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Objectives: DNA mismatch repair deficiency (dMMR) status has served as a

positive predictive biomarker for immunotherapy and long-term prognosis in

gastric cancer (GC). The aim of the present study was to develop a computed

tomography (CT)-based nomogram for preoperatively predicting mismatch

repair (MMR) status in GC.

Methods: Data from a total of 159 GC patients between January 2020 and July

2021 with dMMR GC (n=53) and MMR-proficient (pMMR) GC (n=106) confirmed

by postoperative immunohistochemistry (IHC) staining were retrospectively

analyzed. All patients underwent abdominal contrast-enhanced CT. Significant

clinical and CT imaging features associated with dMMR GC were extracted

through univariate and multivariate analyses. Receiver operating characteristic

(ROC) curve analysis, decision curve analysis (DCA) and internal validation of the

cohort data were performed.

Results: The nomogram contained four potential predictors of dMMR GC,

including gender (odds ratio [OR] 9.83, 95% confidence interval [CI] 3.78-28.20,

P < 0.001), age (OR 3.32, 95% CI 1.36-8.50, P = 0.010), tumor size (OR 5.66, 95% CI

2.12-16.27, P < 0.001) and normalized tumor enhancement ratio (NTER) (OR 0.15,

95% CI 0.06-0.38, P < 0.001). Using an optimal cutoff value of 6.6 points, the

nomogram provided an area under the curve (AUC) of 0.895 and an accuracy of

82.39% in predicting dMMR GC. The calibration curve demonstrated a strong

consistency between the predicted risk and observed dMMRGC. The DCA justified

the relatively good performance of the nomogram model.

Conclusion: The CT-based nomogram holds promise as a noninvasive, concise

and accurate tool to predict MMR status in GC patients, which can assist in

clinical decision-making.
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Introduction

Gastric cancer (GC) was the fifth most common malignancy

and the fourth leading cause of cancer deaths globally in 2020 and

remains an aggressive and important cancer worldwide, especially

in Asian countries (1, 2). GC carries a poor prognosis and shows

marked complexity and heterogeneity in clinical characteristics and

response to treatments. Recently, underlying molecular

classification driving differences in treatment outcomes has been

proposed by The Cancer Genome Atlas (TCGA) project and the

Asian Cancer Research Group (ACRG) (3, 4). Microsatellite

instability (MSI) with a high mutational load is one of the four

molecular subtypes of GC (3, 4). MSI refers to the accumulation of

repetitive insertion or deletion mutations in short repetitive DNA

sequences as a consequence of DNA mismatch repair deficiency

(dMMR), which leads to failure in repairing the errors (5).

A growing body of evidence has supported that patients with

MSI-high (MSI-H)/dMMR GC have impressive and durable

responses to immune checkpoint inhibition and survival benefits

from that (6–10). MSI-H status is an inversely negative predictive

factor for neoadjuvant/adjuvant chemotherapy in resectable GC

(11–13). Therefore, MSI/mismatch repair (MMR) status has

remarkable clinical utility. Universal testing for MSI by

polymerase chain reaction (PCR) or MMR status using IHC in

GC is recommended in all newly diagnosed patients by the National

Comprehensive Cancer Network (NCCN) and the Chinese Society

of Clinical Oncology (CSCO) guidelines (14, 15). The incidence of

MSI-H GC varies between 8%-22% among different countries and

ethnicities (16, 17). However, PCR and immunohistochemistry

(IHC) have low cost-effectiveness because of the relatively low

prevalence of MSI-H/dMMR and are usually performed

postoperatively or require sufficient preoperative biopsy tissue.

In contrast, computed tomography (CT) scan which is readily

available and noninvasive is used routinely for preoperative

evaluation of GC. CT provides morphological information about

primary tumors and locoregional/metastatic spread of the disease.

Previous studies have shown that tumors with different MSI/MMR

statuses have some differences in CT image features (18, 19), but

screening for dMMR GC has ignored that. Therefore, we aimed to

develop a robust and user-friendly nomogram based on

noninvasive gastric CT scans for the preoperative identification of

dMMR GC patients.
Materials and methods

Patients

Our institutional review board approved this retrospective study,

and the requirement for written informed consent was also waived.

