group (BMI≥24kg/m2), the

Metabolites-Score was higher than that in normal weight patients

group (BMI<24kg/m2, 3.81 ± 3.13 vs. 2.99 ± 2.13, P=0.243,

Figure 5D). In sarcopenic patient group, the Metabolites-Score was

lower than that in non-sarcopenic patient group (2.56 ± 2.11 vs. 3.46

± 2.60, P=0.155, Figure 5E). NLR, which represents patient immune

status, was also included in the study. Patients with a NLR over 5 had

significantly lower Metabolites-Score than patients with a NLR below

5 (2.14 ± 1.88 vs. 3.56 ± 2.60, P=0.012, Figure 5F).
3.6 Metabolomic markers predicting
prognosis of AFP negative HCC in
liver transplantation

After excluding the patients who died within two months, 42 AFP

negative HCC patients were enrolled for prognostic analysis. 17

patients died during follow-up, with 1-, 3-, and 5-year overall

survival (OS) rates of 92.9%, 62.8% and 52.2%, respectively. 18

patients were diagnosed with tumor recurrence during follow-up,

with 1-, 3-, and 5-year tumor-free survival (TFS) rates of 66.5%, 58.9%

and 54.7%, respectively. According to the univariable Cox regression

analysis, MG(18:2/0:0/0:0) was the only metabolite having a moderate

prediction capability for TFS (HR=1.160, 95%CI 1.012-1.330,

P=0.033, Table 3). Based on the normalized peak intensity of MG

(18:2/0:0/0:0), the patients were divided into low risk group (n=30)

and high risk group (n=12). TFS and OS was significantly different
FIGURE 4

ROC curves showing diagnostic value of nomogram combining with AFP in distinguishing HCC patients from liver cirrhosis patients.
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between the two groups (P<0.05, Figures 6A, B), especially in early

survival. We also validated the prognostic value of MG(18:2/0:0/0:0)

in AFP positive HCC patients, but it showed no difference between

low risk group (n=55) and high risk group (n=19, Supplementary

Figures S3A, B).
Frontiers in Oncology 08
4 Discussion

Multiple studies have reported that AFP negative HCC patients

were less likely to feature aggressive tumors and were more likely to

have a favorable long-term survival when compared with AFP
A B

D E F

C

FIGURE 5

Comparison of Metabolites-Score in different groups divided by clinical parameters. Metabolites-Score showed no significant difference in groups
divided by tumor parameters and body nutrition parameters, but was significantly correlated to NLR level. (A) Bar plot for AFP ≤ 400 ng/mL group vs.
>400ng/mL group. (B) Bar plot for single tumor group vs. multiple tumor group. (C) Bar plot for largest tumor size ≤ 5 cm group vs. >5 cm group. (D) Bar
plot for BMI<24kg/m2 group vs. ≥24kg/m2 group. (E) Bar plot for non-sarcopenia group vs. sarcopenia group. (F) Bar plot for NLR ≤ 5 group vs. >5
group. Data are expressed as median (10-90 percentile range) (*P < 0.05, Mann–Whitney U test).
TABLE 3 Univariate Cox regression analysis for predictive factors of tumor-free survival.

Ions Metabolites HR (95% CI) P value

var690 PC(16:0/16:0) 0.977 (0.943-1.012) 0.190

var634 1-Oleoylglycerophosphoserine 0.909 (0.797-1.037) 0.156

var325 PC(18:2/18:2) 0.994 (0.979-1.010) 0.471

var810 PC(14:0/20:4) 1.067 (0.816-1.394) 0.637

var61 SM(d18:1/18:1) 0.965 (0.876-1.063) 0.465

var4 LysoPC(16:0) 1.003 (0.990-1.016) 0.681

var169 PC(22:6/18:2) 0.959 (0.817-1.125) 0.608

var265 PC(22:6/16:0) 1.005 (0.995-1.016) 0.329

var499 MG(18:2/0:0/0:0) 1.160 (1.012-1.330) 0.033

var312 3-Methoxybenzenepropanoic acid 1.031 (0.975-1.090) 0.290

var297 Chenodeoxycholic acid glycine conjugate 0.986 (0.971-1.002) 0.078

var380 LysoPC(17:0) 1.011 (0.779-1.312) 0.933

var905 PC(18:2/20:4) 1.028 (0.983-1.075) 0.227

var350 DG(9M5/9M5/0:0) 0.801 (0.480-1.335) 0.395

var898 3-Carboxy-4-methyl-5-propyl-2-furanpropionic acid 1.359 (0.827-2.232) 0.226
fron
HR, hazard ratio; CI, confidence interval.
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positive HCC patients. Discrimination of AFP negative HCC from LC

patients by noninvasive methods is important for clinical practice,

which would help patients to get timely and appropriate treatment. A

number of serum biomarkers carrying diagnostic potential, like des-

gamma-carboxyprothrombin (DCP), and lens culinaris agglutinin-

reactive AFP (AFP-L3), have been identified as complements to AFP

(15). Furthermore, Xu et al. reported that the combination of AFP-L3

and glypican-3 (GPC3) achieved high diagnostic accuracy for low-

AFP HCC patients, because single detection with AFP-L3 may not be

sensible and accurate (16, 17). Combination of Dickkopf proteins

(DKK1) and AFP also increased the diagnostic yield than using either

marker alone (18, 19). Studies are still being carried out for optimal

biomarkers for AFP negative HCC. Metabolomics has always been a

method exploring new diagnostic markers for various liver diseases.

