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Possible mechanism of metabolic
and drug resistance with
L-asparaginase therapy in
childhood leukaemia
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Department of Pediatrics, the Seventh Affiliated Hospital of Sun Yat-Sen University, Shenzhen,
Guangdong, China
L-asparaginase, which hydrolyzes asparagine into aspartic acid and ammonia, is

frequently used to treat acute lymphoblastic leukaemia in children. When

combined with other chemotherapy drugs, the event-free survival rate is 90%.

Due to immunogenicity and drug resistance, however, not all patients benefit from

it, restricting the use of L-asparaginase therapy in other haematological cancers.

To solve the problem of immunogenicity, several L-ASNase variants have emerged,

such as Erwinia-ASNase and PEG-ASNase. However, even when Erwinia-ASNase is

used as a substitute for E. coli-ASNase or PEG-ASNase, allergic reactions occur in

3%-33% of patients. All of these factors contributed to the development of novel L-

ASNases. Additionally, L-ASNase resistance mechanisms, such as the methylation

status of ASNS promoters and activation of autophagy, have further emphasized

the importance of personalized treatment for paediatric haematological

neoplasms. In this review, we discussed the metabolic effects of L-ASNase,

mechanisms of drug resistance, applications in non-ALL leukaemia, and the

development of novel L-ASNase.
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Introduction

L-asparaginase (L-ASNase), an enzyme that hydrolyzes asparagine, is one of the most

successful drugs for metabolic targeting to date and one of the most important

chemotherapeutic drugs in standardized regimens for childhood ALL. L-ASNase is

essential for improving the complete remission rate and long-term survival in children

with ALL. In the moderate/low-risk group mainly according to the treatment response of 15-

19 days and the level of minimal residual disease in 29-45days, event-free survival and overall

survival rates can reach 90% when combined with other chemotherapeutic drugs (1–3). L-

ASNase (L-ASNase) has been shown to have anticancer activity that depends on its ability to

hydrolyse asparagine since it was discovered in guinea pig serum in 1953 (4–7). In 1966,

Dolowy et al. first reported complete remission in a case of refractory childhood acute
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lymphoblastic leukaemia (ALL) treated with guinea pig-derived L-

ASNase (8). In 1970, Clarkson et al. first reported the treatment of

ALL with purified E. coli-derived L-ASNase (E. coli-ASNase) and the

induction of remission (9). In the following decades, L-ASNase was

widely used in the treatment of ALL. Currently, the clinically used L-

ASNases include E. coli-ASNase, Erwinia-ASNase, and PEG-ASNase,

among which PEG-ASNase has the longest half-life and lowest

immunogenicity (5, 10). Nevertheless, allergic reactions to L-

ASNase still occur in 30%-70% of patients, which limits its efficacy

(11). To provide new insights into using L-ASNase in treating

paediatric leukaemia, we discussed the metabolic effects of L-

ASNase, mechanisms of drug resistance, applications in non-ALL

leukaemia, and the development of novel L-ASNase in this review.
Metabolic effects of L-ASNase on
leukaemic cells

Tumour cells have different metabolic patterns compared to

normal cells. This metabolic pattern is manifested by increased

glycolysis, glucose uptake, and uptake and catabolism of amino

acids (12–14). Metabolic reprogramming allows tumour cells to

show resilience in hypoxic and nutrient-deficient environments. At

the same time, however, such metabolic alterations also make tumour

cells exhibit specific vulnerabilities, such as an increase in certain

specific metabolic demands (15). The increased metabolic demands

determine the importance of glucose and amino acids in tumour

metabolism. Unlike normal cells, amino acids that are not essential to

normal cells may be essential to tumour cells because tumour cells

usually lose the ability to synthesize these amino acids de novo,

enabling the amino acid deprivation therapy.