Initially, we performed a search of electronic medical records between

January 2020 and July 2021 and identified a total of 1258 consecutive

patients with surgically confirmed GC. Inclusion criteria were as

follows: (a) underwent routine abdominal contrast-enhanced CT

before surgical resection; (b) availability of IHC staining for

analysis of MMR protein expression. Patients (a) who received
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neoadjuvant chemoradiotherapy prior to imaging; (b) with a

history of other malignant tumors; (c) with distant metastasis

during the operation; (d) with poor-quality images; (e) with

invisible target lesions on CT images and (f) with diffuse or

multiple GC lesions detected were excluded. The final study cohort

comprised 53 dMMR patients and 106 MMR-proficient (pMMR)

patients who were randomly selected (Figure 1).
Pathological analysis

The postoperative pathological diagnosis and immuno

histochemical staining were judged by two experienced

pathologists. Tumor histological type, localization, ulceration,

degree of differentiation, invasion depth and lymphovascular

invasion were evaluated according to the 8th edition of AJCC

cancer staging criteria of GC.

IHC for MMR protein (MLH1, MSH2, MSH6, and PMS2)

expression was used to determine the MMR status and routinely

performed by a standard streptavidin biotin-peroxidase procedure.

Tumors displaying loss of at least one MMR protein were

collectively referred to as dMMR, and those with intact

expression were referred to as pMMR.
CT images acquisition

Abdominal contrast-enhanced CT examinations of patients

were performed using a 64-channel CT (SOMATOM Definition

Flash; Siemens Healthcare, Erlangen, Germany). Patients were

instructed to fast for at least 6 hours prior to CT examination.

Twenty minutes before scanning, patients were intravenously

administered 10 mg of anisodamine to minimize gastrointestinal

peristalsis and then drank 800-1000 ml water to expand the

stomach. The CT scans were performed with the patient in the

supine position and covered the entire abdomen from the

diaphragmatic dome to the pubic symphysis. The images were

acquired with the following parameters: a tube voltage 120 of kVp, a

tube current of 200 mAs, detector collimation of 0.6 mm, an image
FIGURE 1

Flowchart of the patient selection and patient exclusion.
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matrix of 512 × 512, a slice thickness of 5 mm, a slice interval of 5

mm, and a pitch of 0.6 mm. After the unenhanced scan, 100 ml of

iodinated contrast agent was administered at a rate of 3 ml/s into

the antecubital vein with an automatic injector pump. The arterial

and portal venous phases were obtained at 30-35 s and 65-70 s after

injection of contrast material, respectively. The enhanced axial CT

images were reconstructed with a section thickness of 1 mm for

multiplanar reformation (MPR) reconstruction.
Image interpretation

All the obtained images were evaluated retrospectively by two

experienced abdominal radiologists (with 10 and 6 years of

experience in abdominal radiology) who were blinded to the

histopathological results. All variables included clinical data,

morphological features, and CT quantitative parameters.

Morphological feature analysis was independently performed by

two radiologists, and the final results were determined by

consensus, while the acquisition of quantitative parameters was

jointly completed by both radiologists. The variables on CT were

defined and measured as follows: tumor location (upper third of the

stomach, middle third of the stomach and lower third of the

stomach), tumor size and tumor thickness (the longest and

thickest diameter of tumor on axial, sagittal, or coronal CT

image), surface ulceration (absent or present), adjacent organ

invasion (absent or present), growth pattern (localized or

infiltrative type), and the largest lymph node size (short-axial

diameters of the largest lymph node < 0.8 cm or ≥ 0.8 cm). A

circular region of interest (ROI, a least 20 mm2 for large lesions and

a circular with diameter slightly smaller than tumor thickness for

small ones) was positioned to encompass as much of the most

strongly enhanced portion of the tumor and the abdominal aorta as

possible at the same slice of the portal venous phase by the two

radiologists together. The average CT attenuation values of each

tumor parenchyma (CTAVtumor) and abdominal aorta

(CTAVaorto) were finally obtained to calculate the normalized

tumor enhancement ratio (NTER) using the following formula:

NTER (%) = CTAVtumor/CTAVaorto * 100. Additionally, other

clinical data were recorded, including age, gender, hypertension and

so on.
Statistical analysis

Continuous data distributions were verified using the Shapiro

−Wilk test. Normally distributed data were presented as the mean ±

standard deviation, and data with a nonnormal distribution were

presented as medians and ranges (25th, 75th percentiles).

