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Introduction: Genetically characterized patient-derived tumor xenografts (PDX)

are a valuable resource to understand the biological complexity of cancer and to

investigate new therapeutic approaches. Previous studies, however, lack

information about metabolic features of PDXs, which may limit testing of

metabolism targeting drugs.

Methods: In this pilot study, we investigated by immunohistochemistry (IHC)

expression of five essential metabolism-associated markers in a set of lung

adenocarcinoma PDX samples previously established and characterized. We

exploited digital pathology to quantify expression of the markers and

correlated results with tumor cell proliferation, angiogenesis and time of PDX

growth in mice.

Results:Our results indicate that themajority of the analyzed PDXmodels rely on

oxidative phosphorylation (OXPHOS) metabolism, either alone or in combination

with glucose metabolism. Double IHC enabled us to describe spatial expression

of the glycolysis-associated monocarboxylate transporter 4 (MCT4) marker and

the OXPHOS-associated glutaminase (GLS) marker. GLS expression was

associated with cell proliferation and with expression of liver-kinase B1 (LKB1),

a tumor suppressor involved in the regulation of multiple metabolic pathways.

Acetyl CoA carboxylase (ACC) was associated with the kinetics of PDX growth.

Conclusion: Albeit limited by the small number of samples andmarkers analyzed,

metabolic classification of existing collections of PDX by this mini panel will be

useful to inform pre-clinical testing of metabolism-targeting drugs.
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1 Introduction

In the last decade, many studies uncovered the metabolic

complexity and heterogeneity of cancer. By using advanced

technologies such as transcriptomics or metabolomics, distinct

metabolic entities have been identified in the main types of

human tumors, enabling metabolic classification of human

tumors (1–3). Some studies classified tumors based on high,

intermediate and low metabolic activity, inferred from expression

levels of metabolism-related gene sets (4, 5), whereas others

stratified tumors into glycolytic or oxidative metabolism classes

according to expression levels of genes/metabolites belonging to

glycolysis or oxidative phosphorylation (OXPHOS) (6–8). Recently,

a pathway-based classification was proposed in brain tumors based

on single cell RNA sequencing, including both mitochondrial and

glycolytic/plurimetabolic subtypes endowed with different clinical

outcomes (9).

With regard to NSCLC, a landmark study using intraoperative

(10)C-glucose infusions in patients compared metabolism between

tumors and benign lung and reported marked heterogeneity in

tumor metabolism in vivo, but also highlighted the strong influence

of the microenvironment on this feature (11). Additional studies

described lactate uptake and its utilization as a fuel by lung cancer

cells (12) and uncovered the role of the microenvironment as

determinant of the metabolic phenotype of lung cancer cells in

vivo (13). Numerous studies have delineated how cell-intrinsic

factors, such as oncogenic lesions or epigenetic events, alter

cellular metabolism, causing phenotypes characterized by

increased glycolysis (10, 14) or other metabolic alterations, as

reviewed by B. Majem et al. (15).

When approaching the complexity of cancer metabolism, it can

be useful to adopt a simplified classification of tumors into

“glycolytic” and “OXPHOS” subsets (6–8). Glycolytic tumors

uptake glucose and preferentially metabolize it via glycolysis to

lactate, which is exported from cells via monocarboxylate

transporters (MCTs), such as MCT4 (16). In contrast, OXPHOS

tumors can utilize several substrates as mitochondrial fuels, the

main being represented by glutamine and fatty acids (FA) (17).

In this study, we set-up a panel of immunohistochemistry

(IHC) markers including some enzymes and/or transporters

belonging to these key metabolic pathways, implementing a panel

that we recently used to profile patient-derived xenograft (PDX)

samples from ovarian cancer (18). For the purpose of this pilot

study, we considered monocarboxylate transporter 4 (MCT4) as

proxy of glycolysis (16, 19), acetyl CoA carboxylase (ACC), fatty

acids synthase (FAS) and carnitine palmitoyl transferase 1A

(CPT1A) as proxy of FA metabolism (20, 21) and glutaminase

(GLS) as proxy of glutamine metabolism (22).

We exploited this panel to investigate by IHC expression of

these essential metabolism-associated markers in a set of previously

established lung adenocarcinoma PDX samples. We exploited

digital pathology to quantify expression of the markers and

correlated results with tumor cell proliferation and angiogenesis,

time of PDX growth and with known driver mutations of the cancer

cells. Metabolic classification of existing collections of PDX by this
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mini panel will be useful to inform pre-clinical testing of

metabolism-targeting drugs.
2 Material and methods

2.1 Patient data

Tumor samples were collected as described by Moro et al. (23).

