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Functional roles of FAP-a in
metabolism, migration and
invasion of human cancer cells

Noriko Mori1*, Jiefu Jin1, Balaji Krishnamachary1,
Yelena Mironchik1, Flonné Wildes1, Farhad Vesuna1,
James D. Barnett1 and Zaver M. Bhujwalla1,2,3*

1Division of Cancer Imaging Research, The Russell H. Morgan Department of Radiology and
Radiological Science, The Johns Hopkins University School of Medicine, Baltimore, MD, United States,
2Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine,
Baltimore, MD, United States, 3Department of Radiation Oncology and Molecular Radiation Sciences,
The Johns Hopkins University School of Medicine, Baltimore, MD, United States
Fibroblast activation protein-a (FAP-a) is a transmembrane serine protease that is

attracting significant interest as it is expressed by a subgroup of cancer-associated

fibroblasts that play a role in immune suppression and cancer metastasis. FAP-a is

also expressed by some cancer cells, such as melanoma, colorectal and breast

cancer cells. Triple negative breast cancer (TNBC) is an aggressive cancer that

urgently requires identification of novel targets for therapy. To expand our

understanding of the functional roles of FAP-a in TNBC we engineered a human

TNBC cell line, MDA-MB-231, to stably overexpress FAP-a and characterized

changes in metabolism by 1H magnetic resonance spectroscopy, cell proliferation,

migration characterized by wound healing, and invasion. FAP-a overexpression

resulted in significant alterations in myoinositol, choline metabolites, creatine, and

taurine, as well as a significant increase of migration and invasion, although

proliferation remained unaltered. The increase of migration and invasion are

consistent with the known activities of FAP-a as an exopeptidase and

endopeptidase/gelatinase/collagenase in tissue remodeling and repair, and in cell

migration. We additionally determined the effects of FAP-a overexpression on the

human fibrosarcoma HT1080 cell line that showed increased migration,

accompanied by limited changes in metabolism that identified the dependency of

the metabolic changes on cell type. These metabolic data identify a previously

unknown role of FAP-a in modifying cancer cell metabolism in the TNBC cell line

studied here that may provide new insights into its functional roles in

cancer progression.

KEYWORDS

FAP-a, metabolism, migration, invasion, breast cancer, magnetic resonance spectroscopy,
wound healing
Abbreviations: Ace, acetate; Ala, alanine; Asp, aspartate; BME, basement membrane extract; CAFs, cancer

associated fibroblasts; CCK-8, cell counting kit-8; Chk-a, choline kinase-alpha; Cho, choline; Cr, creatine; FAP-

a, Fibroblast activation protein a; FBS, fetal bovine serum; For, formate; Fum, fumarate; Gln, glutamine; Glu,

glutamate; Gly, glycine; GPC, glycerophosphocholine; GSH, glutathione; His, histidine; Ile, Isoleucine; Lac,

lactate; Leu, leucine; MI, Myo-inositol; MRS, magnetic resonance spectroscopy; PC, phosphocholine; PCr,

phosphocreatine; pFAK, phosphorylated focal adhesion kinase; Phe, phenylalanine; Tau, taurine; tCho, total

choline; TNF-a, tumor necrosis factor alpha; Tyr, tyrosine; Val, valine; WT, wild type.
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Introduction

Fibroblast activation protein a (FAP-a) is a dimeric 170-kDa

membrane-bound protease that has exopeptidase and endopeptidase/

gelatinase/collagenase activity (1–4). FAP-a is overexpressed in more

than 90% of reactive stromal fibroblasts of human epithelial cancers,

including colorectal, bladder, breast, ovarian, and lung carcinomas (5, 6).

FAP-a-positive cancer associated fibroblasts (CAFs) have been found to

induce immunosuppression via STAT3-CCL2 signaling (7), and by

promoting immune checkpoint blockade resistance (8). Although

primarily expressed by CAFs, FAP-a expression has also been detected

in breast cancer, astrocytoma, melanoma, colorectal cancer, and oral

squamous cell carcinoma cells (1, 9–12). Outside of cancer, FAP-a
fibroblasts play a role in preserving tissue homeostasis in skeletal muscle,

and FAP-a is expressed by PDGFR-a+, Sca-1+ multipotent bone marrow

stromal cells (13). FAP-a is also implicated in human pathologies such as

fibrosis, arthritis, atherosclerosis and autoimmune diseases (14).

