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Most of our transcribed RNAs are represented by non-coding sequences. Long

non-coding RNAs (lncRNAs) are transcripts with no or very limited protein coding

ability and a length >200nt. They can be epigenetically modified. N6-

methyladenosine (m6A), N1-methyladenosine (m1A), 5-methylcytosine (m5C),

7-methylguanosine (m7G) and 2’-O-methylation (Nm) are some of the lncRNAs

epigenetic modifications. The epigenetic modifications of RNA are controlled by

three classes of enzymes, each playing a role in a specific phase of the

modification. These enzymes are defined as “writers”, “readers” and “erasers”.

m6A and m5C are the most studied epigenetic modifications in RNA. These

modifications alter the structure and properties, thus modulating the functions

and interactions of lncRNAs. The aberrant expression of several lncRNAs is linked

to the development of a variety of cancers and the epigenetic signatures of m6A-

or m5C-related lncRNAs are increasingly recognized as potential biomarkers of

prognosis, predictors of disease stage and overall survival. In the present

manuscript, the most up to date literature is reviewed with the focus on m6A

and m5C modifications of lncRNAs and their significance in cancer.
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1 Introduction

The majority of our transcribed RNA are non-coding sequences, since just 2% of all the

transcribed RNA is translated into polypeptides (1). Long non-coding RNAs (lncRNAs) are

transcripts with no or very limited protein coding ability and a length >200nt. Within their

sequence incorporate multiple interaction sites, responsible for the recruitment of the

molecular partners. These interactions contribute to the specific localization and functions

of lncRNAs (2).

The RNA can be epigenetically modified and RNA modifications are highly dynamic,

some of them reversible, and represent a pivotal component of the post-transcriptional

gene regulatory landscape (3).
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Several epigenetic modifications involving lncRNAs are relevant

in human cancer. Namely, these are N6-methyladenosine (m6A),

N1-methyladenosine (m1A), 5-methylcytosine (m5C), 7-

methylguanosine (m7G) and 2’-O-methylation (Nm) (4).

The focus of this review is the epigenetic modification of

lncRNAs, a class of molecules actively involved in carcinogenesis

and tumor progression of both common (like colorectal cancer) and

rare (like uveal melanoma) tumors (5, 6). A variety of lncRNAs, like

metastasis associated lung adenocarcinoma transcript 1 (MALAT1),

the Hox transcript antisense intergenic RNA (HOTAIR), or X

inactive specific transcript (Xist) have been linked to cancer in

recent years (7–9). MALAT1, when expressed, promotes the

proliferation of tumor cells. Indeed, MALAT1 has been found

highly expressed in different types of solid and haematological

malignancies. This lncRNA exerts its tumorigenic role by

regulating several functions l ike mRNA splicing and

transcription, gene and miRNA expression, activation of miRNAs

targets (7). HOTAIR is aberrantly expressed in solid tumors, where

maintains proliferation through the evasion from the growth

inhibitors, the induction of vasculogenesis, the activation of

invasion and metastasis, the genomic instability (8). Xist is

dysregulated in various malignancies. Elevated Xist expression

associates with poor prognosis and disease-free survival, larger

tumor size, metastasis and tumor stage (10, 11).

Three classes of enzymes control the epigenetic modification of

RNA: “writers”, “readers” and “erasers”. Each class play a role in a

specific phase of the modification and m6A and m5C are the most

represented modifications in RNA of mammalian cells (4). The

writers add a methyl group to the specific nucleotides (adenines or

cytosines); the readers recognize the modified adenines or cytosines

and exert a specific function while the erasers have the role of

removing the markers (12).