Asparagine is a nonessential amino acid involved in protein

synthesis for normal cells, which can be obtained from food or

produced by the combination of aspartate acid with ammonia

catalysed by asparagine synthase (ASNS) (16, 17).Different from

normal cells, due to the lack of ASNS, leukaemia cells frequently fail

to synthesize asparagine and therefore must rely on the host to

supply asparagine for their protein synthesis requirements. By

catabolizing asparagine in serum, L-ASNase can expose leukaemia

cells to an asparagine-deficient environment, and thus affecting

protein synthesis in leukaemic cells and leading to their growth

inhibition or death (5, 16–20). In addition, Hermanova et al. further

demonstrated the molecular mechanism by which L-ASNase inhibits

protein synthesis in leukaemic cells (21). The mammalian target of

rapamycin protein complex 1 (mTORC1) plays a central role in the

amino acid response. RagA/RagB switches from a GDP-bound state to

a GTP-bound state as amino acid levels rise, which activates mTORC1,

and in turn stimulates a series of downstream reactions, including

protein synthesis (22). However, it was recently discovered that RagB-

expressing cells can still activate mTORC1 even in an amino acid-

deficient environment (23). By treating wild-type RagB cells and RagB-

mutant cells (in a permanent GTP-bound state) separately with L-

ASNase and assaying the levels of the mTORC1 downstream molecule

p-S6 protein, Hermanova et al. found that wild-type RagB cells had

significantly lower p-S6 protein levels, while RagB-mutant cells did not

show significant changes in p-S6 protein levels. That is, L-ASNase can

inhibit protein synthesis by inhibiting RagB-mTORC1 (21) (Figure 1).
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L-ASNase also has glutaminase (GLNase) activity that can

hydrolyze glutamine. In the presence of ASNS, glutamine can act as

an amino donor to facilitate the production of aspartic acid into

asparagine. Therefore, the hydrolysis of glutamine by L-ASNase also

contributes to the reduction of asparagine levels, improving the

efficacy (16, 19, 24) (Figure 1). However, whether the anti-

leukaemic effect of L-ASNase depends on GLNase activity is

controversial (25–32). First, Offman and Parmentier et al.

demonstrated that the killing effect of L-ASNase on leukaemic cells

was reliant on GLNase activity and that the cytotoxicity of L-ASNase

on leukaemic cells increased with increasing GLNase activity (25, 29).

Chan et al. also demonstrated in a recent study that L-ASNase with

GLNase activity was more cytotoxic to leukaemic cells and could

better prolong the survival of mice in an ASNS-negative SUP- B15

xenograft model (32). In contrast, a previous study showed that L-

ASNase without GLNase activity could achieve the same level of

antitumour effects as wild-type L-ASNase in ASNS-negative

leukaemia cell lines (30). Nguyen et al. also demonstrated that L-

ASNase mutants with low GLNase activity had the same level of

antitumour activity as L-ASNase mutants with high GLNase activity

in an ASNS-negative SUP-B15 leukaemia cell xenograft model (31).

However, the L-ASNase in their research is not completely devoid of

GLNase activity. Therefore, we believe that GLNase activity of L-

ASNase is required for the killing effect of L-ASNase in ASNS-

negative tumour cells, but at what level of GLNase activity needs to

be maintained is a question that require confirmation through

more experiments.

In addition to protein synthesis and amino acid metabolism,

Hermanova et al. found that L-ASNase can also affect the energy

metabolism of leukaemic cells, including increased fatty acid

oxidation and inhibition of glycolysis. They suggested that the

inhibition of mTORC1 by L-ASNase was responsible for inducing

fatty acid oxidation. Moreover, they found that fatty acid oxidation

inhibitors and L-ASNase can act synergistically to kill cells (21).

