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Objective: To establish a nomogram based on non-enhanced computed

tomography(CT) imaging radiomics and clinical features for use in predicting

the malignancy of sub-centimeter solid nodules (SCSNs).

Materials andmethods: Retrospective analysis was performed of records for 198

patients with SCSNs that were surgically resected and examined pathologically at

two medical institutions between January 2020 and June 2021. Patients from

Center 1 were included in the training cohort (n = 147), and patients from Center

2 were included in the external validation cohort (n = 52). Radiomic features were

extracted from chest CT images. The least absolute shrinkage and selection

operator (LASSO) regression model was used for radiomic feature extraction and

computation of radiomic scores. Clinical features, subjective CT findings, and

radiomic scores were used to build multiple predictive models. Model

performance was examined by evaluating the area under the receiver

operating characteristic curve (AUC). The best model was selected for efficacy

evaluation in a validation cohort, and column line plots were created.

Results: Pulmonary malignant nodules were significantly associated with

vascular alterations in both the training (p < 0.001) and external validation (p <

0.001) cohorts. Eleven radiomic features were selected after a dimensionality

reduction to calculate the radiomic scores. Based on these findings, three

prediction models were constructed: subjective model (Model 1), radiomic

score model (Model 2), and comprehensive model (Model 3), with AUCs of

0.672, 0.888, and 0.930, respectively. The optimal model with an AUC of 0.905
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was applied to the validation cohort, and decision curve analysis indicated that

the comprehensive model column line plot was clinically useful.

Conclusion: Predictive models constructed based on CT-based radiomics with

clinical features can help clinicians diagnose pulmonary nodules and guide

clinical decision making.
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Introduction

With increasing use of chest computed tomography(CT) in

health check-ups and preoperative examinations, many pulmonary

nodules that are difficult to identify on a chest X-ray are being

detected (1). Common pulmonary nodules are usually classified

into three categories: pure ground glass nodules (pGGNs), mixed

ground glass nodules (mGGNs), and solid nodules (SNs) (2). Most

solid nodules <1cm in diameter,also known as subcentimeter solid

nodules (SCSNs), are benign and commonly encountered as

intrapulmonary lymph, fibrous foci and tuberculosis nodules

(3).But SCSNs do not guarantee their benignancy, some solid

nodules are malignant, typically in lung adenocarcinoma (4, 5).

Therefore, the diagnosis of pulmonary nodules is still important,

since it is related to the need for close follow-up observation or

surgical treatment. Early diagnosis can improve patient prognosis

and reduce radiation exposure due to close follow-up (6). We found

that there are more studies on pGGNs and mGGNs (7, 8), but less

studies on SNs, especially SCSNs, so we focused on SCSN in an

attempt to make a small contribution to the early diagnosis of

lung cancer.

Nodule shape, margins, burr sign, and pleural pull sign can be

used to determine the nature of the nodule. However, these signs are

subjective and often not obvious when the nodules are small (2).

Positron Emission Tomography-CT (PET-CT) is also commonly used

for the diagnosis of tumors. It can aid in evaluating the metabolic

activity of the mass to infer its nature, although its specificity for

smaller lung nodules is low (9). Percutaneous biopsy is also used for

the diagnosis of the nature of lung masses, but it has disadvantages,

such as its invasive nature, which may lead to needle tract metastasis

and puncture failure. It usually follows thoracoscopic resection biopsy

as a last diagnostic resort (10, 11). Therefore, a more simple and

accessible non-invasive and efficient diagnostic tool is needed.

Many researchers have realized that the morphological features

on CT images do not provide a complete picture for diagnosis, and a

large amount of high-dimensional and valuable data that cannot be

seen are hidden in the images (12, 13). In 2012, Lambin et al.

proposed using radiomics, which emphasizes extracting a large

amount of information from images (CT, Magnetic Resonance
02
Imaging, and PET-CT) in a high-throughput manner to achieve

tumor image segmentation, feature extraction, and model building

by virtue of deeper mining, analysis, and prediction of massive

image data information to assist physicians in disease diagnosis,

prognosis assessment, and treatment response prediction (14).