Here, we performed metabolomic profiling on the plasma of healthy

volunteers and patients with LC or HCC to select novel biomarkers.

Our results showed that the combination of metabolomic biomarkers

could be applied to distinguish AFP negative HCC patients and

predict their outcomes.

In this study, we identified 15 markers able to discriminate AFP

negative HCC from both LC and HC patients. These markers are

associated with glycerophospholipid metabolism. Alterations in

glycerophospholipid metabolism was involved in the progression of

different kinds of cancer including HCC (20–22). It is reported that

highly proliferating cancer cells need to continually provide

glycerophospholipids particularly for membrane production by fatty

acids synthesis (23). On the other hand, among the 15 markers, 8 of

them are also significantly altered between POS and LC group, which

indicated that involved metabolomic changes were common in HCC

pathologically. Thus, targeting this pathway might be a promising

strategy for HCC treatment. For instance, Sorafenib, which is the

most common drug for targeted therapy in HCC, could preferentially

affect glycerophospholipid metabolism (24). We further performed
Frontiers in Oncology 09
Random forest analysis and Logistic regression analysis to construct

the novel model. The three-marker model is accurate to distinguish

AFP negative HCC patients from liver cirrhosis patients. By

combining AFP with this model, we are able to achieve higher

accuracy for diagnosis with an AUROC of 0.951.

Our three-marker model contains two kinds of phosphatidylcholine

(PC) and one kind of sphingomyelin (SM). Many studies have reported

their association with cancer and other disorders, which is known to

play an important role in biological function including cell proliferation,

migration and apoptosis (25, 26). A recent study found that the

generation of PC is a notable lipid signature in proliferating

hepatocytes, which also showed a positive correlation to hepatic

carcinogenesis (27). Sphingomyelin synthase (SMS) is reported to play

a critical role in sphingolipid metabolism which is involved in

oncogenesis and sorafenib resistance (28), though the direct function

of SM in HCC has not been clearly elucidated. Nevertheless, different

types of PCs also have diverse functions. Some studies indicating that PC

showed opposite function in tumor progression and hepatic

carcinogenesis (29, 30). Our research also reflected this contrary

phenomenon, that is, increased PC(16:0/16:0) showed lower risk of

HCC, while increased PC(18:2/18:2) had a positive relationship to the

risk of HCC. Subsequently, we further studied the correlation between

the Metabolites-Score and clinical parameters. Our results found that

patients in different groups divided by tumor parameters (including AFP

level, tumor number and largest tumor size) have close Metabolites-

Score, which indicated our model is applicable to all kinds of HCC

patients. As for body nutrition parameters, overweight (BMI≥24kg/m2)

and non-sarcopenic patients had relatively high Metabolites-Score,

though without significant difference due to low sample size. Several

studies reported that overweight and sarcopenic patients had distinctive

lipidomic signatures like dysregulated SM and PC lipid species (31–33).

Interestingly, our results found that NLR, an inflammatory marker, was

significantly related to Metabolites-Score. NLR could partially represent
A

B

FIGURE 6

The role of MG(18:2/0:0/0:0) in the prediction of prognosis. (A) Kaplan-Miere plot of tumor-free survival in AFP negative HCC patients. (B) Kaplan-Miere
plot of overall survival in AFP negative HCC patients.
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the balance between pro-tumor inflammation and anti-tumor immune

reaction (34). It is reported that PC-derived lipid mediators could bind

to receptors presented in diverse immune cells, thus inhibiting the

antitumor immunity and promoting immunoregulation (35). Therefore,

metabolomics or lipidomics is promising to identify novel biomarkers to

reflect body immune status and metabolic status concurrently.

Also, we found that MG(18:2/0:0/0:0) was associated with both

OS and TFS in AFP negative patients, though it was not applicable for

all HCC patients. This finding indicated that MG(18:2/0:0/0:0) was a

prognostic biomarkers specially for AFP negative HCC. MG(18:2/0:0/

0:0) belongs to monoglyceride family, which is more correctly known

as a monoacylglycerol. Yang et al. reported that the overexpression of

monoglycer ide l ipase (MGLL) , an enzyme convert ing

monoacylglycerol to free fatty acids and glycerol, could suppress the

migration of HCC cells (36). Thus, monoacylglycerol might

accumulate in patients with advanced HCC due to the deficit

of MGLL.

Our study still has some limitations. Firstly, non-targeted

metabolomics has disadvantages such as inaccurate identification of

metabolites, difficult to detect low abundance metabolites and so on.

For new model establishment, the differential metabolites were

relatively scarce. In spite of those disadvantages, we still provided a

perspective on metabolic markers for AFP negative HCC and

identified several lipid metabolism-associated markers. Hence,

targeted metabolomics like lipidomics could be performed

accordingly in the future. Secondly, due to the severe burden of

HCC in China, the recurrence rate was relatively high in this study for

the attempts in liver transplantation beyond the Milan criteria. Thus,

those identified metabolites and the nomogram might not be

completely suitable for western patient cohort. Another issue is its

feasibility in clinical practice, so further external validation should be

performed in future studies.

In conclusion, metabolomics profiling successfully identified

metabolic markers and novel diagnostic nomogram for AFP

negative HCC. The pre-operative plasma metabolite level was also

efficient in the prediction of recurrence risk in liver transplantation

for AFP negative HCC.
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