The m6A consists in the addition of a methyl group to the

adenine in position 6 by the m6A “writer” complex (13). This latter

is a highly conserved mRNA methyltransferase complex, including

various m6A methyl group transferring proteins (METTL3,

METTL14, WTAP, KIAA1429, RBM15, RBM15B, METTL16)

(12). In mRNA, it constitutes approximately 0.1 – 0.4% of the

total amount of adenines (14). m6A “writer” complex is also

responsible for the methylation of the adenine in position 6 of

coding and non-coding RNAs. m6A-modified site recognizing

proteins (YTHDF1, YTHDF2, YTHDF3, YTHDC1, YTHDC2,

elF3, HNRNPA2B1, HNRNPC), and methyl group removing

proteins (ALKBH5, FTO) are the other two classes of enzymes

responsible for the function or the remodelling of this epigenetic

change (12).

Primarily considered a DNA modification, m5C is also present

in the RNA. It locates downstream of the translation initiation site

and in the UTRs of mRNA but also in rRNA and lncRNA (15). The

currently known RNA m5C-methyltransferases are more than

eight. These belong to two families of methyltransferases: the

NOL1/NOP2/SUN domain (NSUN) family that contains several

variants (NSUN1 to NSUN7) and DNAMethyltransferase homolog

2 (DNMT2) family, initially considered a DNA methyltransferase

(15). Two are the m5C readers identified: the Aly/REF export factor

(ALYREF) and the Y-box-binding protein 1 (YBX1) (16). Little is
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known about the m5C “erasers” though. There is some evidence

that this role could be played by the ten-eleven translocation

enzymes (TETs), already known to catalyze the reaction of DNA

hydroxymethylation (5hmC) (17).

The epigenetic-modified lncRNAs may also be structured in

signatures that demonstrated to have a prognostic role in

tumors (18).

Overall, the great interest raised by the epigenetics of lncRNA in

human tumors deserves further and deeper understanding with the

aim of identifying those modifications affecting structure and

functions of lncRNAs.
2 m6A modification

Post-transcriptional modifications are chemical changes that

alter structure and properties, thus modulating the functions and

interactions of lncRNAs. The epigenetic modification of RNA,

carried on through the concerted action of the already mentioned

classes of enzymes, modulates the turnover, stability and function of

target RNAs (Figure 1) (4).

The m6A modification is established by a macromolecular

protein complex, constituted by the core METTL3 and METTL14

and by their cofactors WTAP, VIRMA, ZC3H13, CBLL1, RBM15/

15B. Another writer is the recently discovered METTL16. METTL3

belongs to the class I methyltransferase family and its depletion

directly decreases m6A levels in the nucleus and cytoplasm. m6A

establishment by m6A methyltransferase complex modulates

lncRNAs function or expression (12).

A large amount of evidence links m6A epigenetic modification

of lncRNAs to cancer prognosis and therapy response. For example,

high levels of m6A NEAT1 correlate with bone metastasis and the

overexpression of this lncRNA induce cancer cell metastasis in

mouse model through an m6A-dependent mechanism. NEAT1 is

one of the main cancer-related lncRNAs, overexpressed in several

types of tumors and correlated to a worse patients survival (19). It

contains four m6A sites, distributed along the whole region from 5’-

3’ and performing specific functions. For instance, m6A site number

4 is responsible for the binding of NEAT1 to CYCLINL1 (20). Since

CYCLINL1 is a bone-specific protein, highly expressed in bone

metastasis of prostate cancer, this is consistent with the role played

by m6A-NEAT1. Furthermore, RNA-seq experiments unveil that

m6A-NEAT1 recruit CYCLINL1 and CDK19 on RUNX2 promoter

through a RNA-DNA interaction. RUNX2 is an established driver

of bone metastasis prostate cancer, thus strengthening the central

role of m6A-NEAT1 in prostate cancer bone metastasis (20).

m6A modifications add complexity and diversity to lncRNA

modulatory potential. In particular, METTL3 upregulates

LINC00958 lncRNA increasing its stability and promoting

hepatocellular cancer progression. METTL3 also increases

FAM225A lncRNA stability in nasopharyngeal carcinoma and

upregulates RP11 lncRNA by increasing its nuclear accumulation

in colorectal cancer (21). Furthermore, m6A regulates the

relationship between lncRNAs and specific DNA sites through the

formation of RNA-DNA triple helix structures. On the other side,

m6A modification provides the binding sites for RNA readers or
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modifiers, such as RNA-binding proteins (RBPs). m6A readers are a

class of binding proteins able to decode the m6A marks and affect

the stability of methylated RNA (22).