Therefore, the combination regimen of fatty acid oxidation inhibitors

with L-ASNase may provide a brand-new option for the treatment of

ALL. Furthermore, Takahashi et al. demonstrated in their study that

L-ASNase can inhibit glycolysis in leukaemic cells (18), but the precise

molecular mechanism of this is unknown. In general, L-ASNase can

affect the energy metabolism of leukaemia cells, which in turn may

hurt the efficacy of L-ASNase. Clarifying the specific mechanism will

provide new selections to ALL treatment, and more research on

combined treatment regimens targeting energy metabolism such as

fatty acid oxidation will bring new hope to ALL treatment.
Mechanism of drug resistance

Asparagine synthase

Studies on the mechanism of L-ASNase resistance have been

widely conducted. Numerous studies have found elevated expression

of ASNS in L-ASNase-resistant tumour cells. It has been confirmed

that L-ASNase-resistant cells express higher levels of ASNS than L-

ASNase-sensitive cells (33–36). Scherf and Holleman et al. reported

that L-ASNase-sensitive cells express lower levels of ASNS mRNA in

vitro (37, 38). In contrast, however, the results of Fine et al. did not
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find a correlation between the expression level of ASNS mRNA and

sensitivity to L-ASNase (39). In B-lineage lymphocytic leukaemia cells

carrying the TEL-AML 1 translocation, Stams et al. also obtained the

same results as Fine et al. (40). Even in other studies, higher

expression levels of ASNS mRNA were found in L-ASNase-

sensitive TEL-AML1-positive cells compared with TEL-AML1-

negative cells that were resistant to L-ASNase (41), but they did not

further elucidate the relationship between TEL-AML1 fusion genes

and ASNS gene expression. In addition, Su et al. stated that high

ASNS expression did associate with resistance to L-ASNase. But they

suggested that it should be the ASNS protein, rather than the mRNA,

to be tested as indicators of L-ASNase resistance as there was no

significant correlation between the levels of ASNS mRNA and ASNS

protein (42). In any case, these studies illustrate the point that ASNS

expression confers L-ASNase resistance in leukaemic cells.

Other studies have revealed that the methylation status of the

ASNS promoter region can affect the transcription of ASNS and thus

affect the sensitivity of L-ASNase. ASNS is part of the amino acid

response pathway that is activated by amino acid deficiency (43, 44).

When asparagine is deprived, tumour cells can respond via the

GCN2-ATF4 pathway. ATF4 binds to the ASNS promoter in a

hypomethylated state and induces its expression (45). Jiang et al.

found that the hypermethylated state of the ASNS promoter restricted

the binding of the transcription factor ATF4 upon amino acid

depletion, and thereby inhibiting ASNS expression (46). Overall,

amino acid deficiency-induced ASNS expression requires both
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GCN2 activation and hypomethylation of the ASNS promoter

region, which enable ATF4 binding to drive ASNS expression. A

cohort study by Akahane et al. further confirmed that the

hypomethylation status of the ASNS promoter region is associated

with L-ASNase resistance. Their analysis of 75 Japanese children with

T-ALL revealed an intermediate (33.3% <methylation <66.7%) or low

(<33.3%) methylation status of the ASNS promoter region in 92% of

refractory/relapsed cases (47). In addition, Touzart et al. found ASNS

to be expressed at low levels in TLX1+ T-ALL cells (high ASNS

methylation levels). TLX1+ T-ALL was more sensitive to L-ASNase

than the TLX-CCRF-CEM cell line (low ASNSmethylation level) (48).

Recently, the important role of amino acid stress response genes in L-

ASNase sensitivity was further confirmed by Ferguson et al., who

identified a novel L-ASNase resistance gene, SLC7A11, whose high

expression leads to L-ASNase sensitivity in cancer cells (49). In

conclusion, these studies all suggested that the hypomethylation

status of the ASNS promoter region contributes to the expression of

ASNS induced by L-ASNase treatment, and thus conferring L-

ASNase resistance to leukaemic cells. However, there are limited

cohort studies to refer to at present, therefore, additional larger cohort

studies are needed to further confirm the possibility of ASNS

promoter region methylation as a predictor of treatment response.