Samples of primary non small-cell lung cancer (NSCLC) were

obtained from patients undergoing surgical resection, who gave

their informed consent after approval from the Internal Review and

the Ethics Boards of the Fondazione IRCCS Istituto Nazionale

Tumori and all methods were performed in accordance with

institutional guidelines and regulation and with the declaration of

Helsinki. Patient data relevant to this study are reported in Table 1.
2.2 Generation of lung cancer xenografts

PDXs were generated as previously described (24). Once mice

developed tumor, they were sacrificed by cervical dislocation. The

tumors were harvested by dissection and fixed in formalin and

embedded in paraffin for histology and immunohistochemistry

analyses. All procedures involving animals and their care

conformed to institutional guidelines that comply with national

and international laws and policies (EEC Council Directive 86/609,

OJ L 358, 12 December 1987) and were authorized by the Italian

Ministry of Health.
2.3 Histology and immunohistochemistry

Four-micron-thick formalin-fixed, paraffin-embedded (FFPE)

tumor samples were stained either with hematoxylin and eosin or

processed for IHC, which was performed by using the automatic

stainer BOND III, (Leica Microsystems, Wetzlar, Germany). The

following antibodies were used, according to the manufacturer’s

instructions: anti-ACC Rabbit mAb detecting all isoforms of human

ACC (clone C83B10, Cell Signaling Technology, dilution 1:100), anti-

CPT1A Goat pAb (Novus Biologicals, dilution 1:300), anti-FAS Rabbit

mAb (clone C20G5, Cell Signaling Technology, dilution 1:100), anti-

GLS Rabbit mAb (clone EP7212, Abcam, dilution 1:200), anti-Ki67

(clone MIB-1, Dako Omnis, dilution 1:50), anti-LKB1 Mouse mAb

(clone Ley 37D/G6, Santa Cruz Biotechnology, dilution 1:100), anti-

MCT4 Mouse pAb (clone D-1, Santa Cruz Biotechnology, dilution

1:200) and anti-CD31 Rat mAb (clone SZ31, DIANOVA, dilution

1:40). Liquid diaminobenzidine (DAB; Bond Polymer Refine

Detection, Leica Biosystems, Newcastle, UK) was used as a

chromogenic agent and sections were counter-stained with Mayer’s

hematoxylin. For the double staining with the anti-GLS Rabbit mAb

and anti-MCT4 Rabbit pAb the DAB chromogenic agent and the

Green chromogen (Bond Polymer Refine HRP-PLEX Detection, Leica

Biosystems, Newcastle, UK) were used in a sequential assay (further

details are listed in Table 1, Supplementary Materials).
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2.4 Image acquisition and analysis

Tumor representation and quality of staining were initially

evaluated by one experienced pathologist (GE). Slides were

digitally acquired at 200x magnification by the Aperio CS2 (Leica

Biosystems, Wetzlar, Germany) and the evaluation of IHC score

was assessed through the ScanScope Image Analysis software

(ImageScope v12.4.0.708). On the basis on their localization, the

different markers were analyzed by using the Aperio membrane

algorithm v9 (MCT4), the Aperio cytoplasmic algorithm v2 (GLS,

CPT1A, FAS, ACC, LKB1), the Aperio nuclear algorithm (Ki67)

and the microvessel analysis v1 (CD31), as previously described

(18). Aperio Genie Classifier was trained to recognize tumor tissue,

stroma and background (glass) and then combined with Aperio

Membrane v9 and Aperio Cytoplasmic v9. Results provided the

percentage of cells with different expression levels of proteins

classified in 3+ (highly positive), 2+ (intermediate positive), 1+

(low positive) and 0 (negative) in the case of MCT4, ACC, LKB1

and Ki67 markers. The sum of percentage of marker positive cells

for these 4 tiers equals 100%. Due to the lack of differences in

intensity of expression, in the case of GLS, FAS and CPT1A markers

results provide the percentage of marker positive cells (1+). Digital

quantification performed by the software was verified by the
Frontiers in Oncology 03
pathologist (GE). Expression of the metabolism-associated

markers was calculated according to the H-score system

(reviewed in (25):), using as input digital pathology data, and

values range between 0 and 300.
2.5 Statistical analysis

Data were analyzed with RStudio (RStudio: Integrated

Development for R. RStudio Inc., Boston, MA, US). Quantitative

variables were summarized as median and interquartile range. A

descriptive analysis of the strength of relationship between the levels

of all the considered markers was performed using the Spearman

rank correlation coefficient. A two-tailed Mann-Whitney test was

used to address the comparisons of each marker distribution

between TP53, KRAS, LKB1 mutational status and between

maximal growth inhibition levels (≤50% vs >50%). Survival times

were estimated with the Kaplan Meier method and compared

among groups of markers with the log-rank test. Each marker

was dichotomized with cut-off corresponding to the most

significant relation with the outcome, estimated from maximally

selected log-rank statistics from the ‘maxstat’ R package and the

association with the outcome was tested in univariate Cox
TABLE 1 Clinical and biological features of the NSCLC patient-derived xenografts (PDXs) utilized in this study.