Generally, the radiomics workflow consists of the following main

steps: imaging data collection, imaging preprocessing, identification

and segmentation of the region or volume of interest, feature

extraction, feature selection, model establishment, and model

validation (15, 16). Some studies have shown that chest CT

radiomics can be used to predict benign and malignant lung

nodules, aggressiveness, pathological typing, genetic phenotype,

and treatment response and to determine prognosis (17–21).

However, CT radiomics has not been applied to assess the

malignancy of pulmonary SCSNs.

Therefore, the present study used non-enhanced chest CT

imaging radiomics combined with clinical data to construct a

predictive model for malignancy prediction of pulmonary SCSNs

to guide clinical decision making.
Materials and methods

This study was approved by the Ethics Committee of The First

Affiliated Hospital of Shandong First Medical University (center 1)

and the Shandong Provincial Hospital Affiliated to Shandong First

Medical University (center 2). Patients’ informed consent was

waived due to the retrospective nature of the study. A total of 147

patients hospitalized at center 1 between January 2020 and June

2021 were included in the modeling group. Moreover, 52 patients

hospitalized at center 2 between January 2021 and June 2021 were

included in the validation group. Inclusion criteria were as follows:

a. SCSNs without obvious calcified components; b. thin-layer scans

with layer thickness of ≤ 1.5 mm, c. CT images within two weeks

before surgery, and d. patients underwent a complete surgical

resection. Exclusion criteria were as follows: a. chemotherapy,

radiotherapy, or previous history of malignancy prior to CT

examination, b. poor image quality, and c. incomplete clinical or

imaging data. Relevant patient information is shown in Table 1.
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TABLE 1 Clinical characteristics and subjective CT findings of lung nodules in training and validation cohorts.