Meanwhile, the factors affecting the methylation status of the

ASNS promoter region have been reported. Worton et al. reported

that L-ASNase induces ASNS promoter demethylation, which confers

drug resistance to leukaemic cells (50). However, the mechanism by
FIGURE 1

The mechanism of L-ASNase. L-ASNase depletes Asn, and GLNase coactivity hydrolyzes Gln, which further reduces Asn, leading to apoptosis of
leukaemia cells. L-ASNase can inhibit RagB-mTORC1 and thus inhibit protein synthesis. Asp, aspartic acid; Asn, asparagine; Gln, glutamine; Glu, glutamic
acid; ASNS, asparagine synthetase; L-ASNase, L-asparaginase; GS, glutamine synthetase; GLNase, glutaminase.
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which L-ASNase induces demethylation has not been further

confirmed. The study by Akahane et al. focused on the significance

of SPI1 fusion in the methylation status of ASNS. In their cohort

study, all seven SPI1 fusion cases had an ASNS promoter

hypomethylation status, and the ASNS gene expression levels were

significantly higher than those of SPI1 fusion-negative cases (47). This

suggests that genetic modifications may play an important role in the

methylation status of the ASNS promoter region. Yet, it is critical to

confirm the relationship between poor prognosis-associated fusion

genes and ASNS gene methylation status and the molecular

mechanism of L-ASNase-induced demethylation, providing

information for treatment option and improving the prognosis for

ALL patients.
Energy metabolism and autophagy

Several recent studies showed that L-ASNase resistance is related to

phosphatase and tensin homologue (PTEN) deficiency and

phosphatidylinositol-3 kinase (PI3K)/Akt/mTOR signalling pathway.

PTEN is a major negative regulator of the PI3K/Akt/mTOR signalling

pathway. Deletion of PTEN can occur in 20% of children with T-ALL

and plays an important role in the development and prognosis of T-

ALL in children (51–53). Hlozkova et al. proposed that the metabolic

pattern of leukaemic cells is associated with L-ASNase resistance after

investigating the effect of L-ASNase treatment on the extensive

metabolic reprogramming of leukaemic cells. They found that cells

with a high glycolytic response are resistant to L-ASNase (54). They

subsequently confirmed the relationship between glycolytic levels and

L-ASNase sensitivity by investigating the effects of PTEN deficiency on

the metabolism of leukaemic cells and changes in L-ASNase sensitivity.

Furthermore, a recent study by Hlozkova et al. found that, compared to

PTEN wild-type cells, PTEN-deficient T-ALL cells have a higher

glycolytic function and overactivated Akt, and these changes made T-

ALL cells resistant to L-ASNase. Meanwhile, the resistance of PTEN-

deficient cells to L-ASNase could be improved by inhibiting Akt

signalling (53). These results suggest that Akt inhibitors may

contribute to the treatment of T-ALL patients with PTEN mutations,

but further experiments are still needed for verification.

Amino acid deprivation has been shown to induce the activation

of autophagy, which is considered a self-protective mechanism in

tumour cells (55–57). Hermanova et al. showed that L-ASNase can

induce the activation of protective autophagy in leukaemia cells by

inhibiting mTORC1 (21). As in previous studies (58), they suggested

that autophagy could counteract nutrient imbalance by recycling

amino acids, thus resisting the cytotoxicity of L-ASNase (21).

Takahashi et al. also reported that L-ASNase treatment reduced

glycolysis in leukaemia cells while causing mitochondrial damage

and activating autophagy. However, they concluded that the function

of L-ASNase-induced autophagy was to eliminate mitochondrial

damage and thus reducing ROS production rather than amino acid

recycling. Notably, in this study, they demonstrated that by inhibiting

autophagy, the cytotoxicity of L-ASNase could be enhanced and such

synergistic effect works through the ROS-p53 positive feedback loop

(18). In addition, Takahashi et al. and Polak et al. further confirmed

that autophagy inhibitors and L-ASNase have synergistic anti-

leukaemic effects (59, 60). The activation of autophagy is one of the
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mechanisms leading to L-ASNase resistance, but the role of

