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A newly identified form of cell death known as ferroptosis is characterized by the

peroxidation of lipids in response to iron. Rapid progress in research on

ferroptosis in glioma and neuroblastoma has promoted the exploitation of

ferroptosis in related therapy. This manuscript provides a review of the findings

on ferroptosis-related therapy in glioblastoma and neuroblastoma and outlines

the mechanisms involved in ferroptosis in glioma and neuroblastoma. We

summarize some recent data on traditional drugs, natural compounds and

nanomedicines used as ferroptosis inducers in glioma and neuroblastoma, as

well as some bioinformatic analyses of genes involved in ferroptosis. Moreover,

we summarize some data on the associations of ferroptosis with the tumor

immunotherapy and TMZ drug resistance. Finally, we discuss future directions for

ferroptosis research in gl ioma and neuroblastoma and currently

unresolved issues.
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Introduction

Despite their small percentage (approximately 1%) among all invasive cancer cases,

malignant central nervous system (CNS) tumors are representative tumor types in children

and adolescents as well as the major cause of death related to cancer in males younger than

40 and females younger than 20. As a result, malignant CNS tumors are the third and

fourth leading cause of cancer-related death among individuals in the age ranges of 0-14

and over 40 years old, respectively (1, 2). Common malignant CNS tumors include glioma

and neuroblastoma (NB). Gliomas account for 24.5% of all primary CNS tumors, while

malignant tumors account for 80.9%. Gliomas usually have a poor prognosis. Glioblastoma

(GBM) is a representative malignant CNS tumor (49.1% of all malignancies) with the

shortest observed median patient survival. Although advanced therapeutic methods,

including temozolomide (TMZ) therapy and tumor-treating fields (TTFields), are

applied in the clinic, treated patients have a median survival time of only approximately
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15 months. GBM has a poor prognosis, and only 5.8% of patients

survive for five years (1–3). NB is another malignant tumor with a

sympathetic nervous system origin and accounts for approximately

7-8% of childhood malignant tumor cases and approximately 15%

of cancer-related deaths. Patients suffering from high-risk NB have

a 5-year survival rate of less than 50% (4).

Ferroptosis is associated with iron and reactive oxygen species

(ROS) and primarily results in cytological changes, including

oxidative stress. As a result of strong membrane lipid

peroxidation and oxidative stress, mitochondrial cristae are

reduced or absent, the outer mitochondrial membrane is

ruptured, and the mitochondrial membranes are condensed,

resulting in weaker plasma membrane selective permeability and

increased oxidative stress. At least three cytoprotective systems

against ferroptosis with distinct subcellular localizations have

been identified in recent studies: glutathione peroxidase 4 (GPX4)

located in the cytoplasm and mitochondria; ferroptosis suppressor

protein 1 (FSP1) located at the plasma membrane, which promotes

ubiquinone regeneration; and dihydroorotate dehydrogenase

(DHODH) located in the mitochondria. GPX4 can remarkably

prevent ferroptosis by decreasing the levels of phospholipid

hydroperoxides and thereby inhibiting lipid peroxidation

mediated by lipoxygenase. FSP1, which promotes ubiquinone

regeneration at the plasma membrane, uses NAD(P)H to catalyze

the regeneration of nonmitochondrial coenzyme Q10 (CoQ10),

which blocks ferroptosis by inhibiting lipid peroxide propagation.

In parallel with mitochondrial GPX4, DHODH reduces ubiquinone

(CoQ) to ubiquinol (CoQH2), an antioxidant capable of resisting

ferroptotic activity, which inhibits ferroptosis within the inner

mitochondrial membrane (independent of cytosolic GPX4 or

FSP1) (5–7).

The prognosis of glioma and neuroblastoma is not particularly

satisfactory. Currently, it is necessary to develop effective

therapeutic approaches for glioma and neuroblastoma. A valid

way to circumvent therapeutic resistance in cancer cells is

targeting the ferroptotic pathway because of the high level of iron

accumulation and the accompanying increase in ROS production.

However, ferroptosis-related therapy application in glioma and

neuroblastoma is still challenging because several aspects of the

mechanisms of ferroptosis are still unclear. In this article, we present

the progress in ferroptosis research in glioma and neuroblastoma

and relevant future perspectives.
Ferroptosis

Ferroptosis is a form of nonapoptotic cell death that results

from the accumulation of intracellular iron and increased toxic lipid

peroxide reactive oxygen species. In the prevention of ferroptosis,

antioxidant systems can help decrease oxidative stress. Inhibition of

an antioxidant system can contribute to the induction of ferroptosis

in tumor cells. As a result, antioxidant systems are capable of

remarkably regulating ferroptosis in cells and are also one of the

major areas of research on ferroptosis at present.

The Xc system is also referred to as the cystine/glutamate

reverse transporter protein. GPX4 essentially constitutes the
Frontiers in Oncology 02
selenoprotein family and mainly mediates the reduction of

peroxides to the corresponding alcohol. This antioxidant system

prevents ferroptosis by transporting cysteine through the Xc system

for the synthesis of glutathione (GSH), which in turn helps GPX4

reduce peroxides. As a major antioxidant component, GSH

participates in a wide range of redox reactions in the body to

maintain physiological homeostasis. GPX4 can critically regulate

ferroptosis and is known to determine cell fate. Upregulating or

inhibiting these antioxidant systems to regulate ferroptosis can

impact the development of various diseases. Moreover, studies

have identified various drugs and molecules as inducers of

ferroptosis that act by restricting Xc system activity (8, 9).