Because of the expression of FAP-a by CAFs and by some malignant

cells, there is heightened interest in targeting FAP-a in cancer.

Downregulating FAP-a with siRNA in SKOV3 cells inhibited ovarian

tumor growth in nude mice (15) whereas FAP-a overexpression in

SKOV3 cells promoted ovarian cancer cell proliferation, drug resistance,

invasiveness and migration in vitro, and tumor growth in vivo (BALB/c-

nu/nu mice) (16). FAP-a and a catalytically inactive mutant of FAP-a in

human breast cancer cells increased tumor growth in vivo and

invasiveness in culture (17). In melanoma cells, however, transfection

of FAP-a resulted in decreased tumorigenicity (18). Clearly, an

expansion of the functional roles of FAP-a is necessary to expand our

understanding of this important target in cancer and in other diseases.

More than 15-25% of all breast cancers are triple negative lacking

expression of the estrogen receptor (ER), progesterone receptor (19), and

the human epidermal growth factor receptor 2 (HER2) (20). These cancers

tend to be more common in premenopausal women (21). Treatment for

TNBC is challenging because TNBCs have low response to endocrine

therapy or molecular targeted therapy, and are more aggressive (19–21).

Here, we engineered triple negative MDA-MB-231 human breast

cancer cells with FAP-a overexpressed, to understand the role of

FAP-a in cancer cell metabolism using 1H magnetic resonance

spectroscopy (MRS). We also characterized the effect of FAP-a on

proliferation, migration and invasion by these cells. We identified

significant changes in metabolism that identify, for the first time, the

role of FAP-a in cancer cell metabolism. We identified increased

migration and invasion that are consistent with the known roles of

FAP-a. We additionally determined the effects of FAP-a
overexpression on the human fibrosarcoma HT1080 cell line.

HT1080 cells overexpressing FAP-a displayed increased migration,

accompanied by limited changes in metabolism, identifying the

dependency of the metabolic changes on cell type.
Materials and methods

Cell culture

Triple negative MDA-MB-231 wild type (231 WT) human breast

cancer cells and human fibrosarcoma HT1080 cells were obtained

from American Type Culture Collection (ATCC, Manassas, VA,
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USA), and grown in DMEM medium supplemented with 10% fetal

bovine serum (FBS; Sigma-Aldrich, St. Louis, MO). MDA-MB-231

and HT1080 cells stably expressing FAP-a (231-FAP and HT-FAP)

were engineered by transducing these cells with lentivirus encoding

the gene for human FAP (Accession No. NM_004460.3) that was

subcloned into lentiviral vector pMA3211. Genetically engineered

FAP-a overexpressing MDA-MB-231 cells were maintained in

DMEM medium supplemented with 10% fetal bovine serum (FBS)

and puromycin (4 µg/ml). 2 µg/ml puromycin was used for the HT-

FAP cells. Cells were maintained in a humidified atmosphere with 5%

CO2 in air at 37°C, and were tested routinely for mycoplasma

contamination. Experiments were performed with puromycin free

medium. Cell count and cell size measurements were performed using

an automated cell counter (Invitrogen Countess, Thermo fisher

scientific, Waltham, MA, USA).
Cell viability/proliferation assay by CCK-8

Five thousand cells were seeded in each well of a 96 well plate and

cultured overnight. At 24 h after cell seeding, cell viability was

determined with a cell counting kit-8 assay (CCK-8, Dojindo

Molecular Technologies, Inc. MD, USA), using the manufacturer’s

instructions. Cells were cultured in fresh medium with or without

10% FBS and cell viability was determined at day 3 and day 4 using

the CCK-8 assay. Cell viability was measured at 450 nm (A450) using

a 1420 Multilabel counter (Perkin Elmer, Waltham, MA, USA) after 2

h incubation at 37°C with the CCK-8 reagent. In the CCK-8

colorimetric assay the amount of the formazan dye generated by

the activity of dehydrogenases is directly proportional to the number

of living cells. Cell viability was normalized to measurements at day 1.