Training Cohort Validation Cohort

Clinical parame-
ters

Data Benign Malignant c2or t-
value

P
value

Data Benign Malignant c2or t-
value

P
value

Sex 82 65 0.696 0.494 31 21 0.027 0.870

Men 60 31 29 23 14 9

Women 87 51 36 29 17 12

Age 56.56 ±
10.95

55.38 ±
11.89

57.48 ±
10.12

3.385 <0.001 54.63 ±
12.61

52.19 ±
12.56

58.23 ±
11.55

-1.758 0.085

Smoke 82 65 4.712 0.030 0.687

Yes 27 10 17 7 5 2

No 120 72 48 45 26 19

Family history of lung
cancer

82 65 0.536 0.464 0.639

Yes 13 6 7 4 3 1

No 134 76 58 48 28 20

DM 82 65 0.0355 0.853 0.558

Yes 12 7 5 3 1 2

No 135 75 60 49 30 19

NSE 0.158 0.691 0.683

Normal 58 44 47 28 19

Abnormal 24 21 5 3 2

CEA 0.184 0.645

Normal 79 59 49 29 20

Abnormal 3 6 3 2 1

SCC 0.023 0.291

Normal 80 57 48 30 18

Abnormal 2 8 4 1 3

Size 0.74 ±
0.21

0.74 ±
0.20

0.75 ± 0.21 0.905 0.343 0.89 ±
0.36

0.86 ±
0.38

0.93 ± 0.30 -0.675 0.503

Location 3.3841 0.496 0.689

RUL 31 20 6 7

RML 3 5 4 1

RLL 12 15 7 5

LUL 20 15 5 2

LLL 16 10 9 6

Pleural indentation 25.3830 <0.001 4.461 0.035

Yes 16 39 23 10 13

No 66 26 29 21 8

Spiculation 5.006 0.025 7.188 0.007

Yes 7 14 23 9 14

No 75 51 29 22 7

(Continued)
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CT examination

CT examinations were performed using non-enhanced CT

scanning on a high-definition CT (HDCT) system (GE Discovery

CT750 HD; GE Healthcare, Milwaukee, WI, USA). The parameters

were: tube current of 275 mA, tube voltage of 120 kV, helical

scanning, 1.375 helical pitch, 0.7 s tube rotation time, pixel matrix of

512 × 512, adopting 40 mm collimation, 5 mm slice thickness, and

5 mm slice interval. Patients held their breath for scanning in the

supine position. The scanning area covered the whole chest. Axial

images were reconstructed with a slice thickness of 1.25 mm and an

interval of 1.0 mm with a lung algorithm.
Image feature evaluation

CT features of the lung mass were independently evaluated by

two experienced imaging physicians (with 6 and13years of

experience in chest CT review, respectively) who were not

informed of the pathology findings prior to the review.

Disagreements between the two physicians were resolved via

discussion. All CT findings were evaluated based on non-

enhanced CT images. The main imaging features included

spiculation (sunburst appearance), lobulation (abrupt bulging of

the lesion contour), cavitation sign (gas-filled space presenting as a

lucency or low-attenuation area), irregular air bronchogram

(bronchial branch shadow with air in the nodule) and vascular

change (abnormal angiogenesis or vascular distortion) (Figure 1),

and pleural indentation (22–24).
Frontiers in Oncology 04
Histopathological analysis

Histopathological examination of surgical specimens was

performed by two pathologists (with more than 10 years of

experience and 15 years of experience, respectively) for

pathological diagnosis. The chest CT report and clinical

information were not communicated before reading the films.

The excised lesions were classified according to the 2021 World

Health Organization (WHO) classification (25).
Nodule segmentation and
feature extraction

RadCloud platform (version 2.1.2, https://mics.huiyihuiying.com/,

Huiying Medical Technology Co., Ltd, Beijing, China) was

used to manage image data, clinical data, and radiomic

feature extraction.

CT images were acquired and uploaded to the database

according to a standardized scanning protocol. The regions of

interest (ROIs) were manually outlined on the CT images by a

junior imaging physician (Dr. Song), and then all contours were

examined by a senior imaging physician (Dr. zeng). If the

discrepancy was ≥ 5%, the senior imaging physician determined

the boundary.

Based on the ROIs outlined on CT images, 1409 features were

automatically extracted using the RadCloud platform. The features

were then divided into four categories (1): first-order statistics,
TABLE 1 Continued

Training Cohort Validation Cohort

Clinical parame-
ters

Data Benign Malignant c2or t-
value

P
value

Data Benign Malignant c2or t-
value

P
value

Lobulation 4.378 0.036 2.632 0.105

Yes 2 7 18 8 10

No 80 58 34 23 11

Irregular air
bronchogram

10.803 0.001 0.558

Yes 2 12 3 1 2

No 80 53 49 30 19

Cavitation sign 1.048 0.306 0.683

Yes 6 8 4 2 2

No 76 57 48 29 19

Vascular change 23.665 <0.001 20.974 <0.001

Yes 50 62 27 8 19

No 32 3 25 23 2
front
Differences were assessed using Student’s t-test and the chi-square test as appropriate; p < 0.05.
DM, diabetes mellitus; NSE, neuron-specific enolase; CEA, carcino-embryonic antigen; SCC, squamous cell carcinoma antigen; RUL, right upper lobe; RML, right middle lobe; RLL, right lower
lobe; LUL, left upper lobe; LLL, left lower lobe.
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which mainly describe the variation of voxel intensity in distributed

CT images; (2) shape- and dimension-based features; (3) texture

features, including grayscale dependence matrix, grayscale tour

matrix, neighborhood grayscale difference matrix, grayscale size

region matrix, and texture features that can quantify differences in

regional heterogeneity; and (4) higher-order statistical features,

which are obtained by filtering transformations on the original

image. The filters used in the present study included exponential,

square, square root, logarithmic, gradient, Ibp-2D, and wavelet. All

imaging radiomics features were defined in accordance with those

described in the Imaging Biomarker Standardization Initiative (26).