There is increasing evidence that inhibiting GPX4 activity does

not necessarily lead to ferroptosis in cells. FSP1 on the plasma

membrane reduces ubiquinone with NADPH as a cofactor, thereby

preventing the peroxidation of lipids. GSH is not required as a

cofactor for this process, nor does this process depend on GPX4. As

a result, in contrast to GPX4, FSP1 may be regarded as a ferroptosis

inhibitor, and the expression of FSP1 confirms the sensitivity of

cells to ferroptosis (8, 10, 11).

DHODH, located in the inner mitochondrial membrane, is the

enzyme involved in the 4th rate-limiting step in pyrimidine

biosynthesis and is capable of catalyzing dihydroorotic acid

(DHO) to be oxidized to orotate (OA) and CoQ (ubiquitin) for

further reduction to CoQH2 (ubiquinone), which is associated with

the respiratory complex and affects electron transfer in the oxidative

respiratory chain. Further studies have shown that inhibition of

DHODH results in ferroptosis in cells with low GPX4 expression

and increases the sensitivity of cells with high GPX4 expression to

ferroptosis. DHODH can act synergistically with GPX4 to inhibit

mitochondria-related ferroptosis without dependence on FSP1

(5, 12).

As one of the most important mechanisms regulating ferroptosis,

antioxidant systems have always been important. With in-depth

research, an increasing number of relevant molecules have been

discovered, creating directions for further research and application

of ferroptosis in glioma and neuroblastoma.
Ferroptosis in glioma

Glioma is a representative malignant CNS tumor. Currently,

surgery, radiotherapy, chemotherapy, and tumor treatment fields

(TTFields) are the most common treatments for clinical glioma, but

they have a poor prognosis in patients, particularly those who suffer

from high-grade gliomas, including GBM. The exploration of new

therapeutic methods and therapeutic targets for glioma remains a

hot spot. Targeting the ferroptotic pathway can serve as an effective

treatment for glioma (Figure 1).
Ferroptosis-related gene network in glioma

The Xc-GSH-GPX4 network serves as the primary antioxidant

barrier against ferroptosis. As a direct target gene, recombinant

solute carrier family 7, member 11 (SLC7A11) is repressed by p53.
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It is a key component of the cystine-glutamate antagonist system

(xCT system), which mediates the uptake of extracellular cystine in

exchange for glutamate within the cell. The direct interaction

between ubiquitin hydrolase ovarian tumor domain protease

domain, ubiquitin aldehyde binding protein 1 (OTUB1) and

SLC7A11 stabilizes the SLC7A11 protein, and OTUB1

knockdown triggers SLC7A11 expression-dependent ferroptosis

(13). Moreover, exogenous overexpression of NF-kB activating

protein (NKAP) positively regulates SLC7A11 to promote cellular

resistance to ferroptosis inducers (14).

Current research indicates that glutathione peroxidase 4 plays a

critical role in ferroptosis. It has been demonstrated that a number

of molecules affect the expression of GPX4 in gliomas to regulate

ferroptosis. RSL3 (a GPX4 inhibitor) inactivates GPX4 and induces

glycolytic dysfunction in glioma cells with reduced ATP and

pyruvate content as well as HKII, PFKP, and PKM2 protein

levels, which in turn induces ferroptosis (15). Knockdown of

RNA-binding fragile X mental retardation syndrome-related

protein 1 (FXR1) promotes TMZ-induced ferroptosis, thereby

overcoming TMZ resistance. FXR1 has been proven to bind to

the GPX4 mRNA transcript and exert a positive regulatory effect on

GPX4 expression (16). g-Glutamyltransferase 1 (GGT1) is an

enzyme that cleaves extracellular glutathione. In GBM cells with

GGT1 expression, drug inhibition or GGT1 deletion was shown to

inhibit the increase in the intracellular glutathione levels induced by

the cellular density and the cell viability affected by cystine

deprivation. In addition, cystine deprivation led to glutathione

depletion and ferroptosis in GBM cells deficient in GGT1

independent of a high cellular density. Exogenous expression of

GGT1 in GBM cells deficient in GGT1 suppressed glutathione

depletion and ferroptosis induced by cystine deprivation at a high

density (17). Even more exciting, GPX4 expression is obviously

reduced during tumor recurrence, whereas acyl-CoA synthetase

long chain family member 4 (ACSL4) expression exhibits an

obvious increase. Moreover, aldehyde dehydrogenase family 1,

subfamily A3 (ALDH1A3) and FSP1 expression levels are also

increased during recurrence, with the increase in ALDH1A3

expression being significant. It appears that exploiting the

ferroptotic process may be a new therapeutic option, especially in

patients with recurrent GBM (18). These findings provide new

insights into the treatment of recurrent GBM and may contribute to

the development of a basis for treating gliomas by targeting

ferroptosis in an effective manner.