autophagy in this mechanism still needs to be further refined. The

abovementioned studies suggest that timely detection of autophagy

activation during L-ASNase treatment would be more helpful in the

selection of treatment regimens, and the combination of L-ASNase

with autophagy inhibitors may provide better clinical outcomes.
Host factor

The role of the bone marrow
haematopoietic microenvironment

The tumour microenvironment affects the cytotoxicity of L-

ASNase (61). A study by Iwamoto et al. revealed the interaction

between leukaemic cells and their surrounding microenvironment.

The expression of ASNS is much higher in normal bone marrow

mesenchymal stem cells (MSCs) than in leukaemic lymphoblastoid

cells. In vitro, leukaemic cells can acquire resistance to L-ASNase by

receiving asparagine from MSCs (62). Glutamine synthetase

expression is increased in bone marrow adipocytes after induction

of chemotherapy with L-ASNase, producing more glutamine and thus

protecting leukaemic cells from L-ASNase (63). Future studies

focusing revealing the molecular mechanism of the interaction

between leukaemia cells and the haematopoietic microenvironment

in the bone marrow will further elucidate the anti-leukaemic effect of

L-ASNase and hence improving the L-ASNase therapy.

Neutralizing antibodies and silent inactivation
Due to its immunogenicity, an L-ASNase treatment can cause an

immune response, which is associated with the production of

neutralizing antibodies. Neutralizing antibodies can inactivate L-

ASNase, and thereby reducing efficacy. The production of

neutralizing antibodies in patients without clinical symptoms is

known as silent inactivation, which is usually not clinically evident

and thus difficult for early detection (11, 64, 65). Although it has been

suggested that patients with allergic reactions to E. coli-ASNase and

PEG-ASNase should be switched to Erwinia-ASNase (66), 3-33% of

patients can develop an immune response against Erwinia-ASNase,

resulting in neutralizing antibodies against L-ASNase and thus

resistance to L-ASNase (67, 68).

Other pathways
It has been shown that leukaemic cells can acquire L-ASNase

resistance through the OPRM1-cAMP-caspase pathway. Kang et al.

identified the opioid receptor m1(OPRM1) as a key factor for L-

ASNase resistance in paediatric ALL using unbiased genome-wide

RNAi. They analysed OPRM1 expression levels in primary leukaemic

cells from five children with ALL in relation to L-ASNase sensitivity

and found that cells with low levels of OPRM1 were more resistant to

L-ASNase (69). In addition, Lee et al. identified the Huntington-

associated protein 1 gene (HAP1) as an L-ASNase resistance gene,

and by examining the relationship between HAP1 levels and L-

ASNase sensitivity in the cells of six ALL patients, they found that

the lower HAP1 level, the more resistant they were. Furthermore, they

found that HAP1 deletion prevented Ca2+ release from the

endoplasmic reticulum and downregulated the Calpain-1-Bid-

caspase-3/12 pathway, conferring L-ASNase resistance in leukaemic
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cells (70). Additionally, a recent study demonstrated that if the Wnt

pathway is blocked, cells may degrade proteins via GSK3-dependent

protein ubiquitination and proteasome degradation pathways to

synthesize asparagine to counteract the cytotoxicity of L-ASNase (71).

In conclusion, ASNS expression remains a pivotal factor in the

resistance of L-ASNase in leukaemic cells, and ASNS expression is

closely related to the methylation status of its promoter region. In

addition, activation of autophagy, high glycolysis levels, or inhibition

of apoptotic signalling pathways can all promote L-ASNase resistance.

The gradual uncovering of L-ASNase resistance mechanisms further

emphasizes the significance of individualized therapy and continues

to provide new ideas for the further development of individualized

combination therapy regimens.
Application of L-ASNase in other
childhood leukaemia

Although L-ASNase is currently used primarily for the treatment

of ALL and some NK/T-cell lymphomas, there is growing evidence

that L-ASNase can play a critical role in the treatment of other

childhood leukaemias (26).