Doubling times of cells cultured in complete medium were

determined using A450 values at day 1 (A1) and day 4 (A4) for 72

h culture (t) using the equation: doubling time = t*ln (2)/(ln(A4)-ln

(A1)). Four independent experiments were performed.
Immunoblot analysis

Immunoblots were obtained from cells cultured in medium with

or without serum (1-3 days). Whole-cell extracts were prepared by

lysing cells with RIPA lysis buffer supplemented with a protease

inhibitor cocktail (Sigma-Aldrich, St Louis, MO, USA). Equal

amounts of total protein (60 or 100 µg) were resolved on a 7.5%

SDS-PAGE gels or 4-20% precast polyacrylamide gel (Bio-Rad

Laboratories, Hercules, CA, USA) and transferred to a

nitrocellulose membrane (Bio-Rad). After blocking in 5% milk-

TBST (TBS Tween) or 5% BSA-TBST, the membrane was

separately probed with antibodies against FAP-a (R&D Systems Inc

AF3715. Minneapolis, MN, USA), choline kinase-alpha (Chk-a)
(Proteintech Group, Chicago custom-made, IL, USA), tumor

necrosis factor alpha (TNF-a), (Cell Signaling Technology #6945,

Danvers, MA, USA), focal adhesion kinase (FAK) (Cell Signaling

Technology #3285), and phosphorylated FAK (pFAK) (Thermo

Fisher Scientific #700255). Anti-GAPDH antibody (Sigma-Aldrich

G8795) was used for loading assessment. Secondary antibodies were

horseradish peroxidase conjugated anti-sheep (R&D Systems Inc.
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F0128), anti-mouse (GE Healthcare NA931, Chicago, IL, USA), or

anti-rabbit (GE Healthcare NA934). The signal was visualized using

ECL Plus reagents (Thermo Fisher Scientific). Band intensities were

measured using ImageJ and the relative intensities of FAP-a/
GAPDH, Chk-a/GAPDH, FAK/GAPDH, pFAK/GAPDH, and

TNF-a/GAPDH were obtained. Band intensity ratios for Chk-a,
FAK, pFAK and TNF-a were normalized to the average values

from 231 WT cells with FBS.
Dual-phase extraction and 1H magnetic
resonance spectroscopy analysis

Three million cells per flask were seeded, and cultured for 2 days in

cultured media with FBS (+FBS), or medium was changed to serum free

medium next day after seeding and cells were cultured for 2 more days

(-FBS). Cells were collected by trypsinization and live cells were counted

based on trypan blue exclusion. More than 20 million cells were used for

cell extraction. Both water- and lipid- soluble extract fractions were

obtained using a dual-phase extraction method. Briefly, pelleted cells

were mixed with 3mL of ice-cold methanol and gently vortexed. SixmL

of chloroform were added and ultrasonication under ice-cold conditions

was performed for 30 s 3 times with a 1s pulse interval. Finally, 2mL of

water were added and mixed with a sonicator. All procedures were

performed on ice, and samples were stored at 4°C overnight for phase

separation and later centrifuged at 7,500 g at 4°C for 20min. The aqueous

phase containing water-soluble metabolites was collected. Methanol in

the aqueous phase was first evaporated under nitrogen gas, and any water

remaining in the aqueous phase was lyophilized. Dried aqueous phase

extracts were re-suspended in 0.6 mL of a buffer solution at pH 7.4

consisting of 89% deuterated water (D2O), 10% 10x PBS, 1% D2O with

0.75 wt % TSP (3-(trimethylsilyl) propionic 2,2,3,3-d4 acid) sodium salt

used as an internal standard for 1H MRS. Lipid-soluble extracts were

resuspended in 0.4mL of chloroform-D and 0.2mL of methanol-D4

with 0.05 v/v % tetramethylsilane (TMS) (Cambridge Isotope

Laboratories, Inc., Tewksbury, MA, USA) used as an internal standard.
1H MR spectra of aqueous and lipid phase extracts were acquired

on an Avance III 750 MHz MR spectrometer (Bruker BioSpin Corp.

Billerica, MA, USA) equipped with a 5 mm probe. Spectra from the

aqueous phase were acquired with water suppression using pre-

saturation and a single pulse sequence with the following parameters:

spectral width of 15495.87 Hz, data points of 64K, 90° flip angle,

relaxation delay of 10 sec, acquisition time of 2.11 sec, 32 scans with 8

dummy scans, receiver gain 128. Spectra of lipid phase were acquired

with the same parameters as aqueous phase without water suppression.