TP53 encodes p53 promoting cell cycle arrest, senescence, and

apoptosis, which are three canonical functions of p53 involved in

tumor suppression. This gene is the most frequently mutated tumor

suppressor gene in all human cancers. The TP53 gene has been

found to be activated under various conditions and to play an

important role in the control of ferritin by regulating lipid, energy,

and iron metabolism (19, 20). SLC7A11 is a key inhibitor of

ferroptosis enhanced by p53. P62 (a stress-induced adaptor

protein) inhibits ubiquitination, promotes ferroylation, and

suppresses the expression of SLC7A11 in p53-mutant (MT)

GBM, whereas it weakens ferroylation and increases SLC7A11

expression in p53-wild-type (WT) GBM (21). There is evidence

that Rho family GTPase 1 (RND1) interacts with p53, leading to the
Frontiers in Oncology 03
deubiquitination of p53. In addition, overexpression of RND1

promotes the activity of the p53-SLC7A11 signaling pathway and

triggers lipid peroxidation and siderosis in GBM cells (22). Reduced

cystine uptake inhibits downstream GSH biosynthesis, impairing

the ability of GPX4 to inhibit siderosis. In addition to

downregulating SLC7A11 and impairing GSH biogenesis, p53

promotes ferroptosis through the regulation of other metabolic

pathways. The rate-limiting enzyme in polyamine breakdown is

arginine/arginine N1-acetyltransferase 1 (SAT1). In recent studies,

we found that p53 could induce SAT1 expression, slowing the

growth of xenograft tumors. As a result of SAT1 induction,

arachidonate 15-lipoxygenase (ALOX15) was upregulated. The

p53/SAT1/ALOX15 axis is therefore partially responsible for p53-

mediated ferroptosis and tumor suppression (19, 23, 24). In

addition, arachidonate 12-lipoxygenase (ALOX12) plays an

important role in these functions. p53 promotes the activity of

ALOX12. ALOX12 is bound by SLC7A11 and thus sequestered

from its substrate, polyunsaturated fatty acids (PUFAs), including

those esterified in membranes. ALOX12 is released when p53

downregulates SLC7A11, oxidizing membrane PUFAs and

initiating ferroptosis (25, 26). Therefore, the p53/SLC7A11/

ALOX12 axis is independent of the decrease in GSH biogenesis

and GPX4 activity and is therefore a separate pathway from the

p53/SLC7A11/GPX4 pathway. p53 inhibits the expression of

SLC7A11 in the antiferroptosis system, and it can also inhibit the

serine synthesis pathway as well as the transsulfuration pathway by

inhibiting phosphoglycerate dehydrogenase and cystine synthase

(CBS), respectively, thus limiting the expression of GSH (19, 27).

Mouse double minute 2 homolog (MDM2) is the major E3

ubiquitin-protein ligase that degrades p53, but it is also a p53

target gene. MDM2 and its homolog MDMX can negatively

regulate the tumor suppressor p53. Inhibition of MDM2 and

MDMX leads to an increased FSP1 protein level, which in turn

increases the coenzyme Q10 level. In addition, the MDM2-MDMX

complex can alter peroxisome proliferator-activated receptor a
(PPARa) activity to regulate lipid metabolism (28). In summary,

several studies have been conducted on p53 and ferroptosis to date,

and most support a role for p53 in ferroptosis (19, 29). Ferroptosis is

promoted by the multiple roles of p53 in regulating cellular

metabolism, particularly lipid, iron, ROS, and amino acid

metabolism. It remains to be seen whether other metabolic target

genes of p53 or metabolic processes modulated by p53 (including

autophagy) contribute to p53’s ferroptosis-regulating role.

In recent years, ACSL4 was found to partially activate long-

chain fatty acid metabolism and immune signal transduction,

indicating that it might be a regulator of ferroptosis (30). ACSL4

overexpression was found to decrease GPX4 overexpression and

increase ferroptosis marker levels, such as 5-hydroxyeicosatetraene

(5-HETE), 12-HETE and 15-HETE, in glioma cells (31). miR-670-

3p inhibits ferroptosis in glioblastoma cells by inhibiting ACSL4. As

a result, inhibition of miR-670-3p could be an alternative strategy

for the treatment of glioblastoma (32). Heat shock protein 90

(Hsp90) and dynamin-related protein 1 (Drp1) actively regulate

and stabilize ACSL4 expression during ferroptosis in glioma

triggered by erastin. Hsp90 overexpression and Drp1

dephosphorylation change the mitochondrial morphology and
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increase lipid peroxidation mediated by ACSL4 to promote

ferroptosis (33).

GPX7 is another member of the glutathione peroxidase family

(GPX) and participates in oxidative stress and tumorigenesis. GPX7

silencing enhances oxidative stress associated with ferroptosis in

glioma cells, while GXP7 deletion sensitizes gliomas to ferroptosis

induced by erastin. In addition, miR-29b was found to repress

GPX7 expression directly after transcription (34).

Recent studies have confirmed that tetrahydrobiopterin (BH4),

a significant cofactor for multiple enzymes, can remarkably inhibit

ferroptosis. The GTP cyclohydrolase 1 (GCH1)-BH4 axis controls

BH4 synthesis and reduces intracellular CoQ and ROS

accumulation, thereby leading to ferroptosis inhibition. In

addition, GCH1/BH4 exerts a selective inhibitory impact on

nuclear receptor coactivator 4 (NCOA4)-mediated ferritin

autophagy and affects iron metabolism (8, 35). This provides a

new direction for ferroptosis research in glioma. Coatomer protein

complex subunit zeta 1 (COPZ1) negatively regulates NCOA4

activity, and COPZ1 knockdown induces NCOA4-mediated

ferritin phagocytosis (36). Downregulation of matrix-remodeling-

associated protein 8 (MXRA8) increases the intracellular levels of

lipid peroxidation in glioma cells, leads to NCOA4 upregulation

and inhibits ferritin heavy chain 1 (FTH1). MXRA8 is significantly

associated with various infiltrating immune cells, such as NK cells,

macrophages, and neutrophils. MXRA8 knockdown in glioma cells

attenuates M2 macrophage infiltration. Accordingly, MXRA8

facilitates glioma progression and critically affects glioma

ferroptosis and the immune microenvironment (37).