PDX ID
Clinical features Biological features

Stage Grade Time of collection Histo
type

Mutated genes TT(days)

LT 66 IIIA (T1aN2M0) G3 Relapse ADC CDKN2A, KRAS, LKB1, TP53 34

LT 111 IIB (T2bN1M0) G3 Relapse ADC CDKN2A, CTNNB1, KRAS,
MET, TP53

37

LT 128 IIIA (T2bN2M0) G3 Relapse ADC CDKN2A, KRAS, LKB1, TP53 55

LT 138 IA (T1aN0M0) G3 Diagnosis ADC ERBB4, FBXW7, LKB1 73

LT 141 IIIA (T2aN2M0) G3 Relapse ADC CTNNB1, KRAS, TP53 104

LT 215 IV (T2aN2M1) G3 Relapse ADC KRAS, TP53 37

LT 220 IIIA (T3N1M0) G3 Diagnosis ADC - 32

LT 255 IA (T1aN0M0) G2 Diagnosis ADC CDKN2A, CTNNB1, KRAS, TP53 32

LT 265 IV (N/A) N/A Diagnosis ADC FLT3, LKB1, TP53 30

LT 267 IIIA (T1aN2M0) G3 Diagnosis ADC KRAS, PIK3CA 37

LT 273 IIIB(N/A) N/A Diagnosis ADC KRAS, LKB1, TP53 34

LT 278 IIIA (TxN0M0) y Relapse ADC LKB1 69

LT 305 IIA (T2bN0M0) G3 Diagnosis ADC APC, KRAS 38

LT 323 IIIA (T4N0M0) G3 Diagnosis ADC NRAS, TP53 35

LT 431 IIIA (T4N0M0) G3 Diagnosis ADC - 90

LT 458 IV (T3N3M1) G3 Diagnosis ADC KRAS, LKB1 45

LT 497 IV (T3N3M1) G3 Diagnosis ADC KRAS, LKB1 40
ADC, Adenocarcinoma; TT, time to transplantation (TT was defined by the tumor size. Tumors were explanted when their volume exceeded 600 mm3), N/A, Not Available; Stage, stage refers to
initial diagnosis and follow TNM edition 7th; Genes: Adenomatous Polyposis Coli (APC), cyclin dependent kinase inhibitor 2A (CDKN2A), catenin beta 1 (CTNNB1), erb-b2 receptor tyrosine
kinase 4 (ERBB4), F-box andWD repeat domain containing 7 (FBXW7), fms related receptor tyrosine kinase 3 (FLT3), serine/threonine kinase (LKB1), phosphatidylinositol-4,5-bisphosphate 3-
kinase catalytic subunit alpha (PIK3CA).
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proportional hazards regression models. P-values were not adjusted

for multiple comparisons.
3 Results

3.1 Selection of metabolism-associated
markers and panel set-up

We analyzed by IHC expression of the following markers in

PDX sections: MCT4, GLS, CPT1A, FAS, and ACC. These markers

identify key transporters or enzymes involved in glycolysis (MCT4),

glutamine (GLS), and fatty acid metabolism (CPT1A, FAS, ACC).

For all markers analyzed, the algorithm first identifies tumor cells

and then quantifies expression levels according to the tiering system

described in the methods section.

We performed IHC and digital pathology analysis of the

expression of the five metabolism-associated markers in all 17

PDX samples (Table 2; Supplementary materials). Representative

pictures of one PDX sample stained for each marker and the related

mark-up of the analyzed tissue are presented in Figure 1. Detailed

digital pathology results are presented in Table 2, whereas some

representative pictures showing expression of the five markers in

PDX samples are shown in Figure 2.

With regard to the pattern of expression of these metabolism-

associated markers in tumors, we found intra-tumor heterogeneity

in three out of seventeen PDX samples stained with MCT4 (LT 111,

LT 255, LT 431) and one PDX sample stained with GLS (LT265).

In all other cases, heterogeneous expression of the metabolic

markers was not observed. Representative pictures illustrating

heterogeneous expression of MCT4 and GLS are shown in

Supplementary Figures 1 and 2. Notably, in 2 out of 3 PDX

samples, MCT4-positive cells were located near the necrotic areas,

likely underscoring the well-known hypoxia-driven upregulation of

MCT4 expression. We conclude that intra-tumor heterogeneity

occurs at a limited degree for most of the markers analyzed.