The analysis of the interclass and intraclass correlation

coefficients (ICCs) was used to test the consistency of radiomics

features of inter- and intra-observers. CT images of 60 patients were

randomly selected for the test. To assess the reliability of inter-

observers, a imaging physician (Dr. Song) segmented the ROIs, and

after 1 week, the same radiologist segmented the ROIs for the

second time. To assess the reliability of intra-observers, ROI

segmentation was performed independently by another imaging

physician (Dr. Zeng) and compared with the first segmentation

results of the first radiologist (Dr. Song). An ICC value greater than

0.75 indicates good consistency and is included in the follow-

up study.

Student’s t-test and the chi-square test were used to compare

age, gender, tumor markers, smoking history, diabetes mellitus

history, family history of malignancy, and CT characteristics

between the two groups. The clinical factors (including gender

and age) and subjective CT characteristics were analyzed by

multifactorial regression to select meaningful indicators for the

prediction model.

A large number of image features was obtained using imaging

radiomics. However, not all of these extracted features may be

useful for a specific task. Therefore, dimensionality reduction and

selecting task-specific features for optimal performance are

necessary steps. The least absolute shrinkage and selection

operator (LASSO) was used to reduce the redundant features. For

the LASSO model, the L1 regularizer was used as the cost function

with an error value of 5 for cross-validation and a maximum

number of 1000 iterations. The LASSO algorithm was used to
Frontiers in Oncology 05
reduce the dimensionality and select the best radiomic features to

calculate the radiomic score (Ra-score) of each lesion. The Ra-score

of benign and malignant SCSNs in the training and validation

cohort were analyzed by Student’s t-test to clarify whether there

were differences in Ra-scores between different pathological types.

Three prediction models for subjective features, Ra-score, and

subjective features combined with Ra-score were built separately in

the training set using logistic regression analysis. The prediction

performance of the three models was evaluated using receiver

operating characteristic (ROC) curves. The optimal model was

then selected and validated in the validation set. Finally, the

individualized prediction nomogram based on multivariate

logistic model was constructed.
Statistical analysis

Statistical analyses were performed using SPSS software 22.0

(IBM, Chicago, IL, USA) and Empower software. A p value of <0.05

was considered to indicate a statistically significant difference.
Results

The clinical data of the patients are presented in Table 1. Of the

benign SCSNs in the training cohort 82.93% were inflammatory

( including chronic inflammation and granulomatous

inflammation),13.41% were benign tumors (including

hamar toma , pu lmona ry s c l e ro s ing pneumocy toma ,

adenofibrolipoma and bronchial adenoma), and 2.44% were

intrapulmonary lymph nodes and 1.22% were fibrotic nodules;

while in the validation group, the percentages were 64.52%,

25.81%, 3.23%, and 6.45%, respectively. In the validation cohort,

93.85% of the malignant SCSNs were adenocarcinomas, 4.62% were

squamous cell carcinoma, and 1.54% were metastatic tumor; while

in the malignant group, all were adenocarcinomas.

Multivariate logistic regression analysis showed that vascular

changes in subjective features were an independent factor in

identifying benign and malignant SCSNs (Table 2). Based on this,
FIGURE 1

(A) Female, 68 years old, the SCSN had four abnormal angiogenesis into the interior of the lesion, defined as having vascular changes, no other
malignant signs and pathologically confirmed adenocarcinoma. (B) Male, 50 years old, the SCSN had two normal vessels passing by without
deformation and abnormal angiogenesis, defined as no vascular changes, and pathology confirmed as hamartoma.
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a prediction model for benign and malignant pulmonary nodules

(subjective model, Model 1) had an AUC of 0.672 for the ROC

curve and a mediocre predictive efficacy.