The transcription factor nuclear factor erythroid 2-related

factor 2 (Nrf2) controls the expression of genes associated with

oxidative stress and can reliably maintain redox stability and

resistance to oxidative stress. High levels of NRF2 lead to

sensitivity in glioblastoma dependent on the expression of its

proferroptotic target ATP binding cassette subfamily C member 1

(ABCC1), resulting in GSH depletion upon blockade of the Xc

system by erastin (38).

With ongoing research progress, the mechanisms regulating

ferroptosis are becoming increasingly clear. Further research on the

ferroptosis-related gene network will provide new ideas and broad

opportunities for the treatment of glioma, not only primary high-

grade gliomas such as GBM but also recurrent gliomas. However,

there are a few issues that require further exploration. For example,

we must determine how to more effectively and precisely induce

ferroptosis in glioma cells and improve the efficacy and safety of

this treatment.
Ferroptosis-related compounds in glioma

Chemotherapy is one of the basic therapeutic strategies for

glioma. TMZ is currently one of the first-line chemotherapeutic

drugs for glioma, especially high-grade glioma. However, with the

widespread use of TMZ, the median survival time of GBM patients

has improved by only approximately 2.6 months. Frustratingly, as

GBM patients receive long-term TMZ therapy, resistance inevitably

develops, resulting in treatment efficacy dropping significantly or
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developed (39). In the Table 1, we list the recent advances in drug-

induced glioma ferroptosis for the treatment of glioma (40–51).

From the Table 1, we can see that many drugs used in the past

also have a good effect on ferroptosis and that they inhibit the

growth of glioma cells by targeting different ferroptotic pathways

and target genes. This suggests that it is possible to find new uses for

these drugs related to treatment targeting ferroptosis.
Ferroptosis-inducing nanoparticles

The use of rationally designed nanomaterials for the treatment

of cancer is an emerging field that has led to tremendous medical

success . The adminis t ra t ion of ferroptos i s - inducing

nanoformulations with accurately tuned physicochemical

properties is as an extended and feasible therapeutic strategy for

tumors. We compiled recent research advances related to the

induction of ferroptosis in glioma cells by nanomaterials.

(Table 2) (52–56).

These different nanodrugs offer a new direction for ferroptosis-

based therapy for gliomas. The different designs are very interesting.

It is beneficial to generate nanoparticles encapsulated with Fe3O4

and Ce6 acoustic sensitizers, and external loading of C6 cell

membranes is performed to achieve tumor cell enrichment of the

material. Transient opening of the blood−brain barrier can be

achieved with focused ultrasound (US). This sonodynamic

therapy (SDT) combines targeting of ferroptosis in glioma cells

with SDT (53). However, noninvasive destruction of the blood

−brain barrier (BBB) by focused ultrasound may lead to the entry

and/or exit of some harmful substances at the same time. In

addition, the combination of ferroptosis-targeting therapy and

immunotherapy is also a good treatment strategy (54). A

membrane-modified drug delivery system was constructed by

loading small interfering RNA targeting programmed cell death 1

ligand 1 (PD-L1) on Fe3O4 and externally on the BV2 cell

membrane. This system promoted synergy between ferroptosis

induction and immunotherapy by reducing the expression of PD-

L1 in situ in drug-resistant GBM tissues, which was combined with

the effect of ferroptosis induction by Fe2+ in Fe3O4. Some studies

have also been conducted on the combination of chemotherapeutic

drugs with nanomaterials (55). Gallic iron nanoparticles combined

with the chemotherapeutic agent cisplatin produce a dual killing

effect. The material’s photothermal responsiveness and ability to be

imaged by MRI provide a new way to treat GBM. Recent studies

have also combined exosomes with nanomaterials to create a

composite ferroptosis platform (56). A study engineered

exosomes by modifying the ANG-targeting peptide on the surface

of the exosomes, giving them a greater ability to cross the blood

−brain barrier. Next, they constructed a nanomaterial with an

Fe3O4 core, a mesoporous silicon shell and a modified anti-CD63

antibody on the surface of the mesoporous silicon shell for

branching exosomes. Ultimately, the ferroptosis-related

therapeutic effect of the system was achieved by encapsulating a

drug or small interfering RNA targeting a critical ferroptotic

pathway in the mesoporous silicon shell and exosomes.
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TABLE 2 Ferroptosis-inducing nanoparticles in GBM.

Nanoparticle name Target Cell line and
Animals

Impact on Ferroptosis Ref.

(FA)/Pt-si-GPX4@IONPs GPX4 U87MG, P3#GBM and
NHA

• Increase iron (Fe2+ and Fe3+) levels; increase H2O2 levels through the
activation of lower NOX
• Inhibit GPX4 expression

(52)

PIOC@CM NPs GPX4 C6 • Increase the ROS level and deplete GSH upon ultrasonic irradiation
• Inhibit GPX4 expression

(53)

Fe3O4-siPD-L1@M-BV2 GPX4 and PD-
L1

GL261, HT-22 and BV2 • Induce the maturation of DCs and decrease the protein expression of PD-L1
• Inhibit GPX4 expression

(54)

cRGD/Pt + DOX@GFNPs
(RPDGs)

N/A U87 and NHA • Deplete GSH and elevate the ROS level (55)

Fe3O4@mSiO2 NPs DHODH and
GPX4

LN229 and A172 • Inhibit GPX4 and DHODH expression
• Deplete GSH and elevate the ROS level

(56)
F
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TABLE 1 Ferroptosis-inducing drugs in GBM.