Considering the possible heterogeneous expression of these

markers in different tumor samples, to assess the consistency of

our findings, we performed IHC staining of MCT4, GLS, ACC, FAS

and CPT1A in 8 additional samples obtained by implantation of the

same specimen (LT66, LT111, LT141, LT 220, LT255, LT267,

LT278, LT458) in different mice. Quantification of the markers

and statistical analysis by the Wilcoxon test did not show significant

differences between replicates for each biomarker, except for FAS

(p-value 0.01).

Based on median values of the H-score, the metabolism-

associated marker most abundantly expressed in these PDX

samples was GLS (228.41), followed by ACC (170.05), MCT4

(108.74), FAS (32.78) and CPT1A (19.87). For descriptive

purposes, we stratified PDX samples into two groups (high and

low), based on the expression of each marker above or below the

median value. We defined as plurimetabolic those PDX which

showed high expression of the glycolysis-associated marker

MCT4 in combination with one or more of the OXPHOS-

associated markers (GLS, FAS, ACC, CPT1A). Plurimetabolic
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PDX (n = 9, 53%) included LT66, LT128, LT215, LT220, LT265,

LT267, LT273, LT431 and LT458.

To investigate the pattern of expression of some these markers

in plurimetabolic tumors, we set-up double IHC for MCT4 and

GLS. Interestingly, plurimetabolic PDX samples showed co-

expression of the two markers by variable proportions of tumor

cells, as shown in Figure 3. In some PDX (LT 267 and LT128) a

substantial (>50%) of cells co-expressed MCT4 and GLS. In all

other plurimetabolic PDX, however, MCT4 and GLS were

expressed mainly by different tumor cells which were located in

the same spatial region of the tumor (Figure 3).

Six out of 17 samples (35%) were classified OXPHOS, as they

expressed OXPHOS markers but not MCT4 and included LT111,

LT138, LT255, LT278, LT305 and LT323.

Altogether, these results suggest that OXPHOS is the main

metabolic pathway sustaining energy and macromolecules

production in the large majority (15/17, 88%) of these lung

adenocarcinoma PDX samples, alone or in combination with

glycolysis. Finally, two PDX (LT497 and LT141) expressed all

markers at relatively low levels, suggesting utilization of other

metabolic pathways not covered by the IHC panel.
3.2 Association between markers

As the markers selected identify key metabolic processes, it was

interesting to investigate possible associations between the markers.

This analysis disclosed that ACC was positively associated with

CPT1A (r = 0.47) with borderline significance (Table 3), fitting the

known biochemical role of these enzymes in FA metabolism (26).

No other associations were found between the other metabolic

markers analyzed (Table 3).

CPT1A levels were significantly higher in KRAS-wt NSCLC

PDX samples (p=0.010). No further associations between the

metabolism-associated markers and recurrent TP53 and LKB1

gene mutations were found.

Finally, since alterations of LKB1 are relatively common in lung

adenocarcinoma (27), and in view of the established role of this serine/

threonine kinase in the regulation of metabolism (28), we assessed

LKB1 expression in these tumors by IHC (Supplementary Figure 3).

Among PDX samples with low LKB1 expression, three (LT 128,

LT273 and LT 458) were known to bear disruptive LKB1 mutations

(Table 1), whereas two (LT 305 and LT323) had LKB1 WT sequence,

suggesting epigenetic down-regulation of LKB1 protein expression.

Interestingly, we found a significant positive association between

LKB1 and GLS expression (r= 0.59, Table 3).
3.3 Association with proliferation
and angiogenesis

Next, we investigated whether expression of any of these

markers was associated with proliferation, in view of the well-

established link between certain metabolic processes and

proliferation (29). We found that the proliferation marker Ki67 in
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tumor sections was positively associated with GLS (r=0.59) and FAS

(r=0.52). In contrast, no association was found between Ki67 and

any of the other metabolic markers; LKB1 was also positively

associated with Ki67 in this dataset (r = 0.62) (Table 3).

Angiogenesis is a biological process which strongly contributes

to tumor growth and is partially regulated by metabolic features of

tumors, such as the production of lactate by highly glycolytic
Frontiers in Oncology 05
tumors (30). We analyzed possible associations between

expression levels of the five metabolism-associated markers and

microvessel density (MVD), calculated based on quantification of

CD31 positive cells, as readout of angiogenesis (Supplementary

Figure 3). Results, however, did not disclose any significant

association (Table 3), perhaps due to the low number of

samples analyzed.
FIGURE 1

Visualization of the Aperio algorithms used to quantify metabolic markers expression in tissue (original magnification 100x and 200x, scale bar
represents 100 mm or 50 mm, respectively). On the left, representative images of PDX LT 128 sections stained for ACC, FAS, GLS, MCT4 and CPT1A
(hematoxylin counterstain). On the right, images showing the final mark-up of the sample. Quantification of the marker expression is shown below
each panel: positive (1+/brown) or negative (0+/yellow) for CPT1A, FAS and GLS staining; strong (3+/brown or red), moderate (2+/orange), or weak
(1+/yellow) for ACC and MCT4 staining. Negative/0+ cells show only hematoxylin counterstain.
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TABLE 2 Quantification of marker expression in lung adenocarcinoma PDXs by digital pathology.