Categorical variables were expressed as frequencies and

percentages. In univariate analysis, differences between the two

groups were compared using Student’s t test or the Mann−Whitney

U test for continuous data and using the chi-square or Fisher’s exact

test for categorical variables. Receiver operating characteristic

(ROC) curve analysis was employed to evaluate the predictive

value of each continuous parameter, which showed statistically
Frontiers in Oncology 03
significant differences and aided in determining their optimal

cutoff value. Subsequently, the significant variables from the

univariate analysis were entered into the multivariate binary

logistic regression using the stepwise method. Finally, a

nomogram was generated based on the identified independent

predictors. The nomogram was internally validated by

bootstrapping with 1000 resamples. To quantify the model

performance in predicting MMR status, we assessed model

discrimination using the AUC (area under the curve) and

calibration using a calibration curve combined with the Hosmer

−Lemeshow test. Additionally, the decision curve analysis (DCA)

was utilized to determine the clinical practicability of

the nomogram.

All data were processed in SPSS software (version 26.0.0; IBM

Corp., Armonk, NY, USA) and R software (version 4.1.2; R

Foundation for Statistical Computing, Vienna, Austria). A two-

sided p value of < 0.05 indicated statistical significance.
Results

Clinical characteristics of the
study patients

Of the 1258 consecutive GCs, 97 (7.7%) patients had dMMR

status. A total of 159 patients, comprising 53 with dMMR and 106

with pMMR, were enrolled in this study. The demographic and

clinical characteristics of the patients are summarized in Table 1.

GCs with dMMR were more likely to be older, female and have a N0

stage. There were no significant differences with regard to

hypertension, histological differentiation degree or T stage

between groups.
Comparison of CT features between dMMR
and pMMR GC patients

Differences in CT features between dMMR and pMMR GC

patients are presented in Table 2. Significant differences were

observed in location, surface ulceration, adjacent organ invasion,

tumor size and NTER. The tumor size of the dMMR tumors was

substantially larger, and the NTER was lower than that of pMMR

tumors. Well-defined margins, thicker lesions and short-axial

diameters of the largest lymph node ≥ 0.8 cm were found more

often in dMMR patients, but the difference was not statistically

significant (P = 0.094, P= 0.084, and P = 0.050, respectively).
Analyzing dMMR risk factors and building a
CT-based predictive nomogram

Post-hoc comparison revealed that dMMR tumors were

significantly more frequently found in the upper stomach than in

the middle and lower regions, while there was no significant

differences between tumors in the middle and lower stomach.

Thus, the latter two subgroups were pooled into a single group
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TABLE 2 Comparison of CT features between dMMR and pMMR GC patients.

pMMR (n=106) dMMR (n=53) P value

Location (%) 0.001

Upper 34 (32.08) 3 (5.66)

Middle 12 (11.32) 7 (13.21)

Lower 60 (56.60) 43 (81.13)

Margin (%) 0.094

Well-defined 30 (28.30) 22 (41.50)

Ill-defined 76 (71.70) 31 (58.50)

Surface ulceration (%) 0.009

No 11 (10.38) 14 (26.42)

Yes 95 (89.62) 39 (73.58)

Adjacent organ invasion (%) 0.025

No 75 (70.75) 46 (86.79)

Yes 31 (29.25) 7 (13.21)

Tumor size (cm) 3.8 (3.0, 5.2) 5.4 (3.2, 7.0) 0.008*

(Continued)
F
rontiers in Oncology
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TABLE 1 Demographic and clinical characteristics of the study patients.

pMMR (n=106) dMMR (n=53) P value

Age (yr) 64 (57.0, 69.0) 70 (64.0, 75.5) <0.001*

Gender (%) < 0.001

Male 91 (85.85) 22 (41.51)

Female 15 (14.15) 31 (58.49)

Hypertension (%) 0.816

No 68 (64.15) 33 (62.26)

Yes 38 (35.85) 20 (37.74)

Histological differentiation degree (%) 0.059†

Adenocarcinoma

Poorly differentiated 75 (70.75) 45 (84.91)

Well-/moderately differentiated 22 (20.75) 5 (9.43)

Mucinous carcinoma 2 (1.89) 1 (1.89)

Signet ring cell carcinoma 6 (5.66) 0 (0)

Adenosquamous carcinoma 1 (0.94) 2 (3.77)

T stage (%) 0.293

T1-2 35 (33.02) 22 (41.51)

T3-4 71 (66.98) 31 (58.49)

N stage (%) 0.002

N0 30 (28.30) 28 (52.83)

N1+ 76 (71.70) 25 (47.17)
*Mann-Whitney U-test; † Fisher’s exact test.
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for subsequent comparisons, hereafter named the “middle-lower”

group. Then, we organized the continuous variables into

meaningful and dichotomous categories according to the optimal

cutoff value by ROC curve (Table 3).