Drug name Target Cell line and
Animals

Pathway Impact on Ferroptosis Ref.

Dihydroartemisinin
(DHA)

GPX4 U251, U373 and HT22 PERK/ATF4/HSPA5 pathway • Increase GPX4 expression and activity
• Upregulate ATF4

(40)

Brucine ATF3 U118, U87, U251 and
A172

Trigger ATF3 upregulation and
translocation into the nucleus through

activation of ER stress

• Promote H2O2 accumulation through
upregulation of NOX4 and SOD1
• Downregulate catalase and xCT

(41)

Pseudolaric acid B
(PAB)

Transferrin
receptor

Rat C6 and human
SHG-44, U87 and U251

glioma cells

Upregulate transferrin receptor; p53-
mediated xCT pathway

• Upregulate transferrin receptor
• Promote H2O2 and lipid peroxide generation
• Deplete intracellular GSH via the xCT
pathway mediated by p53

(42)

Amentoflavone (AF) Autophagy-
dependent
ferroptosis

U251 and U373 glioma
cells

AMPK/mTOR pathway • Decrease the GSH level in tumor tissue
• Increase the expression of LC3B, Beclin1,
ATG5, and ATG7

(43)

RSL3 GPX4 U87 and U251 NF-kB pathway • Increase the concentration of lipid ROS and
downregulate proteins related to ferroptosis
(GPX4, ATF4, and SLC7A11)
• Activate the NF-kB pathway

(44)

Dihydrotanshinone
I

GPX4 and
ACSL4

U87 and U251 GPX4 and ACSL4 pathway • Decrease the GPX4 level and increase the
ACSL4 level
• Reduce the GSH/GSSG ratio

(45)

Apatinib Nrf2 U87 and U251 VEGFR2/Nrf2/Keap1 pathway • Decrease Nrf2 and p-VEGFR2 expression (46)

Sevoflurane GPX4 and
ATF4

U87 and U251 ATF4-CHAC1 pathway • Increase ROS levels and the Fe2+

concentration
• Downregulate GPX4, upregulate transferrin
and activate ATF4

(47)

Plumbagin xCT and
GPX4

U87, U251, C6 and
GL261

NQO1/GPX4 pathway • Downregulate xCT and GPX4
• Increase NQO1 activity

(48)

Curcumin analog
(ALZ003)

FBXL2 U87 and A172 GPX4 pathway • Decrease GPX4 expression
• Induce lipid peroxidation and ROS
accumulation

(49)

Capsaicin ACSL4 and
GPX4

U87 and U251 GPX4 and ACSL4 pathway • Increase ACSL4, 5-HETE, MDA and TOS
levels and decrease GPX4, GSH and TAS levels

(50)

Boric acid (BA) ACSL4 and
GPX4

GBM C6 cells ACSL4/GPx4SEMA3F/NP2 pathways • Increase ACSL4 levels and decrease GPX4
levels
• Upregulate SEMA3F/NP2

(51)
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In general, the different designs are interesting and well designed. In

conclusion, to achieve ferroptosis-targeted therapy with nanomaterials,

the following steps must be achieved: blood−brain barrier penetration,

tumor targeting, and ferroptosis induction. Nanomaterials with

properties that enable these events may be new agents for glioma

therapy in the future. However, the design of different nanomaterials is

relatively complicated, such as the camouflage achieved with different cell

membranes and the encapsulation of different drugs, and further

improvements and validation in industrial production and human

experimental safety are still needed. However, we believe that with the

continuous progress of medical-industrial crossover technology, an

increasing number of nanoagents will start to capture attention and

provide new insights for the treatment of glioma in combination with

ferroptosis-inducing agents.
Ferroptosis and TMZ resistance

TMZ is still a most effective drugs for glioma chemotherapy.

Ferroptosis can considerably affect TMZ resistance in glioma, and

ferroptosis resistance may serve as a mechanism of TMZ resistance

in glioma. TMZ increases LDH, MDA and iron levels and decreases

GSH levels in glioma cells to induce ferroptosis. In addition, ROS

levels and DMT1 expression are elevated, and GPX4 expression is

decreased in cells treated with temozolomide; these events are under

the regulation of the Nrf2/HO-1 pathway (57).
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In addition to ferroptosis inducers and xCT inhibitors,

quinacrine (a compound capable of crossing the blood−brain

barrier) has been found to impair autophagy but increase the

sensitivity of glioblastoma stem cells (GSCs) to TMZ and trigger

ferroptosis in GSCs (58). A long non-coding RNA LINC01564

promotes glioma cell resistance to TMZ by upregulating Nrf2

expression, which counteracts the effects of MAPK8 ablation on

glioma cell apoptosis and ferroptosis to inhibit ferroptosis (59).