The imaging histology data were screened using the LASSO

regression to reduce the dimensionality (Figure 2). A total of 11

potential predictors were selected and their Ra-scores were

calculated using the following formula:

Ra − score = 0:08948*Original _ FirstOrder _ Kurtosis−

0:02463*Original _ Shape _Maximum2dDiameterSlice−

0:02857*Original _ Shape _Maximum2dDiameterRow−

0: 01578*Logarithm_ FirstOrder _ 90Percentile−

0:01615*Wavelet _ LHL _Glrlm _ LongRunHighGrayLevelEmphasis−

0:06855*Wavelet _  LLH_Glszm _ SmallAreaEmphasis+

0:94791*Wavelet _ HLH_ FirstOrder _ Skewness−

0:00875*Wavelet _ HLH_Glszm _GrayLevelNonuniformity−

0:18944*Wavelet _ HLH_Glszm _ SmallAreaHighGrayLevelEmphasis−

0:43132*wavelet _ HLH_Glszm _ ZoneEntropy+

0:0365*Wavelet _ HHH_Glszm _GrayLevelVariance

The Student’s t-test showed no significant difference in the Ra-

score of benign SCSNs between the training and validation cohort

(p=0.553),as well as in the malignant SCSNs(p=0.095). Model 2

(radiomic score model) was a prediction model constructed using

logistic regression analysis of Ra-score. It had an ROC curve AUC

of 0.888 (0.835–0.942, p<0.001) and its predictive efficacy was

significantly improved. In contrast, Model 3, which was a

comprehensive prediction model generated by combining the Ra-

score and subjective characteristics, had an AUC of 0.930 (0.888–
Frontiers in Oncology 06
0.972, p<0.001) for the ROC curve. Its predictive efficacy was

enhanced in comparison to Model 2, and this difference was

statistically significant (Figure 3).
Model validation

The three models were applied to a validation cohort consisting of

52 cases. The results showed that the AUC of the Model 3 ROC curve

was 0.905, which was better than that of Model 1 (AUC = 0.736) and

Model 2 (AUC = 0.823). Thus, the integrated prediction model based

on the Ra-scores and subjective features was well stabilized and had a

high predictive efficacy (Table 3). The DCA(decision curve analysis)

showed that the overall net benefit of the integratedmodel column line

plot was greater compared to the radiomics column line plot

(Figure 4). A nomogram model was constructed that incorporated

the radiomics score and clinical features (Figure 5A). The calibration

curve demonstrated favorable calibration with the training and

validation cohorts (Figures 5B, C).
Discussion

Pulmonary nodules are becoming more and more common in

clinical experience. Even though current studies have been

investigating the pGGNs and mGGNs more thoroughly, there is

still not enough research on solid nodules. Moreover, all of the

malignant solid nodules diagnosed in the present study were

invasive carcinomas. It is not uncommon to encounter solid and

micropapillary types of lung cancer with a high risk of recurrence
TABLE 2 Multivariate analyses.

Training cohort Validation cohort

OR(95%CI) P value OR(95%CI) P value

Spiculation 2.361(0.834-6.683) 0.105 3.393(0.770-14.956) 0.107

Vascular change 12.361(3.556-42.964) <0.001 22.968(4.195-125.761) <0.001
A B C

FIGURE 2

Feature selection and dimension reduction. (A) Ten-fold cross-validation of LASSO analysis was used to acquire the most valuable features when the
minimum lambda was 0.0621. (B) LASSO regression coefficients (C) The radiological features selected by LASSO regression and its coefficients.
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and metastasis, which shows that malignant solid nodules can have

a great impact on health if they go undiagnosed. The present study

constructed a comprehensive subjective characteristics and Ra-

score nomogram using logistic regression analysis to identify the

benign and malignant pulmonary SCSNs. The model had a high

predictive accuracy and provided a new idea for the diagnosis

of SCSNs.