A. Expression levels of metabolism-associated markers MCT4, GLS, ACC, FAS and CPT1A

PDX ID MCT4 GLS ACC FAS CPT1A

LT 431 127.07 259.22 75.18 88.98 35.83

LT 323 55.35 3.01 253.65 1.33 216.22

LT 215 163.10 289.14 212.41 150.69 2.89

LT 141 106.36 155.91 18.02 4.98 2.35

LT 497 63.05 NA 2.41 0.91 0.77

LT 305 80.75 0.26 180.92 60.39 NA

LT 278 20.44 25.72 23.73 15.91 99.21

LT 265 153.25 147.56 222.45 39.22 25.49

LT 138 75.83 282.47 176.96 299.15 240.00

LT 273 109.68 197.16 187.33 0.25 9.62

LT 255 61.00 245.48 110.97 138.61 2.67

LT 267 160.74 289.78 222.25 8.68 32.23

LT 458 181.75 2.37 104.88 32.78 1.50

LT 66 181.04 245.39 290.98 297.84 142.99

LT 128 192.95 235.22 170.05 203.29 14.25

LT 111 101.63 236.32 46.69 31.36 6.98

LT 220 108.74 221.59 99.07 11.49 93.10

Median 108.74 228.41 170.05 32.78 19.87

B. Expression levels of CD31, LKB1 and the proliferation marker Ki67

PDX ID CD31 LKB1 Ki67

LT 431 53.2 259.99 164.04

LT 323 45.0 126.88 53.99

LT 215 64.8 197.71 193.55

LT 141 77.3 148.07 98.91

LT 497 105 NA 72.15

LT 305 26.3 96.01 80.34

LT 278 270 230.48 121.42

LT 265 67.5 179.81 119.03

LT 138 280 NA 130.22

LT 273 120 130.94 92.20

LT 255 220 192.79 84.34

LT 267 54.1 186.90 109.04

LT 458 NA 114.58 68.30

LT 66 200 181.59 122.25

LT 128 75.8 108.79 138.14

LT 111 82.8 182.17 92.61

LT 220 132 295.27 173.71

Median 80.05 181.59 109.04
F
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NA, Not Available. Values are expressed according to the H-score system. Bold, median values.
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3.4 Association with the kinetics of
tumor growth

Finally, we investigated the association between the

metabolism-associated markers and the kinetics of tumor growth

in mice, indicated by the parameter time to transplantation (TT –

time from implant to explant) and the initial latency time (LT)

(Table 4A, B, respectively). For this analysis, PDX samples were

stratified into two groups based on the value of the marker obtained

by maximizing its discriminative ability (best cut-off). The only

marker positively associated with tumor growth in mice was ACC
Frontiers in Oncology 07
(Table 4 and Figure 4). Among other markers analyzed, LKB1 was

not associated with TT.

Finally, we tested the correlation between marker expression

and tumor volume at sacrifice calculating Spearman’s rank

correlation coefficient. We included in the analysis all samples

available (n=24, including also the PDX specimens with two

replicates). MCT4, ACC, FAS and CPT1A have a weak to

moderate correlation (r MCT4 = 0.26, r GLS = 0.20, r ACC =

0.43, r FAS = 0.35, r CPT1A = 0.26) and ACC was the only marker

statistically significant (p = 0.03), in line with the above results of

correlations with LT and TT parameters. Moreover, plurimetabolic
FIGURE 2

Representative pictures of four PDX (LT 215, LT 255, LT 323 and LT 458) stained for the selected metabolism-associated markers: ACC, CPT1A, FAS,
GLS and MCT4 (original magnification 200x, scale bar represents 50 mm). The labels “High” and “Low” below each panel indicate the stratification of
the sample according to the median value of expression of the marker according to digital pathology analysis, as detailed in the M&M section.
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PDX positively correlated with tumor volume at sacrifice: the

median tumor size for pluri-metabolic PDX was 700 mm3 (n =

11), versus a median tumor size of 500 mm3 (n= 13) for the

OXPHOS group (p = 0.03, Mann-Whitney test).
4 Discussion

PDX are a valuable resource both to understand the biological

complexity of cancer and to investigate new therapeutic approaches

in pre-clinical models considered closer to the patients compared
Frontiers in Oncology 08
with other available in vivo models. PDXs have been reported for