Further study of the ferroptosis mechanism in glioma TMZ

resistance will contribute to new insights into the clinical reversal of

glioma TMZ chemoresistance. However, details are still needed for

clinical application.
Ferroptosis and immunotherapy

One of the most effective ways to treat cancer is to induce tumor

cell death. Immunotherapy is considered a milestone in precision

medicine. It elicits significant therapeutic responses in patients who

have developed resistance to other conventional therapies (60).

However, immunotherapy is not particularly effective in glioma,

especially in GBM. A growing body of research suggests that the

glioma immunosuppressive microenvironment (GIME) contributes

to the poor efficacy of glioma immunotherapy (61–63). The rapid

proliferation of gliomas creates a harsh microenvironment that is

acidic with nutrient scarcity and hypoxia (64–66). As a result,
FIGURE 1

Snapshot of ferroptotic pathways. Ferroptosis in GBM is triggered by four main regulatory pathways: iron metabolism, the GPX4 pathway, the FSP1
pathway and lipid metabolism. In iron metabolism, Fe3+ is transported into the cell by TfR1 (transferrin receptor) and subsequently reduced to Fe2+,
and some nanoparticles are involved in iron metabolism. The GPX4 pathway is the classic ferroptotic pathway, and the Xc- system plays an
important regulatory role in this pathway. p53 is closely related to this pathway. The MDM2-MDMX complex regulates lipid metabolism by altering
PPARa activity and ultimately interacts with the FSP1 protein. In lipid metabolism, AA (as well as other PUFAs) is metabolized by ACSL4 and
eventually participates in lipid peroxidation. (Created with BioRender).
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immune cells become immunosuppressive or inactive or die (67,

68), whereas glioma cells may be able to adapt to this harsh

microenvironment due to their substantial plasticity (69, 70).

Additionally, the blood−brain barrier prevents immune cells from

migrating to tumors (71, 72). Furthermore, many suppressive

cytokines secreted by gliomas (73) and suppressive immune cells

suppress the antitumor activity of immune cells (74, 75).

Furthermore, glioma cells can secrete a large number of cytokines

to capture immune cells. Glioma cells are able to escape immune

surveillance in this case (62, 76). To treat glioma successfully, it is

therefore essential to remodel the immune microenvironment.

This is of great importance for improving traditional drug

resistance, as ferroptosis is closely related to antitumor immunity

and the immune microenvironment. Calreticulin (CRT), a soluble

chaperone associated with the endoplasmic reticulum (ER), is one of

the proteins that regulates the tumor microenvironment. As a result of

ferroptosis, CRT is translocated onto tumor cells, where it can induce a

robust immune response against the tumor (77). Neutrophils have

been reported participate in apoptosis by accumulating iron-dependent

lipid peroxide, which results in iron atrophy in GBMs. Intratumoral

depletion of ACSL4 or overexpression of GPX4 reduces tumor necrosis

and aggressiveness (78). By harnessing the cytotoxic potential of the

immune system, notably that of tumor-specific cytotoxic T cells,

immunotherapy is a promising strategy to treat malignancies. As a

result of their antitumor effects, CD8+ T cells are a crucial component

of the tumor microenvironment; they also play a key role during every

stage of tumor development. Ferroptosis is a metabolic vulnerability of

tumor-specific CD8+ T cells, whereas GPX4-deficient T cells display a

high sensitivity to ferroptosis and are thus incapable of exerting

antitumor effects. Overexpression of GPX4 inhibits ferroptosis in

CD8+ T cells and simultaneously restores the production of

cytotoxic cytokines in vitro or increases the number of tumor-

infiltrating CD8+ T cells in vivo, thereby enhancing tumor control

(79–81). In contrast, increased ferroptosis facilitates immune cell

activation and infiltration but attenuates the killing of tumor cells

through cytotoxic activity (82). Moreover, enhanced ferroptosis

contributes to the recruitment of tumor-associated macrophages

(TAMs) and M2 polarization (83). These factors contribute to the

creation of an immunosuppressive immune microenvironment, which

may lead to immune escape. Further studies are needed to balance the

dual effects in the future.

Interestingly, ferroptosis exhibits immunogenicity in vitro and

in vivo, triggering a vaccination-like effect in immunocompetent

mice, in which ATP and high mobility group box 1 (HMGB1), the

most typical injury-related molecular patterns associated with

immunogenic cell death, can be passively released and act as

immunogenic signals that affect the immunogenicity of early

ferroptotic cancer cells (84). Thus, this novel discovery provides a

new direction for vaccine therapy.

Clinical trials of immune checkpoint inhibitors (ICIs) have

demonstrated a broad clinical impact and early success. Some but

not all cases of ICI response have been associated with the

expression of immune checkpoint molecules, including PD-1

ligand (PD-L1) (85). Some patients with PD-L1-positive tumors
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do not respond to treatment, while some patients with PD-L1-

negative tumors may benefit from ICI therapy due to tumor

heterogeneity (86, 87). TYRO3 inhibits anti-PD-1/PD-L1-induced

ferrogenesis in tumor cells by suppressing the AKT/NRF2 axis and

amplifies a favorable tumor microenvironment by reducing the

ratio of M1/M2 macrophages, thus contributing to the efficacy of

anti-PD-1/PD-L1 therapy (88). More effective immune checkpoints

or more valid regulatory pathways need to be explored to overcome

resistance in glioma patients.