Multifactorial analysis showed that only vascular changes were

helpful for disease diagnosis. This is likely because even though

patients’ clinical information can sometimes be helpful for disease

diagnosis, such as family history of lung cancer and tumor

indicators, its specificity and sensitivity are not sufficient.

Although conventional radiographs can suggest the benignity and

malignancy of lung nodules using nodal features, such as pleural

traction sign, burr sign, and lobar sign, when the nodules are small,

their malignant imaging features are often not obvious and difficult

to identify with the naked eye. This introduces a certain level of

subjective bias, which is consistent with a previous study by Gao

et al. (27). In contrast, several studies have shown that vascular

changes, such as abnormal angiogenesis or vascular distortion, are

commonly seen in malignant pulmonary nodules (23, 28). The area

under the ROC curve of the clinical features prediction model based

on this was 0.672 and had an average predictive efficacy.
Frontiers in Oncology 07
In fact, CT images contain a lot of important information about

lung nodules. Previously, some studies have found imaging

histology to be effective in differentiating lung cancer from

tuberculosis and analyzing tumor pathology types and gene

expression (17–21). However, the radiological features selected in

these studies were relatively few, which led to a low validity and

stability of their results. In the present study, 1409 radiological

features were extracted from images, including shape, size,

boundary, density, and texture features. The LASSO algorithm

was used to perform radiomic feature analysis in the training set,

identifying 11 radiomic features with non-zero weighting

coefficients. These were utilized to generate the final radiomic

feature model to improve model stability. As a result, the AUC of

the imaging histology prediction model was 0.888, which improved

the prediction efficacy compared to the clinical feature prediction

model. This difference was statistically significant. While combining

imaging histology and subjective features to build the prediction

model, the AUC of the ROC curve was 0.930 (0.888–0.972, p =

0.001), with a further increase in prediction efficacy that was

statistically significantly different. We analyzed that the reason

might be that the vascular changes were located outside of the

pulmonary nodules and the abnormal vessels could not be outlined

together with the nodules. Therefore, the histological imaging
A B

FIGURE 3

The comparison of the ROC curve of subjective model (Model 1,black line), radiomics score model(Model 2,red line)and comprehensive model
(Model 3,green line) in the training cohort (A) and the validation cohort (B). ROC, receiver operating characteristic; AUC, area under the curve.
TABLE 3 Predictive efficacy of models in the training and validation cohorts.

MODEL Training cohort Validation cohort

AUC Sen Spe Acc AUC Sen Spe Acc

Model 1 0.672(0.613-0.731) 0.954 0.390 0.640 0.736 0.904 0.742 0.750

Model 2 0.888(0.835-0.942) 0.831 0.842 0.836 0.823 0.714 0.774 0.808

Model 3 0.930(0.888-0.972) 0.892 0.878 0.885 0.905(0.822-0.988) 0.762 0.936 0.846
AUC, area under curve; Sen, sensitivity; Spc, specificity; Acc, accuracy.
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information did not include the vascular changes and the diagnostic

efficacy was further improved by including them in the prediction

model later on. Some studies have also included the peri-tumoral

region, which is a 5-mm area around the nodule, in the imaging

radiomics analysis after the nodule is outlined. Although this

includes information about peri-nodal vessels, it cannot

distinguish normal from abnormal vessels, and its application is

limited when the nodule is surrounded by normal tissues, such as

pleura and bronchi (29).

Methods and predictive models for discriminating the nature of

lung nodules during early screening of lung cancer are increasingly

becoming an important topic in the current clinical field. In

previous studies, imaging radiomics and line drawings have been

used to predict lymph node metastasis and prognosis in lung,

colorectal, bladder, kidney, and gastric cancers, invasiveness of

lung nodes, and epidermal growth factor receptor mutations (17–

21, 30–33). However, there are no relevant studies on predicting the

malignancy of lung SCSNs, and most of the above studies utilized

pure imaging and radiomics models. The present study therefore is

able to fill this gap. It also established several models based on

subjective features and imaging radiomics and compared each

model in order to identify the optimal model with predictive

efficacy that was significantly better than that in similar studies.