Spectra were analyzed using Bruker TopSpin 3.6.1 software

(Bruker BioSpin Corp.). Metabolites were quantified as previously

described (22). Integrals of resonances were determined and

normalized to number of cells and compared to the TSP standard

(aqueous phase) or TMS standard (lipid phase) to obtain relative

concentrations in arbitrary units (A.U.).
Wound healing assay

Two million 231 WT or 231-FAP cells per well, or one million

HT1080 or HT-FAP cells were seeded on 6 well plates. To minimize
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proliferation effect, serum-free medium was added to each well the

following day. After 24 h of serum starvation, cells were wounded

with a p200 pipette tip, washed twice with HBSS and fresh serum free

medium was added. Images from the wounded region were taken

immediately (0 h), and at 6 h, 24 h and 48 h after wounding using an

inverted microscope (Nikon Eclipse TS100) with a 4 x objective lens.

Three to four images were analyzed using Fiji (ImageJ) at each time

point to characterize changes in the wound area. Four individual

experiments were performed.
Invasion assay

Invasion assays were performed with a CultreCoat 96 well

basement membrane extract (BME) cell invasion assay kit

(Trevigen, Inc. Gaithersburg, MD) using the manufacturer’s

instructions. Cells were starved overnight using serum-free medium

and 2.5 x 104 cells in serum-free medium were seeded in the top

chamber. Medium with 10% FBS was added to the bottom chamber

and the plate was incubated at 37°C in a CO2 incubator for 24 h

following which cell invasion was quantified according to the

manufacturer’s protocol. Invasion was characterized with cells from

three different passages. Invasion was normalized to values obtained

from 231 WT cells.
Statistical analysis

Data are expressed as Mean ± Standard Error Mean (SEM).

Statistical significance was evaluated using a one-tailed unpaired

Student’s t-test. P values ≤ 0.05 were considered to be significant.

Three or more samples were used for the data analysis, unless

otherwise noted.
Results

Characterization of FAP-a protein and cell
size in FAP-a overexpressing cells

Expression levels of FAP-a protein were several fold higher in

231-FAP cells compared to the undetectable levels in 231 WT cells as

shown in Figures 1A, B. FAP-a protein expression remained

unchanged up to 3 days without serum. Similar results were

obtained for HT-FAP cells as shown in Supplementary Figures 1A,

B. Overexpression of FAP-a did not alter cell size in either cell line as

determined from over 5,000 cells using an automated cell counter.
Cell proliferation with CCK-8 assay

To investigate whether FAP-a altered proliferation either in the

presence or absence of serum growth factors, cell proliferation rates

were determined by a CCK-8 assay as shown in Supplementary

Figures 2A, B. Cell proliferation of 231 WT and 231-FAP cells was

not significantly different with or without serum, although 231-FAP

had a slightly higher proliferation rate when supplemented with
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serum (Supplementary Figure 2A). Cell doubling times determined

from CCK-8 data with serum at day 1 and day 4 were also comparable

between 231 WT and 231-FAP cells with values of 30.34 ± 2.4 h vs

28.97 ± 2.2 h. Similarly, HT1080 WT and HT-FAP cells did not show

a significant difference in doubling time with or without serum up to

day 3 or without serum up to day 4 (Supplementary Figure 2B).

However, HT-FAP cells showed a significant increase in doubling

time with serum at day 4 compared to HT1080 WT cells.
Cell metabolite levels with 1H MRS

To determine if FAP-a altered cell metabolism, we quantified

water and lipid soluble metabolites obtained from 1H MR spectra of

cell extracts. Cells were cultured with serum (+FBS) or without serum

for 2 days (-FBS). Representative 1H MR spectra obtained from the

aqueous phase of extracts from 231 WT and 231-FAP cells cultured

with serum are presented in Figures 2A, B, respectively.

A comparison of the relative metabolite concentrations in

arbitrary unit (A.U.) in 231 WT and 231-FAP cells are presented in

Figures 3A for choline metabolites and in Figure 3B for other

metabolites for cells cultured with FBS (+FBS) and in Figure 3C for

choline metabolites and Figures 3D for other metabolites for cells

cultured without FBS (-FBS).