many types of solid tumors (31). In the case of lung cancer, several

groups established PDX models (32–36) and reported their genetic

fingerprint (23, 37). This associated genetic information was key to

the discovery of new targets, such as the identification of HER2 as

an effective therapeutic target in cetuximab-resistant colorectal

cancer (38). In all previous studies, however, there is a lack of

information about the metabolic features of PDXs. This gap may

limit testing of metabolism targeting drugs, whose therapeutic

activity is likely dependent on the metabolic set-up of tumor cells,

as shown by several recent studies (39). Moreover, it appears that
B

C

A

FIGURE 3

Plurimetabolic PDX showing expression of MCT4 (membrane, brown staining) and GLS (cytoplasm, green staining) by the tumor cells (two
representative pictures in panel (A, B), original magnification 200x, scale bar represents 50 mm). Relative percentage of PDX’s double stained (MCT4/
GLS) cells is reported as histogram (C). Red line indicates the median value of MCT4/GLS co-expression (32%).
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specific metabolic activities of cancer cells also modulate response

to conventional chemotherapies (8) and therapeutic resistance (39,

40), suggesting that metabolic features should be taken into

consideration when new drugs are tested in PDX models.

Although comprehensive metabolic portraits of tumors are best

obtained through mass-spectrometry-based analysis, we propose a

simplified metabolic classification of tumors using quantitative

measurement of the expression at protein level of well-established

enzymes or transporters involved in key metabolic pathways. In this

pilot study, we tested the feasibility of this approach in a small

subset of NSCLC PDX, previously established and characterized by

M. Moro et al. (23). These NSCLC PDX retained the key genetic

alterations of the matched patients tumor samples and were also
Frontiers in Oncology 09
shown to reproduce their main metabolic features, as shown by

[18F]FDG PET imaging studies (41).

Our results indicate that the majority of the analyzed models

rely on OXPHOS metabolism, either alone or in combination with

glucose metabolism. Notably, 9 out of 17 PDX showed a

plurimetabolic phenotype, with co-expression of MCT4 and GLS

at high (above the median value) levels. Double IHC disclosed that

in some plurimetabolic PDX the two markers were co-expressed by

the same tumor cells, whereas in others MCT4 and GLS were

mostly expressed by different cells which, however, clustered in the

same spatial area of the tissue. While plurimetabolic tumors have

been identified also by using other techniques, such as single cell

RNAseq (9), imaging of metabolism-associated markers by
TABLE 3 Association between the analyzed markers.

Parameter1 Parameter2 rho 95% CI p

MCT4 GLS 0.24 [-0.31, 0.66] 0.3804

MCT4 ACC 0.34 [-0.18, 0.71] 0.1809

MCT4 LKB1 -0.18 [-0.64, 0.38] 0.5243

MCT4 Ki67 0.39 [-0.13, 0.74] 0.1220

MCT4 FAS 0.34 [-0.19, 0.71] 0.1842

MCT4 CPT1A -0.16 [-0.61, 0.38] 0.5643

MCT4 CD31 -0.26 [-0.68, 0.28] 0.3218

GLS ACC 0.12 [-0.41, 0.59] 0.6643

GLS LKB1 0.59 [0.09, 0.85] 0.0208

GLS Ki67 0.59 [0.11, 0.84] 0.0165

GLS FAS 0.41 [-0.12, 0.76] 0.1102

GLS CPT1A 0.11 [-0.44, 0.60] 0.7039

GLS CD31 0.17 [-0.38, 0.64] 0.5327

ACC LKB1 -0.29 [-0.71, 0.28] 0.2957

ACC Ki67 0.04 [-0.46, 0.52] 0.8738

ACC FAS 0.27 [-0.26, 0.67] 0.2999

ACC CPT1A 0.47 [-0.05, 0.79] 0.0639

ACC CD31 -0.29 [-0.70, 0.25] 0.2739

LKB1 Ki67 0.62 [0.15, 0.87] 0.0127

LKB1 FAS 0.05 [-0.49, 0.56] 0.8595

LKB1 CPT1A 0.26 [-0.33, 0.70] 0.3664

LKB1 CD31 0.38 [-0.20, 0.77] 0.1745

Ki67 FAS 0.52 [0.04, 0.81] 0.0325

Ki67 CPT1A 0.38 [-0.16, 0.74] 0.1472

Ki67 CD31 0.16 [-0.38, 0.62] 0.5569

FAS CPT1A 0.27 [-0.28, 0.68] 0.3163

FAS CD31 0.18 [-0.36, 0.63] 0.5061

CPT1A CD31 0.11 [-0.44, 0.60] 0.6945
Association between the different analyzed markers using the Spearman correlation test. p-value adjustment method: none. Bold, statistically significant values (p<0.05).
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quantitative IHC has the advantage to enable spatial localization of

the two signals. This feature will likely be increasingly important in

future studies to better understand metabolic heterogeneity of

tumors. We highlighted a correlation between LKB1, GLS and

Ki67 expression levels, although we did not explore the exact

spatial localization of Ki67+ cells and that of the other associated

markers, which represents a limitation of our pilot study. LKB1 is a

tumor suppressor that acts by suppressing growth under energetic

stress conditions, through its action on the AMPK/mTOR pathway

(28). A positive correlation between LKB1 and Ki67 may seem

counter-intuitive, especially for tumors that grow under the

pressure of a non-orthotopic murine microenvironment.