Dübbers et al. found that leukaemic cells from M1, M4, and M5

subtypes had negative ASNS staining among all FAB subtypes of

AML and that AML-M5 had the lowest ASNS activity (72). This is in

agreement with the results of Okada et al., who found L-ASNase to be

effective against specific subtypes of AML (M1, M4, M5) in vitro (73).

Additionally, according to Buaboonnam et al., patients with

refractory/relapsed AML who received treatment with L-ASNase in

combination with MTX had 1- and 2-year survival rates of 35.6% and

17.8%, respectively (74). Whether this regimen can be used as a

treatment for patients with refractory/relapsed AML after intensive

therapy still needs further study. More recently, Chen et al. reported

that the combination of L-ASNase with MIT and Ara-C for AML

could enhance the inhibition of tumour cell proliferation (75). It is the

current belief that the toxic effect of L-ASNase on AML may be

related to GLNase activity. Glutamine is a nutrient that AML cells

require. L-ASNase can remove glutamine and thus inhibit the growth

of AML cells. However, L-ASNase simultaneously promotes the

production of glutamine synthetase, leading to L-ASNase resistance

(76, 77). Thus, further research is still needed to clarify the role of the

GLNase activity of L-ASNase. Furthermore, as in ALL, it has been

shown that the bone marrow haematopoietic microenvironment

protects AML cells. Cells in the bone marrow microenvironment

can either release ASNS to counteract L-ASNase action or release

lysosomal cysteine protease B (CTSB) to inactivate L-ASNase, which

confers L-ASNase resistance (78)

The potential of L-ASNase in CML treatment has been

uncovered. Song et al. found that L-ASNase inhibited growth and

induced apoptosis in the human CML cell Lines K562 and KU812,

among which the apoptosis induction of K562 cells by L-ASNase was

dependent on caspase3 (79). This discovery makes it possible to use L-

ASNase in the treatment of CML. Trinh et al. also demonstrated that

L-ASNase could inhibit the growth of CML cells, and the combination

of L-ASNase and imatinib can significantly induce CML cell death by

downregulating antiapoptotic factors such as Bcl-2 and upregulating
Frontiers in Oncology 05
proapoptotic factors such as Bim, and thereby eradicating CML stem

cells (80). A recent study by Konhauser et al. also demonstrated the

synergistic effect of L-ASNase in combination with etoposide on

killing K562 cells (81).

With the continuous development of studies on the metabolic and

nonmetabolic effects of L-ASNase on paediatric leukaemia, studies on

the therapeutic effects of L-ASNase on other non-ALL leukaemia are

proliferating. These studies suggest that L-ASNase may provide a new

option for the treatment of other paediatric leukaemias. These results

are based on the enzymatic activity of L-ASNase, which depletes

asparagine and glutamine in the blood and inhibits mTOR, which in

turn affects protein synthesis and induces apoptosis. Meanwhile, these

studies found that L-ASNase caused the activation of protective

autophagy in tumour cells, so the combination of L-ASNase and

autophagy inhibitors will benefit both ALL patients and non-

ALL patients.

Novel L-asparaginase

As mentioned above, L-ASNase is a xenogeneic protein agent that

is highly immunogenic. Efficacy is compromised during L-ASNase

treatment because of immunological or nonimmunological side

effects. Erwinia-ASNase is often chosen as an alternative treatment

for patients with E.coli-ASNase allergy (82), and PEG-ASNase has

been introduced into the clinic for its longer half-life and lower

immunogenicity. However, none of these variants can completely

solve the problem. Neutralizing antibodies can still be produced and

therefore inactivating L-ASNases (83, 84). To address these issues,

several approaches have been used to develop novel L-ASNase

preparations, such as reduced GLNase coactivity of L-ASNase,

enzyme engineering modifications, and vector packaging.