When 231 WT and 231-FAP cells were cultured with serum,

significantly higher levels of choline (Cho) and myo-inositol (MI) and

significantly lower levels of phosphocholine (PC), total creatine (Cr)

(Cr + phosphoCr (PCr)), Cr alone and taurine (Tau) were observed in

231-FAP cells compared to 231 WT cells. The largest difference was

observed in the increase of MI in 231-FAP cells. Withdrawing serum

resulted in similar significant changes in Cho and MI.

There were no significant differences in amino acids (leucine,

isoleucine, valine, alanine, glutamate, glutamine, aspartate, glycine,

histidine, tyrosine, phenylalanine), and organic acids (lactate, acetate,

fumarate, and formate) (Supplementary Figure 3).

FAP overexpression in HT1080 cells in serum free medium

resulted in a significant increase of glycerophosphocholine (GPC)

in serum free medium as shown in Supplementary Figure 4.

FAP overexpression did not alter MR detectable lipid metabolites

including fatty acid, cholesterol, phosphatidylcholine +

sphingomyelin, and phosphatidylethanolamine in either 231-FAP

or HT-FAP cells as shown in Supplementary Figures 5A–D.
Migration with wound healing assay

To investigate the effects of FAP-a on cell migration, we

performed a wound healing assay. The assays were done with cells

cultured in serum-free medium to avoid contribution from cell

proliferation, as 231 WT and 231-FAP had comparable

proliferation without serum. Representative images acquired at 0, 6,

24, and 48 h after cells were wounded are presented in Figure 4A to

demonstrate the acceleration of wound closure by FAP cells

compared to the WT cells. Almost complete closure of the wound

by 48 h was observed with 231-FAP cells. Data averaged over four

independent experiments are presented in Figure 4B confirming the

significant reduction of the wound area in 231-FAP cells compared to
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231 WT cells at all time points. By 48 h the wound area was almost

undetectable in the 231-FAP cells.

We performed a wound healing assay with HT1080 cells to

determine if we could replicate this observation in a different cell

line. Similar to 231-FAP cells, wound closure by 48 h was observed in

HT-FAP cells as shown in Supplementary Figures 6A, B. Like 231-

FAP cells, under serum starvation there were no significant

differences in proliferation between HT1080 WT and HT-FAP cells

as previously shown in Supplementary Figure 2B.
Invasion with basement membrane extract
cell invasion assay

Since we observed significant differences in metabolism and

migration with FAP expression in 231 cells, we further investigated

the role of FAP-a in altering cell invasion, using a cell invasion assay.

As shown in Figure 5, we detected a significant increase of ~21%

invasion in 231-FAP cells compared to 231 WT cells.
Protein levels with immunoblot analysis

Because we observed changes in choline metabolites with FAP-a
overexpression, we characterized Chk-a protein levels using

immunoblotting as shown in Figures 6A, B. Chk-a protein levels

were comparable in 231 WT and 231-FAP cells when cultured in

medium with 10% FBS. We further investigated Chk-a protein levels
A

B

FIGURE 1

(A) Representative immunoblots of FAP-a with GAPDH used as
loading control in 231 WT and 231-FAP cells cultured with (+) or
without (–) FBS. -1d: 1 day without FBS. (B) Quantitative analysis of the
immunoblots represented as band intensity ratio of FAP-a to GAPDH
demonstrating significant increase of FAP-a in 231-FAP cells
compared to 231 WT cells. Values represent Mean ± SEM (n = 2-3).
n.d., non-detectable.
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after serum starvation (1-3 days) since the wound healing and

invasion assays were done in serum free medium. A reduction of

Chk-a in 231 WT cells was observed within 1 day of serum starvation

that progressively decreased with time, whereas 231-FAP cells

maintained Chk-a levels up to 2 days after serum starvation. Chk-

a level decreased in both cell lines by day 3 of serum starvation.

To further understand the molecular causes of increased wound

healing and invasion, we characterized TNF-a in 231 WT and 231-

FAP cells as shown in Figures 6C, D. Similar to the trend of Chk-a,
TNF-a protein levels were comparable in 231 WT and 231-FAP cells

when cultured with 10% FBS. Under serum starvation, however,

TNF-a in 231-FAP showed a sustained increase starting from day 1

and over the 3 days of serum starvation compared to cells cultured

with serum. By day 2 of starvation 231-FAP cells had significantly

higher TNF-a compared to the same cells with FBS as shown

in Figure 6D.