Nevertheless, our observation suggests that LKB1 wild type
Frontiers in Oncology 10
NSCLC rely on glutamine consumption to sustain the

proliferation induced by hyperactivation of oncogenes such as

KRAS (Table 1). Glutamine sustains cell growth as a nitrogen

source for the synthesis of purine and pyrimidine bases, and it is

also important for maintaining redox homeostasis within highly

proliferating cells (42). Furthermore, a strong correlation of

glutamine dependency with cell proliferation has been observed

in a landmark study involving hundreds of cancer cell lines (43). A

higher dependency on glutamine-related ROS detoxyfication

activity has been reported for KRAS/LKB1/KEAP1 triple mutants

compared to KRAS/LKB1- or KRAS-mutated NSCLC (44).

However, in the same manuscript a reduction of ATP production

upon glutaminase inhibition was reported also in LKB1 wild type
TABLE 4 Association of the metabolic-associated markers with the kinetics of tumor growth.

A. Association with TT (time from implant to explant)

IHC-Expression Cut-off N Median TT (95%CI) logrank HR (95%CI) p-value

MCT4 106.358 Above cut-off 9 37.3 (30.0;55) 0.3237 Ref

Below cut-off 8 38.9 (32.3;73) 0.62 [0.23;1.63] 0.3265

GLS 245.479 Above cut-off 4 55.2 (37.3;NA) 0.3505 Ref

Below cut-off 12 36.0 (32.0;55) 1.62 [0.56;5.55] 0.3871

ACC 75.176 Above cut-off 12 36.4 (32.0;45) 0.0327 Ref

Below cut-off 5 69.0 (36.7;NA) 0.29 [0.07;0.91] 0.0330

FAS 1.325 Above cut-off 14 37.5 (32.3;69) 0.2968 Ref

Below cut-off 3 35.4 (33.9;NA) 2.21 [0.54;7.30] 0.2464

CPT1A 2.354 Above cut-off 13 36.7 (32.3;55) 0.1641 Ref

Below cut-off 3 45.0 (40;NA) 0.43 [0.08;1.45] 0.1878

CD31 0.00022 Above cut-off 2 71 (69.0;NA) 0.3590 Ref

Below cut-off 14 37 (32.3;40) 1.70 (0.48;8.94) 0.4365

B. Association with LT (latency time)

IHC-Expression Cut-off Below cut-off N Median TT (95%CI) logrank HR (95%CI) p-value

MCT4 101.627 Above cut-off 10 20 (10.3; 26.0) 0.2903 Ref

Below cut-off 7 17 (8.3; 23.3) 1.73 [0.62; 4.72] 0.2849

GLS 245.479 Above cut-off 4 26.5 (11.7;NA) 0.4658 Ref

Below cut-off 12 18.2 (10.3;25) 1.43 [0.49;4.96] 0.5209

ACC 176.960 Above cut-off 7 15.0 (10.3;19.3) 0.0009 Ref

Below cut-off 10 24.2 (8.3;33.3) 0.21 [0.05;0.72] 0.0135

FAS 1.326 Above cut-off 14 20 (11.7;26) 0.2276 Ref

Below cut-off 3 17 (13.3;NA) 2.44 [0.58;8.66] 0.2061

CPT1A 2.354 Above cut-off 13 19.3 (11.7;23.3) 0.1957 Ref

Below cut-off 3 25.0 (17.0;NA) 0.46 [0.09;1.56] 0.2350

CD31 0.000077 Above cut-off 8 17.0 (8.33;23.3) 0.3226 Ref

Below cut-off 8 19.5 (10.33;40.0) 0.58 (0.20;1.70) 0.3200
fron
The TT parameter (time from implant to explant) was used for association analysis. HR, Hazard Ratio; N, number of mice.
The LT parameter (latency time) was used for association analysis. HR, Hazard Ratio; N, number of mice. Bold, statistically significant p and logrank values.
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NSCLC cells. ATP reduction leads to cell growth arrest through

activation of the LKB1/AMPK pathway. Since the energetic stress

induced by biguanides in LKB1 mutated NSCLC models has been

reported to cause apoptotic cell death (45), inhibiting at the same

time GLS and AMPK activity may represent a new therapeutic

option to investigate in NSCLC LKB1 wild type preclinical models.