Specific and direct role of lncRNAs and m6A modifying

complexes associate with several human cancers (12, 23). The

most accepted hypothesis for the role of m6A, is that m6A

modification functions by altering the RNA structure or

recruiting m6A readers like RBP (YTHDF1/2/3), YTH domain-

containing 1/2 (YTHDC1/2), insulin-like growth factor 2 mRNA

binding proteins 1/2/3 (IGF2BP1/2/3), heterogeneous nuclear

ribonucleoproteins (HNRNPs) and zinc-finger CCCH domain-

containing protein 13 (ZC3H13) (21). The demethylation of m6A

sites is catalyzed by erasers, mainly represented by FTO and

ALKBH5 ensuring that the epigenetic modification is reversible

and that there is an equilibrium of m6A in the transcriptome (24).

The activity of the eraser ALKBH5 determines m6A demethylation

on both single-stranded RNA and DNA. ALKBH5may act as tumor

suppressor in pancreatic cancer but on the contrary, as tumor

promoter in osteosarcoma via upregulation of PVT1 lncRNA (21).

m6A-related lncRNAs (mRLs) signature have been

demonstrated to have prognostic value and can predict the overall

survival of patients affected by cancer (25–30). A more detailed

description will follow below in this manuscript.

The hypoxia condition represents a tumor-promoting factor for

many solid tumors. It has been recently demonstrated by Zhou Li et

al. and colleagues that hypoxia-inducible factor-1a (HIF-1a)
controls the tumor progression of colorectal cancer via the

stabilization of mRLs (31). Hypoxia drives the increase of HIF-

1a, a transcription factor controlling several programs required for
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drug resistance and metastasis (32). The lncRNAs known to

promote tumor progression under hypoxic conditions encompass

NEAT1, MALAT1, MIR31HG, RAB11B-AS1 and the recently

discovered STEAP3-AS1 (31). Through a Methylated RNA

Immunoprecipitation (MeRIP) approach, the authors show that

STEAP3-AS1 lncRNA affects STEAP3 mRNA stability by binding to

the YTHDF2 reader, thus preventing m6A mediated degradation of

STEAP3 mRNA. Ultimately, this leads to an activation of the Wnt/

b-catenin signaling pathway and to the progression of colorectal

cancer (31).
3 m5C modification

Highly conserved in different species and distributed in a

species-specific manner in various RNA types, the m5C functions

remain unclear (16, 33). The biological effects exerted by m5C are

mainly the regulation of RNA localization, stability and

transcription efficiency (16). Similarly to the establishment of

m6A methylat ion, the enzymatic systems encompass

methyltransferases (“Writers”) that use the S-adenosylmethionine

(SAM) as the methyl group donor, m5C binding proteins

(“Readers”) that promote a specific function and demethylases

(“Erasers”) that remove the m5C marker (Figure 2) (16, 34).

To date, NSUN2 is the only one that seems to perform

methyltransferase function in lncRNAs, along with mRNA and

tRNA (15, 16, 35). In esophageal cancer cells, NSUN2 binds and

methylates NMR (nucleotide metabolism regulator) lncRNA, whose
FIGURE 1

The lncRNAs of different organs are subject to the action of m6A-modifying enzymes. The writers, readers and erasers contribute to the balance of
the m6A levels on lncRNAs. In most of the cases, increasing m6A on lncRNAs determines a switch from normal to tumor tissues.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1063636
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Cusenza et al. 10.3389/fonc.2023.1063636
expression associates with esophageal cancer resistance to cisplatin

or paclitaxel (36). In hepatocellular carcinoma, NSUN2 methylates

and increases the stability of the tumor-related lncRNA H19. m5C-

methylated H19 correlates to poor hepatocellular carcinoma

differentiation. Many cancers show abnormal H19 overexpression

and tumorigenic effects (37).