We also investigated the effects of FAP-a on focal adhesion kinase

expression (FAK). As shown in Figure 7, there were no differences in

FAK (Figures 7A, B) and phosphorylated FAK (Figures 7C, D)

expression levels between 231 WT and 231-FAP cells.
Discussion

FAP-a is a transmembrane serine protease that is known to

exhibit exopeptidase and endopeptidase/gelatinase/collagenase

activity (1–4). Here we established, for the first time, that FAP-a
overexpression in triple negative MDA-MB-231 breast cancer cells

resulted in significant changes in metabolism. We observed
Frontiers in Oncology 05
A B

C D

FIGURE 3

Relative concentrations in arbitrary units (A.U.) of (A) choline
metabolites (1: Cho, 2: GPC, 3: PC, 4: total choline (tCho = Cho + PC
+ GPC) and (B) other metabolites (5: GSH, 6: Cr and PCr, 7: Cr, 8: Tau,
9: MI) from 231 WT and 231-FAP cells with FBS. (C) Choline
metabolites and (D) other metabolites from 231 WT and 231-FAP cells
without FBS (-FBS) for 2 d. 1H MRS data are from aqueous phase cell
extracts. Values represent Mean ± SEM (n = 3). ** P < 0.01, * P ≤ 0.05.
A

B

FIGURE 2

Representative 1H MR spectra obtained from the aqueous phase of (A) 231 WT and (B) 231-FAP cells cultured with serum. The spectral region from 6.3 -
8.5 ppm was magnified x15. Amino acids; 1: Leucine (Leu); 2: Isoleucine (Ile); 3: Valine (Val); 4: Alanine (Ala); 5: Glutamate (Glu); 6: Glutamine (Gln); 7:
Aspartate (Asp); 8: Glycine (Gly); 9: Histidine (His); 10: Tyrosine (Tyr); 11: Phenylalanine (Phe). Choline metabolites; 12: Choline (Cho); 13:
Glycerophosphocholine (GPC); 14: Phosphocholine (PC). Organic acids; 15: Lactate (Lac); 16: Acetate (Ace); 17: Fumarate (Fum); 18: Formate (For). Other
metabolites; 19: Glutathione (GSH); 20: Creatine (Cr) and Phosphocreatine (PCr); 21: Cr; 22: Taurine (Tau); 23: Myo-inositol (MI).
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acceleration of migration, as detected by a wound healing assay, and

increased invasion. Cell proliferation, however, remained unaltered

with FAP-a overexpression. FAP-a overexpression in the HT1080

fibrosarcoma cell line resulted in metabolic changes in GPC with a

comparable effect in the wound healing assay, suggesting that

metabolic changes induced by FAP-amay depend upon the cell type.

Of the metabolic changes observed in 231-FAP cells, the magnitude

of the increase of myoinositol was the largest when cells were cultured

with FBS. This significant change was consistent when cells were cultured
Frontiers in Oncology 06
without FBS for 2 days. Long known as a lipotropic factor, MI is a

component of cell membrane phospholipids, a precursor of several

second messengers such as inositol triphosphate (IP3), diacylglycerol

(DAG), and inositolphosphoglycans (IPG) (23), and mediates

osmoregulation (24). MI is an essential factor for cell survival and

growth in normal and malignant human cells (25). In tumors,

however, MI was found to have tumor suppressive effects (24). The

anticancer effects of MI alone or in combination with inositol

hexaphosphate (IP6) were shown in colon, breast, and metastatic lung

cancer models (26–28). Further investigation is necessary to understand

the FAP-a mediated increase of MI and its impact on the increased

migration and invasion observed here.

Free choline also increased with FAP-a overexpression with and

without FBS in MDA-MB-231 cells. Choline is converted to

phosphocholine (PC) by Chk-a (29, 30). There were no differences

in Chk-a protein levels when cells were cultured in medium

containing 10% FBS. However, under serum starvation, Chk-a
remained higher in 231-FAP cells compared to 231 WT cells. The

potential role of FAP-a in increasing choline transport merits further

investigation. Alterations of Cho and PC levels did not affect the level

of PtdCho analyzed in the lipid phase of cell extracts.