Of note, we reported here a correlation between PDX in vivo

growth rate, measured as time-to-transplantation (TT) and ACC

expression. PDXs grow in vivo with a two-step kinetic; after an

initial latency time (LT) tumors start growing “exponentially”. LT

may be considered as a measure of the time needed by tumor cells to

productively interact with the murine microenvironment. Both LT

and exponential growth contribute to TT. Interestingly, correlation

between LT and ACC expression was also significant (Figure 4).

Thus, ACC seems to be related to tumor growth when these

interactions are being established. Speculatively, lipid metabolism

within PDXs may be important for in vivo increase in tumor growth

by inducing the recruitment of stromal cells, such as fibroblasts and

innate immune cells. Alternatively, ACC could modulate cell

autonomous features of cancer cells, although ACC expression

did not correlate with cell proliferation markers (Ki67). Finally,

lipid metabolism could regulate tumor cell apoptosis, which we did

not evaluate in these samples. As note of cautiousness, given the

small number of PDX analyzed, hypothesis about the prognostic
Frontiers in Oncology 11
role of ACC in NSCLC need to be confirmed by larger studies

involving either PDX or patients’ samples.

In conclusion, results of this pilot study support the feasibility of a

metabolic classification of NSCLC PDXs based on quantification of IHC

markers by digital pathology. There are, however, some intrinsic

limitations of our study, including the small number of PDX samples

and markers analyzed, the limited investigation of the spatial

distribution of the different markers and the lack of orthogonal

validation of findings by state-of-the-art techniques used to study

tumor metabolism. Additional constraints are represented by the lack

of comparison between the PDX and the original primary tumor and

lack of validation between the metabolic characterization and response

to metabolic therapies. Therefore, additional studies will be required to

consolidate these preliminary results and identify additional markers for

a refinement of the proposed panel. Finally, larger cohorts of samples

need to be analyzed to establish the possible prognostic or predictive

value of these metabolism-associated markers in NSCLC.
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FIGURE 4

Positive correlation of ACC expression with tumor growth. (A, B) ACC expression was quantified by Aperio Cytoplasmic v9 algorithm. The panels
show representative samples with low (LT 141) and high (LT 305) ACC expression levels (original magnification 200x for upper panels or 100x for
lower panels, scale bar represents 50 or 100 mm, respectively). (C) Kaplan-Meier curves show faster growth of PDXs with high ACC expression levels.
The best cut-off value used to generate this curve was 75.176. Statistical significance was calculated with the log-rank test (D) Kaplan-Meier curves
show shorter latency time of PDXs with high ACC expression levels. The best cut-off value used to generate this curve was 176.96. Statistical
significance was calculated with the log-rank test.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1070505
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Ferrarini et al. 10.3389/fonc.2023.1070505
Ethics statement

Approval of the research protocol by an Institutional Reviewer

Board: The study was conducted in accordance with the Declaration

of Helsinki, and approved by the Institutional Review and the Ethics

Boards of the Fondazione IRCCS Istituto Nazionale Tumori.
Author contributions

Conceptualization, EZ and SI. Methodology, FF, EZ, MM, TZ,

and GE. Software, FF and PD. Validation, FF. Formal analysis, FF

and PD. Resources, SI. Data curation, SI. Writing—original draft

preparation, SI. Writing—review and editing, SI, MM, CB, GS, EZ,

and FF. Visualization, SI. Supervision, SI. Project administration, SI.

Funding acquisition, SI. All authors contributed to the article and

approved the submitted version.
Funding

The research leading to these results has received funding from

AIRC under IG 2020 - ID. 25179 project – P.I. Stefano Indraccolo

and AIRC IG 2019 – ID. 23244 – P.I. Gabriella Sozzi and from IOV

Intramural Grant 5x1000 (year 2018), PI Stefano Indraccolo.
Frontiers in Oncology 12
Acknowledgments

We thank Dr. Antonio Scapinello for technical support eoth Ki67

IHC staining and Dr. Giovanni Centonze for technical support.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations,

or those of the publisher, the editors and the reviewers. Any product

that may be evaluated in this article, or claim that may be made by its

manufacturer, is not guaranteed or endorsed by the publisher.
Supplementary material

The Supplementary Material for this article can be found online

at: https://www.frontiersin.org/articles/10.3389/fonc.2023.1070505/

full#supplementary-material
References
1. Hu J, Locasale JW, Bielas JH, O’Sullivan J, Sheahan K, Cantley LC, et al.
Heterogeneity of tumor-induced gene expression changes in the human metabolic
network. Nat Biotechnol (2013) 31:522–9. doi: 10.1038/nbt.2530
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