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Moving towards a unified
classification of glioblastomas
utilizing artificial intelligence
and deep machine
learning integration
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Glioblastoma a deadly brain cancer that is nearly universally fatal. Accurate

prognostication and the successful application of emerging precision medicine

in glioblastoma relies upon the resolution and exactitude of classification. We

discuss limitations of our current classification systems and their inability to

capture the full heterogeneity of the disease. We review the various layers of data

that are available to substratify glioblastoma and we discuss how artificial

intelligence and machine learning tools provide the opportunity to organize

and integrate this data in a nuanced way. In doing so there is the potential to

generate clinically relevant disease sub-stratifications, which could help predict

neuro-oncological patient outcomes with greater certainty. We discuss

limitations of this approach and how these might be overcome. The

development of a comprehensive unified classification of glioblastoma would

be a major advance in the field. This will require the fusion of advances in

understanding glioblastoma biology with technological innovation in data

processing and organization.
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Gliomas represent the most common primary brain cancer.

They have distinct biological features and clinical behavior, and

account for nearly 80% of the malignant brain tumors in adults

(1, 2). The commonest subtype of glioma is glioblastoma a deadly

brain cancer that is nearly universally fatal. Understanding of

natural history, accurate prognostication, therapeutic efficacy, and

the successful application of emerging precision medicine in

glioblastoma relies upon the resolution and exactitude of

classification. The WHO classification of Central Nervous System

tumors began in 1970 (3). The first edition was largely based on

anatomical and histological findings. Many of the major shifts in

neuro-oncology and glioblastoma understanding over the

intervening years have been represented in the subsequent WHO

classification updates and the associated cIMPACT-NOW

statements (4). A major conceptual leap was made in 2012 with

the recognition of key subclassification of glioblastoma based on

IDH mutation status (10.1038/nature10860.). This single mutation

cleaved glioblastoma into two major subtypes with differing

etiology, therapeutic vulnerability, and prognosis. In 2021 the

significance of this stratification became codified by separating

glioblastoma (IDH wild type) fully from grade 4 diffuse

astrocytoma with IDH mutation (5).

In addition to the formal WHO classification there have been a

multitude of differing stratifications of glioblastoma categorizations

based on transcriptional profiles. A major development was in 2006

when Phillips et al. published a transcriptional classification of

high-grade glioblastoma (6). This was advanced in 2010 when

Verhaak et al. used data derived from The Cancer Genome Atlas

to sub-stratify into 4 subgroups; proneural, mesenchymal, classical,

and neural (7, 8). These were reported to have differing prognosis

and treatment vulnerabilities. Further modifications and

refinements to transcriptional groups, including single-cell

profiling of both the tumor cells and microenvironmental
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components such as the neuro-immune niche have since been

proposed by several groups including Neftel et al (9) and

Richards et al (10). Another layer of complexity was added by

epigenetic DNA-methylation profiling. This has already had

significant clinical impact in supporting diagnosis and risk

stratification (11, 12). Single-cell level profiling is not limited to

transcriptional RNA profiling, it can also be applied across a range

of biological analytic technologies including proteomic analysis -

this opens up unparalleled levels of biological data.

Technologies in spatial-omics enable a greater understanding of

cellular organizations and interactions within a tissue of interest.

This is particularly of interest in cancer biology and can be applied

at microscopic and super-resolution levels across the full range of

spectral wavelengths and including spectroscopy data (13–16).

However, histology, selective mutations, transcriptional

profiles and epigenetic changes do not tell the full story of

glioblastoma diversity. One of the major barriers to successful

new therapies in glioblastoma is considered the intra- and inter-

heterogeneity of the tumors and this extends beyond these

molecular sources of variability. In addition to transcriptional

and epigenetic variability, anatomical location and structural

features – including presence of cysts, degree of necrosis,

proliferation indices etc (17), variability in radiomic findings

(18), whole genome genetic/mutational characteristics

(potentially including variability in extra-chromosomal sites)

(19, 20) metabolic and lipidomic (21) and proteomics (22) can

all be used to codify glioblastoma.

Integrating all these variables into a unified classification which

reflects the diversity of glioblastoma states and in a clinically relevant

manner, represents a daunting task (see Figure 1). Without this

nuanced lamination we continue to risk masking the efficacy of new

therapies by disease heterogeneity leading to variability of response.

Likewise, our ability to accurately provide disease prognostication

will remain limited.
FIGURE 1

Example of multisource data input and integration for deep learning guided classification of glioblastoma.
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Artificial intelligence (AI) tools provide the opportunity to

organize and integrate these factors to generate clinically relevant

disease sub-stratifications, which would help predict neuro-

oncological patient outcomes with greater certainty. With enough

data, DL (deep learning) methods based on neural networks have

emerged as a leading approach for capturing highly informative

features in oncology datasets. Using these tools, rapid progress has

been made in each of the modalities described above. However,

unanswered questions remain about how multimodal data can be

integrated and a unified classification model be built.

A key requirement of multimodal integration is that each data

source complements the others, enhancing information content

beyond the scope of any single modality. For example, radiological

data on macroscopic tumor morphology, as well as molecular and

histological data, describe disease from different perspectives and

scales. Each data source in a unified model should be at least

partially orthogonal to the next.

While multimodal patient stratification methods have been

developed for cancer patients in general, these mainly rely on

multi-omic (multi-dimensional genomic data) in the absence of

radiological or clinical information (23), and there currently exist

few examples which utilize multimodal strategies for glioma patients

specifically. Among these, there have been single-center studies which

stratify glioma patients using multiparametric MRI, molecular and

transcriptome information using kernel based learning (24), and deep

learning approaches to predict survival which integrate both

histological and genomic (but not radiological) information based

on gliomas from The Cancer Genome Atlas (25, 26). These studies

suggest that multimodal integration improves patient stratification

and outcome prediction over unimodal methods.

Given its purported success, what is limiting this type of work?

Many major limitations are simply related to the lack of availability

of large, annotated datasets with multimodal information streams,

which are sufficiently rich and class-balanced that the breadth of

glioma heterogeneity can be encompassed. Other limitations

pertain to how individual data modalities should be fused. It is

unclear whether raw data should be concatenated from the start and

used to train a single model. Or, alternatively, a composite model

should be built from learned features, that are each derived from

multiple single modality models (27).

In this regard, novel dimension-reduction and clustering

methods (28), alongside other techniques which appropriately

weigh will help in leveraging the vast amount of collected

multimodal parameters for each patient and help prevent

overfitting (29, 30). Finally, interpretation of deep learning

models is notoriously difficult, and if clinicians want to

understand how a unified model relates to the disease process,

methods to make such models explainable are urgently needed.

Only by developing a comprehensive unified classification of

glioblastoma can we optimize our prognostication and maximize
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the chance of precision therapies being successful. A system that

allows integration of ever-increasing complexity and nuance will

allow flexibility and adaption to new discoveries and therapies.

Given the multiple layers of data involved in glioblastoma biology

and their deep complexity and inter-related influence the

consolidation and organization into a utilizable structure will

require novel approaches. The application of artificial

intelligence and deep machine learning in oncology is

expanding at an explosive rate with numerous potential

applications (31, 32). These technologies will be instrumental in

achieving this final goal of a single unified classification of

glioblastoma heterogeneity.
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