Although ICI immunotherapy has been shown to have

significant positive effects in some cancer patients, there is still

evidence of drug resistance in many tumors, including GBM, due to

tumor heterogeneity, low tumor-infiltrating T-cell (TIL) levels, loss

of target antigens and off-target toxicity (89, 90). Chimeric antigen

receptor T (CAR-T) cell immunotherapy targeting neoantigens that

are derived from somatic mutations and expressed on only tumor

cells has led to a new approach in cancer immunotherapy. CAR-T

cell therapy has achieved certain success in both basic research and

small-scale clinical research (91). B7-H3 (CD276) is expressed on

CNS tumors, and B7-H3-specific CAR-T cells were designed for

therapy in diffuse intrinsic pontine glioma (DIPG), producing

exciting results (92). Frustratingly, there are no cases of relevant

CAR-T cells designed to induce ferroptosis in gliomas. In addition,

taking advantage of CAR-T cells to transform the immune

microenvironment and enhance ferroptosis in tumor cells is a

novel direction to be explored.

In conclusion, with increasing research, immunotherapy is becoming

more specific and individualized, which provides opportunities for therapy

in glioma. The effects of ferroptosis and immunotherapy are bidirectional,

i.e., ferroptosis can further influence the effect of immunotherapy by

affecting the immunemicroenvironment, and the effect of immunotherapy

can be further enhanced by enhancing ferroptosis. However, there are still

some details and limits that need to be further researched for

glioma therapy.
Potential Biomarkers of Ferroptosis

With the development of sequencing technology and the

creation of databases, bioinformatic analysis now plays an

important role in identifying potential targets and drug effects

and predicting prognosis. We compiled the recently published

literature on biogenic analysis to provide potential new ideas for

future research (Supplement 1) (93–105). As shown in the table,

different studies identified different targets, and some of the studies

explored several targets.

Although a large number of bioinformatic analysis studies

currently provide us with ferroptosis-related targets in low-grade

glioma (LGG) and GBM, they still have many limitations and points

of controversy due to the lack of rigorous experimental support.

Many of the studies relied on only computer technology.

Bioinformatic analysis may be a future direction, but the validity

and clinical significance of the molecules identified with this

approach need to be further explored.
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Ferroptosis in neuroblastoma

Neuroblastoma is one of the most prevalent extracranial tumors

in children, accounting for the majority of childhood cancer-related

deaths, especially in high-risk cases. High-risk NB is characterized

by the appearance of this disease after the age of 18 months, the

amplification of MYCN (MYCN Proto-Oncogene, BHLH

Transcription Factor), or the activation of mechanisms for

telomere maintenance (106, 107). The scientific community is

committed to finding new strategies related to ferroptosis based

on the characteristics of high-risk NB as a potential therapy for

high-risk NB (108, 109).
The ferroptosis-related gene network
in neuroblastoma

The characteristics of NB are significantly different from those of

glioma, and the focus is also different. Genomic amplification of the

oncogene MYCN acts as an essential oncogenic event in high-risk

NB, occurring in approximately 50% of high-risk cases, and MYCN

amplification is strongly related to a poor NB prognosis (OS < 50%).

MYCN-amplified NB shows a system-dependent increase in the level

of the Xc-cystine/glutamate reverse transporter protein for ROS

detoxification mediated by increased transcription of this receptor

(108). As a result, MYCN amplification may be a potent target in NB,

and much research has focused on this aspect. MYCN induces

massive lipid peroxidation when consuming cysteine, the rate-

limiting amino acid in the biosynthesis of GSH, which sensitizes

cells to ferroptosis. When the uptake of cysteine in MYCN-amplified

pediatric NB is restricted, the use of cysteine in protein synthesis can

inevitably cause GSH-induced ferroptosis and spontaneous tumor

regression of low-risk NB (110). In addition, NB cells with amplified

MYCN can easily undergo ferroptosis due to the upregulation of

TFRC-encoded transferrin receptor 1, which reprograms cellular iron

metabolism through the upregulation of TFRC (Transferrin

Receptor) expression. TFRC-encoded transferrin receptor 1 is a

pivotal iron transporter protein on the cell membrane, and elevated

iron uptake facilitates the accumulation of unstable iron pools,

resulting in elevated lipid peroxide production. TFRC

overexpression in NB cells is also capable of inducing selective

sensitivity to ferroptosis inhibition by GPX4 (111, 112).

Ferroportin (Fpn) is the only iron export protein that partially

regulates the intracellular iron concentration. Fpn knockdown has

been shown to increase the accumulation of iron-dependent lipid

ROS to accelerate erastin-induced ferroptosis, and Fpn may be an

appropriate target for NB treatment (113). Mitochondrial ferritin

(FtMt), a kind of iron storage protein in the mitochondria, also

exerts a protective effect during erastin-induced ferroptosis (114).

Recent mechanistic studies have shown that downregulation of

CDC27 results in obviously reduced expression of ornithine

decarboxylase 1 (ODC1), a recognized direct target of MYCN.