With FBS, phosphocreatine, creatine, and taurine also

significantly decreased with FAP-a overexpression suggesting

changes in energy metabolism (31) and in osmoregulation that is

mediated by taurine (32).
A

B

FIGURE 4

(A) Representative images from wound healing assay. Images were acquired at 0 h, 6 h, 24 h and 48 h after wounds were created. (B) Wound areas
measured using ImageJ and compared to areas at 0 h (100%). Values represent Mean ± SEM (n = 4). ** P < 0.01, * P ≤ 0.05.
FIGURE 5

Invasion normalized to 231 WT cells in response to 10% FBS for 231
WT and 231-FAP cells (n = 3) over a 24 h period. Values represent
Mean ± SEM. * P ≤ 0.05.
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The absence of cell proliferation changes with FAP-a
overexpression in 231-FAP cells are consistent with previous

studies that showed that FAP-a overexpression in MDA-MB-231

cells increased tumor growth and vascularization without increasing
Frontiers in Oncology 07
cell proliferation (33, 34). Results from these studies suggest that FAP-

a participates in “tumor-stroma cross-talk”, with the tumor

microenvironment playing an important role in FAP-a promoting

tumor growth.
A B

DC

FIGURE 6

Representative immunoblots of (A) Chk-a and (C) TNF-a with GAPDH used as loading control in 231 WT and 231-FAP cells cultured with (+) or without
(–) FBS. Quantitative analysis of immunoblots represented as band intensity ratio of (B) Chk-a (n = 2-3) and (D) TNF-a (n = 3) to GAPDH, normalized to
231 WT FBS+ values. -1d: 1 day without FBS. Values represent Mean ± SEM. ** P < 0.01, * P ≤ 0.05, for the same cell line. ## P < 0.01, # P ≤ 0.05
between 231 WT and 231-FAP cells.
A B

DC

FIGURE 7

Representative immunoblots of (A) focal adhesion kinase (FAK) and (C) phosphorylated FAK (pFAK) with GAPDH used as loading control in 231 WT and
231-FAP cells cultured with (+) or without (-) FBS. Quantitative immunoblot analysis represented as band intensity ratio of (B) FAK (n = 2-3) and (D) pFAK
(n = 3) to GAPDH, normalized to 231 WT FBS+ values. -1d: 1 day without FBS. Values represent Mean ± SEM.
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The accelerated wound closure and migration observed by us is

different from previous studies (33) where FAP-a overexpression in

MDA-MB-231 cells decreased migration by reducing the level of

phosphorylated focal adhesion kinase (pFAK) level which is reported

as a modulator of migration and invasion (35). These previous studies

were performed over a relatively short time-window of 4 h and

without serum starvation. Although we did not observe a decrease of

FAK or pFAK with or without starvation, our wound healing

migration assay was performed with serum free medium to

minimize effects due to cell proliferation.

Similar to MDA-MB-231 cells, HT1080 cells also showed

accelerated wound healing with FAP-a overexpression. The

increase of migration and invasion observed here are consistent

with the known roles of FAP-a as an exopeptidase and

endopeptidase/gelatinase/collagenase in tissue remodeling and

repair, and in cell migration (1–4). FAP-a overexpressing

fibroblasts were found to promote pancreatic cancer cell invasion

by remodeling the stromal extracellular matrix (36). The increased

migration and invasion is also supported by our observations that

unlike 231 WT cells that showed a decrease, 231-FAP cells

maintained Chk-a levels higher than 231 WT cells or up to 2 days

of serum starvation. TNF-a showed a sustained increase starting from

day 1 and over the 3 days of serum starvation in 231-FAP cells

compared to 231 WT cells. Chk-a promotes an aggressive phenotype

(37–41). Exogenous TNF-a has been shown to promote breast cancer

cell migration accompanied by an increased secretion of MMP9, as

well as upregulate the expression of CD26 and FAP-a in a dose-

dependent manner (42).

Our studies have identified new functional roles of FAP-a that

expand our understanding of this important target in triple negative

MDA-MB-231 human breast cancer cells. The metabolic changes

observed in MDA-MB-231 cells were not replicated in HT1080 cells

suggesting that the role of FAP-a in altering metabolism may depend

upon the cell type. Future studies should investigate changes induced

by FAP-a overexpression in CAFs as well as in other cancer cells.

These studies should also expand upon the molecular mechanisms

underlying the role of FAP-a in inducing metabolic changes.
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