To select final predictors, eight candidate predictors with a P ≤

0.05 in the univariate logistic analysis were included when

performing the stepwise logistic regression analysis. Gender, age,

tumor size and NTER emerged as significant independent predictors

of the dMMR phenotype in GC patients (Table 4). Based on the

multivariate analysis results, a predictive nomogram incorporating

the above four factors was then constructed (Figure 2).
Performance and validation of
the nomogram

Using an optimal cutoff value of 6.6 points, the nomogram

provided better AUC values than each risk factor for dMMR

(AUC = 0.895) (Figure 3), with a sensitivity, specificity, NPV,

PPV and accuracy of 84.91%, 81.13%, 91.49%, 69.23% and

82.39%, respectively. To further evaluate the predictive ability of

this model without overfitting, the corrected AUC obtained by

internal validation using the bootstrap method was 0.896 (95% CI

0.837-0.950). The calibration curve demonstrated good consistency

between the predicted risk and observed dMMR probability

(Figure 4), and the Hosmer−Lemeshow test also indicated that

there was no departure from a perfect fit (P = 0.945). Furthermore,

the DCA justified relatively good performance for the nomogram

model according to clinical application (Figure 5).
Discussion

The clinical significance of MSI/MMR status in GC patients,

which can serve as a positive predictive biomarker for
Frontiers in Oncology 05
immunotherapy and long-term prognosis (11), has become

widely recognized worldwide. Many consequent attempts at

developing prediction models based on pathological slices or

findings to predict MSI-H/dMMR in GC have been made in

recent years. Kather et al. (2), Muti et al. (20) and Valieris et al.

(21) proposed deep learning classifiers for detecting MSI/MMR

status in GC from digital histological images and confirmed their

good performance. Additionally, a prediction model presented in

the study conducted by Suzuki et al. (22) involved pathological T

and M stage. Immune checkpoint inhibitors are recommended by

the guidelines for unresectable locally advanced or metastatic GCs

with MSI-H/dMMR (14). The patients are not candidates for

surgical treatment and could not obtain definitive pathological

diagnosis. Based on this, we established a robust nomogram

model based on radiologic features to preoperatively and

noninvasively identify dMMR GCs.

Our nomogram with favorable discrimination (AUC = 0.895)

and calibration was internally confirmed to be relatively stable

through bootstrap validation. A multivariate set of predictors

identified by logistic regression analysis comprised gender, age,

tumor size, and NTER, of which the latter two could be available as

a result of routine enhanced CT. GC with dMMR was more

prevalent in female and older patients in the current cohort,

which was almost well recognized by previous studies (11, 16, 22–

25). Recent reliable evidence suggests that the most common age

cutoff value is 65 or 70 years (16, 22), while ours is 65 years.

Other known strong predictors included tumor size and NTER

measured by enhanced CT. Given that the stomach is a hollow

organ, the gastric filling state increases the uncertainty of the

evaluation of tumor size. The contribution of tumor size to the

prediction of MMR status in GC remains controversial. Seo et al.

(16) reported that GC with MSI-H was more likely associated with a

larger tumor size (≥ 5 cm), while some research suggested that there

was no significant difference in tumor size between the two groups

(25, 26). Additionally, a research group evaluated tumor size
TABLE 3 ROC curve analysis results for classification of the patients.

Parameters Cutoff value AUC 95%CI Sensitivity Specificity P value

Age (yr) 66.5 0.700 0.614-0.787 71.7% 67.9% < 0.001

Tumor size (cm) 5.55 0.629 0.529-0.729 47.2% 83.0% 0.008

NTER (%) 67.49 0.772 0.692-0.851 71.7% 77.4% < 0.001
fron
AUC, area under the curve; CI, confidence interval.
TABLE 2 Continued

pMMR (n=106) dMMR (n=53) P value

Tumor thickness (cm) 1.2 (0.8, 1.6) 1.40 (0.9,1.7) 0.083*

NTER (%) 72.92 ± 10.18 62.58 ± 10.65 <0.001

The largest lymph node size (%) 0.050

< 0.8 cm 71 (66.98) 27 (50.94)

≥ 0.8 cm 35 (33.02) 26 (49.06)
*Mann-Whitney U-test.
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through tumor thickness by CT and revealed that the CT tumor

thickness of the dMMR group was less than that of the pMMR

group (18). However, a nonsignificant difference was seen between

the two groups with respect to tumor thickness in this study. This

study reported a cutoff value close to that reported in previous

studies on tumor size in GC. The enhancement patterns of lesions

are very important CT features. Our study demonstrated that the

NTER of dMMR GC was significantly lower than that of pMMR

GC. In other words, dMMR GC presents a lower degree of

enhancement and less blood supply than pMMR GC. Wu et al.