Since most of the nonimmunological side effects of L-ASNase are

attributed to GLNase activity, reducing the GLNase coactivity of L-

ASNase may effectively ameliorate the side effects of L-ASNase.

Consequently, L-ASNase variants with or without negligible

GLNase activity were generated. Wolinella succinogenes-derived L-

ASNase (WOA) was the first reported L-ASNase variant with low

GLNase activity that did not suppress immune responses in mice (85–

87). Reinert et al. showed no significant changes in glutamine in the

liver and spleen of mice treated with theWOA variant compared to L-

ASNase (88). Recent studies have also identified a guinea pig-derived

humanized variant of L-ASNase that is completely devoid of GLNase

activity. This variant has reduced immunogenicity while maintaining

anti-leukaemic activity (89, 90).

Enzyme engineering has been widely employed to change the

characteristics of L-ASNase in search of L-ASNase with low

immunogenicity, a longer half-life, and lower GLNase activity.

Since L-ASNase can be cleaved by CTSB and aspartate

endopeptidase (78, 91), Offman et al. used site-directed mutagenesis

to design an L-ASNase variant that is resistant to CTSB cleavage and

has lower immunogenicity. They also designed a variant with low

GLNase activity, N24A/R159S, which reduced the toxicity of L-

ASNase (25). Furthermore, in a recent study, Maggi et al. designed

an N24S mutant with improved protease resistance and

thermostability in response to the instability and brief half-life of E.

coli-ASNase (92).
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In addition to the above methods, carrier packaging can also be

used to reduce the immunogenicity of L-ASNase and make it more

stable in vivo. Common carriers include erythrocytes, liposomes,

nanocapsules, and microcapsules. The performance of these L-

ASNases has also been demonstrated in vivo and in vitro (93–95).

For instance, because it is encapsulated within cells, Eryaspase, a

product that encapsulates E. coli-ASNase into erythrocytes, has a long

half-life similar to that of erythrocytes and has low immunogenicity

(96–98). Last year, Eryaspase was approved by the FDA for the

treatment of ALL patients who are allergic to PEG-ASNase (99).
Discussion

In summary, L-ASNase is still the cornerstone drug for the

treatment of paediatric ALL. In addition to affecting the protein

synthesis and amino acid metabolism of ALL cells, L-ASNase can

affect energy metabolism. Also, changes in energy metabolism and

autophagy in ALL cells may affect the efficacy of L-ASNase. The focus

of current research on the mechanism of L-ASNase resistance is

gradually shifting from the protein level to the gene expression

regulation level. Meanwhile, there are studies that elucidate the

relationship between leukaemia metabolic profiles and autophagy and

L-ASNase resistance. Although the mechanism of L-ASNase resistance

has not been fully elucidated to date, these studies suggested that the

combination of fatty acid oxidation inhibitors or autophagy inhibitors

and L-ASNase can provide better anti-leukaemic effects, which provide

brand-new options for the future treatment of childhood leukaemia.

The immunogenicity of L-ASNase is a reason for its drug

resistance. Using carrier packaging L-ASNase such as erythrocytes

and nanocapsules can effectively reduce its immunogenicity and

therefore L-ASNase can work better. The performance of these L-

ASNases has also been demonstrated in vivo. Moreover, the necessity

of GLNase activity for the anticancer effect of L-ASNase is still highly

controversial. Although the development of L-ASNase variants with

low GLNase activity continues, the necessity of GLNase activity and

the level of GLNase activity that should be maintained for L-ASNase

still needs to be further investigated. Moreover, some glutamine-
Frontiers in Oncology 06
dependent haematological tumours may not benefit from L-ASNase

variants without GLNase activity.

Finally, addressing the above issues will not only help to solve the

problem of ALL resistance to L-ASNase but also help to explain the

potential application of L-ASNase in other tumours.
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