The t-test showed no significant difference of the Ra-scores between

the different groups, indicating that although the type and

proportion of pathology in the training and validation groups

were not identical, it did not affect the stability of the results.

Due to the differences in clinician expertise and the lack of

model understanding, it is difficult to extend the research results for
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lung nodule property discrimination to clinical application.

Therefore, considering the prognostic significance of lung nodule

characterization in early screening for lung cancer, the present

study presents a nomogram of lung nodule characterization to assist

physicians in diagnosing the malignancy of lung nodules, making it

easy to use in clinical practice and helping to guide surgical

treatment and clinical decision making.

There are some limitations in our study. First, the segmentation

of CT images was manually outlined by clinicians, and although the

data were reproducible by two physicians who outlined the review

ROIs, subjective bias may remain. Therefore, this limits large-scale

application, and the introduction of artificial intelligence to outline

the ROIs should be considered at a later stage to further reduce the

selection bias and facilitate data application. Second, the study data

were collected from two centers in Shandong Province Qianfo

Mountain Hospital and Shandong First Medical University

Affiliated Provincial Hospital. Thus, these data are not as

convincing as data from multicenter cohorts and different

populations. Multicenter studies should be performed in the

future. Third, Radiomics is inherently data-driven and lacks

underlying biological principles by screening a large number of

image features for reproducibility and potential information. Most

published radiomics studies show no validation of the features used,

except for the use of independent test sets. Yip et al. found an

association between imaging features and radiomics features, but

the association was not strong (34). Skogen et al. demonstrated in

glioma that tumor grading, which is known to correlate with

heterogeneity, correlated with the standard deviation of intensity

distribution in CT images (35). In contrast, Liu et al. reported no
FIGURE 4

Decision curve analysis of prediction models. The y-axis represents the net benefit. The gray line represents the assumption that all patients had lung
malignant nodules. The black line represents the hypothesis that all patients had benign nodules. The green line represents Model 1 (subjective
model). The blue line represents Model 2 (radiomic nomogram model). The red line represents Model 3 (comprehensive nomogram). The x-axis
represents the threshold probability. The threshold probability is where the expected benefit of treatment is equal to the expected benefit of no
treatment. The decision curve shows that model 2 adds more net benefit than model 1, while model 3 performs better than model 2 in the range of
0.05 to 0.92.
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correlation between tumor grading and heterogeneity, while

showing a strong association with textural features (36). More

studies may be needed to verify the biological meaning of the

radiomics features. This disconnect between predictive models and

biological significance will inevitably limit its wide clinical

application. Combining clinical and preclinical experiments may

also play an important role in the biological validation of imaging

histology. Animal studies enable the experimental interventions

necessary to establish causal relationships between biology and

imaging histology and to provide precise, spatially aligned

histological analyses for in-depth validation. We hope to do

deeper research in future studies. Fourth, our study was a

retrospective analysis of patients with pulmonary SCSN who

underwent surgery at two centers, but in reality, a proportion of

patients with pulmonary SCSN did not undergo surgery but were

observed at long-term follow-up, which led to selective bias and a

situation that was similar in some other studies (37, 38). In future
Frontiers in Oncology 09
studies, we will increase the sample size to include cases that did not

undergo surgery with further follow-up observations to further

validate and optimize this prediction model.

In conclusion, the imaging of histological features of plain CT

images may help to identify benign and malignant SCSNs. A

nomogram based on the imaging of histological features and

abnormal vessels can be an effective tool to diagnose benign and

malignant sub-centimeter solid pulmonary nodules and thus guide

clinical decision making.
Data availability statement

The original contributions presented in the study are included

in the article/Supplementary Material. Further inquiries can be

directed to the corresponding author.
A

B C

FIGURE 5
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