(19) obtained analogous results in colorectal cancer (CRC) in which
Frontiers in Oncology 06
the MSI CRC had significantly lower normalized iodine

concentration values in dual-energy CT. This discrepancy may be

partially explained by differences in microscopic features. In the

2000s and 2010s, it was demonstrated that vascular endothelial
FIGURE 2

CT-based preoperative nomogram for dMMR risk prediction in
GC patients.
FIGURE 3

Receiver operating characteristic curves of the nomogram. AUC:
area under the curve.
TABLE 4 Risk factors for predicting dMMR tumor in GC.

Subgroups pMMR
(%)

dMMR
(%)

Univariate analy-
sis

P value

Multivariate anal-
ysis

OR (95%CI)
P

value

Gender < 0.001 < 0.001

Male 91 (85.85) 22 (41.51) Reference

Female 15 (14.15) 31 (58.49) 9.83 (3.78, 28.20)

Age < 0.001 0.010

≤ 65 yr 69 (65.09) 15 (28.30) Reference

> 65 yr 37 (3491) 38 (71.71) 3.32 (1.36, 8.50)

Tumor size < 0.001 < 0.001

≤ 5.5 cm 88 (83.02) 28 (52.83) Reference

> 5.5 cm 18 (16.98) 25 (47.17) 5.66 (2.12, 16.27)

NTER < 0.001 < 0.001

< 67.50% 76 (71.70) 12 (22.64) Reference

≥ 67.50% 30 (28.30) 41 (77.36) 0.15 (0.06, 0.38)

Location 0.001 /

Upper 34 (32.08) 3 (5.66) Reference

Middle-
lower

72 (67.92) 50 (94.34) /
fron
10.3389/fonc.20
OR, odds ratio; CI, confidence interval.
tiersin.org

https://doi.org/10.3389/fonc.2023.1066352
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chen et al. 10.3389/fonc.2023.1066352
growth factor expression and microvessel count were lower in MSI

gastric and colon carcinomas than in their microsatellite stable

(MSS) counterparts (27–29). Also, in line with previous research

(16, 22, 25), tumor location differed significantly between the two

groups. Nevertheless, it was not an independent predictor for

dMMR GC in this study. A study of Fan et al. (30) suggested that

hypertension is one of the clinical features with high predictive

value to discriminate low- and high-MSI expression of CRC and

occurs with greater frequency in MSI-H CRC. However, similar

results were not observed in this study and another Chinese

study (31).

Using an optimal cutoff value of 6.6 points, the user-friendly and

well-fitted nomogram achieved a sensitivity of 84.91% and a specificity of

81.13% to detect the presence of dMMR in our study populations. For

convenience, we could transform that into an integral model to make it
Frontiers in Oncology 07
more applicable to clinical work: 5 points for female patients; 3 points for

older patients; 4 points for larger tumors; and 4 points for tumors having

lower NTER. Total points of ≤ 4, 5-11, and ≥ 12 corresponded to

probabilities of dMMR of 5.13%, 59.10%, and 96.97%, respectively.

Likewise, the high NPV (91.49%) of the nomogram may contribute to

the recognition of patients at higher risk for non-dMMR events, which

may reduce the time and cost involved in identifying dMMR GC.

This study has several limitations. First, its selection bias and other

inherent weaknesses associated with a retrospective observational study

were difficult to avoid. Second, few studies have observed that multiple

GCs have a relatively high incidence of MSI-H/dMMR than solitary

GCs (16, 32). But given the extremely low number of multiple GC

cases, we excluded those patients. This may have had an impact on the

outcomes. Third, the study was conducted in only one single tertiary

medical center, and the sample size was not sufficiently large. As such,

future studies must focus on involving a larger cohort and external

validation at multiple centers to fully substantiate the transportability

and generalizability of the presented nomogram.

In conclusion, our proposed nomogram model incorporating

clinical and CT features shows satisfactory performance and makes

preoperative prediction of dMMR in GC possible. This might

provide clinicians with an easily available and cost-effective tool

to assist in clinical decision-making, such as obtaining adequate

endoscopic samples for detection and even immunotherapy. In the

future, multicenter large-scale validation of the screening model

justifies further study.
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FIGURE 4
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(representing the nomogram) was closer to the the dotted line
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the nomogram was better.
FIGURE 5
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dMMR, and the blue line represents the nomogram model. The
graph depicts the expected net benefit per patient relative to the
nomogram prediction of dMMR risk. The farther the blue line is to
the grey and black lines, the better clinical value the
nomogram holds.
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