ODC1 inhibition markedly undermines the promotive effects of

CDC27 on NB cells in terms of proliferation, metastasis and the

sphere-forming capacity (115).
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Ferroptosis-related compounds
in neuroblastoma

There are currently several drugs for NB treatment, including

c i sp l a t in , e topos ide , v inc r i s t i n e , doxorub i c in , and

cyclophosphamide. These drugs are the most effective inducers of

apoptosis. However, this type of drug therapy creates multidrug-

resistant clones, which makes eradicating this type of tumor much

harder and favors tumor recurrence (116). The induction of

ferroptosis through the use of drugs and agents in NB can be

used to achieve better therapeutic outcomes, and this is also another

hot topic in current research. Inducing ferroptosis has great

potential as an anticancer therapeutic strategy in various NB

tumor types, particularly in tumors with RAS mutations. The

ferroptosis inducers erastin and RSL3 reduce RAS mutation-rich

N2A cell (mouse neuroblastoma N2A cells) viability by increasing

ROS levels and inducing cell death. In contrast, ferroptosis

inhibitors lower the high ROS levels and reduce viability defects

in erastin- or RSL3-treated cells. Ferritin (Fth) heavy chain 1, a

ferrous oxidase that converts redox-active Fe2+ into redox-inactive

Fe3+, may control the N2A-induced hypersensitivity response to

ferroptosis. Overexpression of Fth reduces ROS levels and cell death

and induces GPX4 expression. Additionally, NB cell lines present

remarkably lower Fth expression than other cancer cell lines (117).

In addition, withaferin A (WA), a natural ferroptosis inducer in

NB, activates Kelch-like ECH-associated protein 1 to activate the

nuclear factor-like 2 pathway and produces increased intracellular

unstable Fe(II) levels after heme oxygenase-1 is excessively

activated, inducing ferroptosis or inactivating GPX4 (109).

Chlorido[N,N’-disalicylidene-1,2-phenylenediamine]iron(III)

complexes in NB cell lines produce lipid-based ROS and induce

ferroptosis with greater efficacy than the therapeutic drug

cisplatin (118).
Conclusion

Despite advances in multimodal treatment, midbody treatment

and the prognosis of gliomas and neuroblastoma are discouraging.

Ferroptosis is a newly identified form of programmed cell death

(PCD) dependent on iron that differs from apoptosis, cell necrosis,

and autophagy. It plays a very important role in GBM and NB. This

article summarizes the mechanisms involved in the roles of

ferroptosis in GBM and NB. To summarize, we report that (1)

the GPX4 pathway remarkably affects GBM and NB and that direct

or indirect inhibition of GPX4 disrupts lipid peroxidation. (2)

MYCN amplification may be a potent target in NB. (3)

Nanodrugs may be new therapeutic agents for treating glioma

and neuroblastoma. (4) The complexity of the tumor immune

microenvironment and regulatory mechanisms need to be

further explored.

Therefore, future research directions should include an in-

depth study of ferroptosis, identification of key targets in the

ferroptotic pathway and validation of their relationships in glioma

and neuroblastoma, application of ferroptosis biomarkers in clinical
frontiersin.org

https://doi.org/10.3389/fonc.2023.1065994
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Chi et al. 10.3389/fonc.2023.1065994
prevention and monitoring, exploration of a new generation of

ferroptosis-targeting systems, and finally, validation of the

relationship between immunity and ferroptosis in glioma

and neuroblastoma.
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Glossary

CNS Central nervous system

NB Neuroblastoma

GBM Glioblastoma

TMZ Temozolomide

TTFields Tumor-treating fields

ROS Reactive oxygen species

GPX4 Glutathione peroxidase 4

FSP1 Ferroptosis suppressor protein 1

DHODH Dihydroorotate dehydrogenase

NADPH Nicotinamide adenine dinucleotide
phosphate

GSH Glutathione

SLC7A11 Recombinant solute carrier family 7,
member 11

OTUB1 OTU domain, ubiquitin aldehyde binding
protein 1

OTU Ovarian tumor domain protease

NKAP NF-kB activating protein

FXR1 Fragile X mental retardation syndrome-
related protein 1

NKAP NF-kB activating protein

RND1 Rho family GTPase 1

HD , High cell density

ALDH1A3 Aldehyde
dehydrogenase family 1

subfamily A3

ACSL4 Acyl-CoA synthetase long chain family 4

ALOX15 Arachidonate 15-lipoxygenase

PUFAs Polyunsaturated fatty acids

PPARa Peroxisome proliferator-activated receptor
a

Hsp90 Heat shock protein 90

Drp1 Dynamin-related protein 1

PPAR Peroxisome proliferator-activated receptor

BH4 Tetrahydrobiopterin

GCH1 GTP Cyclohydrolase1

NCOA4 Nuclear receptor coactivator 4

COPZ1 Coatomer protein complex subunit zeta 1

MXRA8 Matrix remodeling-associated protein 8

FTH1 Ferritin Heavy Chain 1

Nrf2 Nuclear factor erythroid 2-related factor 2

ATF4 Activating transcription factor 4

(Continued)
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NOX4 NADPH oxidase 4

SOD1 Superoxide dismutase 1

PAB Pseudolaric acid B

SOD1 Superoxide dismutase 1

ATG5 Autophagy related 5

VEGFR Vascular endothelial growth factor
receptor

NQO1 NAD(P)H quinone dehydrogenase 1

MDA malondialdehyde

SDT Sonodynamic therapy

BBB Blood‒brain barrier

GIME Glioma immunosuppressive
microenvironment

TAM Tumor-associated macrophages

ICIs Immune checkpoint inhibitors

TILs Tumor-infiltrating T cells

CAR-T Chimeric antigen receptor T

DIPG Diffuse intrinsic pontine glioma

AF Amentoflavone

NOX NADPH oxidase

PFI Progression-free interval

LGG Low-grade glioma

OS Overall survival

Fpn Ferroportin

FtMt Mitochondrial ferritin

WA Withaferin A

PCD Programmed cell death
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