Cellular proliferation is another process where NSUN2 plays a

role, affecting the expression and translation of key cell cycle

regulators. Furthermore, it regulates the cellular senescence acting

as a stress sensor. Taken together, the functional roles of NSUN2

suggest that m5C has important cellular roles (38). NSUN2

associates also with tumorigenesis and cell migration in colon

cancer, gallbladder and bladder carcinoma. Additionally, it

correlates with metastasis progression in breast cancer and gastric

cancer after the SUMOylation by SUMO-2/3 (16, 38–42).

As far as today, two m5C readers have been identified: the Aly/

REF export factor (ALYREF) and the Y-box-binding protein 1

(YBX1) (16).

In several cancers, ALYREF correlates to patients’ survival.

Breast cancer displays high ALYREF expression that correlates to

poor survival. In breast cancer cells, ALYREF influences cellular

growth, apoptosis and mitochondrial energy metabolism through

lncRNA NEAT1. Clecand co-authors, demonstrated that the short

isoform of the lncRNA NEAT1 is a molecular trigger for ALYREF

effects in breast cancer. ALYREF regulates the expression of the

short NEAT1 isoform by binding directly NEAT1 and stabilizing

CPSF6. This latter is a protein implicated in the selective

activation of the post-transcriptional generation of the short
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of the unwanted mRNA and lncRNA by nuclear exosome,

demonstrated in HeLa and HEK293 cells. Exosome‐mediated

degradation uses the cofactor hMTR4. This latter recruits the

exosome to its targets. Fan J. and co-workers showed that hMTR4

competes with ALYREF to bind ARS2. The competition reported

above is necessary to determine the fate of an RNA. When ARS2

interacts with ALYREF, it recruits this latter to the RNA. If RNP

factors stabilize the interaction, the RNA goes into the cytoplasm.

On the contrary, if ALYREF cannot interact with ARS2 or RNP

factors, hMTR4 then links ARS2 on an RNA and recruits the

exosome (44).

YBX1 is a DNA- and RNA-binding protein involved in various

processes. Translational repression, RNA stabilization, mRNA

splicing, DNA repair and transcription regulation are some of the

processes exerted by YBX1.

Literature reports that YBX1 interacts with different lncRNAs

and mediates some key processes in cancer. In lung

adenocarcinoma, YBX1 binds LINC00472, mediates changing in

biophysical properties of cells and inhibits the migration and

invasion of the carcinoma. This is mediated by a decreasing

amount of free YBX1 that activates the translation of Snail

mRNA. Thus, the low levels of YBX1 determine a decrease of

Snail expression and inhibit the EMT of the cells (45). In 2020,

Zhang et al. and co-workers demonstrated that the interaction

between DSCAM-AS1 and YBX1 promotes cancer progression

through the activation of FOXA1 transcription network in lung

adenocarcinoma, breast and prostate (46).
FIGURE 2

Modulation of m5C-related lncRNAs. The figure shows the molecular structure of lncRNA and m5C-modifying enzymes. On the left is reported the
lncRNA modified by adding the m5C marker, named: m5C-related lncRNA. In the middle, the three classes of modifying enzymes: NSUN2 (“Writer”);
ALYREF and YBX1 (“Readers”); TETs (“Erasers”). On the right, the molecular consequences depending on the effects of modifications.
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The 5mC-demethylase function can be carried on by the

dioxygenases. TET family and ALKBH1 are reported to have a

role in 5mC demethylation. ALKBH1 was reported, in 2022, to

determine minor modification sites also in lncRNAs. However, it

was reported that the main function of ALKBH1 is exerted on

tRNAs (47).

It was reported in recent years that TET enzymes are also able to

demethylate the RNA, in addition to DNA (48). One of the first

demonstrations of the TET’s ability to hydroxymethylate the m5C

in RNA is described in the 2014’s work by Fu and co-workers (17).

The authors reported that the overexpression of TETs increase the

hm5C levels in HEK293T cells. The relative levels of hm5C are

lower in RNA than DNA, with a frequency of one hm5C every 5000

m5C. All the three TET enzymes could serve to hydroxymethylate

the RNA but the authors speculate that the principal enzyme is

TET3. This hypothesis is supported by the fact that, while TET3

localize in both nucleus and cytoplasm, TET1 and TET2 are

exclusively in the nucleus. They hypothesize that TET enzymes

contribute to the RNA demethylation, but TETs are not exclusive

for the oxidation of m5C into hm5C and other actors could be

involved (17). Furthermore, it has been reported that TET2 has a

tolerance for m5C but prefers 5mC for conformational and steric

reasons (49). The presence of hm5C RNA is functional in biological

processes. It’s currently assumed that hm5C may represent the

signal for RNA degradation and, in accordance to this hypothesis,

colorectal and hepatocellular carcinomas miss hm5C RNA (50).

TET2 also regulates the lncRNA ANRIL by binding to its promoter

in gastric cancer. In addition, it controls the ANRIL-downstream

genes. The ANRIL knockdown impairs the effect of TET2 on the

proliferation and colony formation in gastric cancer. The TET2

mRNA levels correlate with the stage of the tumor, decreasing with

high cancer stage. Since ANRIL is upregulated in gastric cancer and

it is associated with a poor prognosis, it inversely correlates with

TET2 mRNA levels (51, 52). In Acute Myeloid Leukemia, TET2 can

activate lncRNA MEG3 transcription. TET2 mediates the MEG3

first intron DNA methylation. The presence of putative regulatory

elements in the first intron of MEG3 and MEG3 expression may be

repressed by hypermethylation as a result of lack of functional

TET2, contributing to MEG3 epigenetic silencing that occur

specifically in the TET2-mutant AML subtype (53). Lyu et al. and

co-workers proved that to increase MEG3 expression, TET2 acts as

a cofactor of WT1. WT1 is a transcriptional regulator that is capable

of activating or repressing gene transcription (54).

During constitutive hypoxic conditions, TET’s hypomethylation in

myeloid leukemia cells on WT1-intron1 CpG Island determines the

transcription of its antisense-oriented lncRNA. The expression of the

lncRNA is necessary for WT1 mRNA expression that seem to mediate

the cell quiescence (55).
4 m6A-related lncRNAs signatures

Recent studies pointed out the importance of post-

transcriptional modification in regulating lncRNAs networks and

circuitries. The differential methylation status and specific

methylation patterns of lncRNAs in particular play pivotal
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as potential biomarkers of prognosis, predictors of disease stage and

overall survival in several malignancies. Indeed, the characterization

of mRLs is favoured by the possibility to easily detect their levels in

body extracellular fluids (e.g., blood, urine), providing a milestone

for the development of new prognostic/diagnostic tools and

therapies (25). The manuscript published so far start from a

TCGA data mining followed by bioinformatics and statistical

analysis. The lncRNAs signatures can be validated in each specific

model and the list of tumors described in the last three years is

already consistent and reported in Table 1.

Here we review some of the most up to date correlations of

m6A-related lncRNAs signatures with survival, progression, and

drug resistance of frequently diagnosed human cancers. Recently,

by performing coexpression analysis from TCGA and stratifying

breast cancer patients into different subgroups, Zhang et al.

systematically explored the prognostic and immunotherapeutic

value of mRLs. Through several bioinformatic and statistical

analyses, they demonstrated the prognostic-immunotherapeutic

robustness of a novel signature of twenty-one lncRNAs building

up the mRLs model, serving as independent risk factor (56). More

detailed studies of Lv et al. and collaborators performed on TCGA

database, showed twelve differentially expressed m6A regulator

genes in BRCA tissue (compared to normal tissues), and their

associated mRLs. Multivariate COX regression analyses showed

that all the six lncRNAs examined, were independent prognostic

factors for BRCA (four as protective, two as risk factors). Based on

risk score, they subsequently divided BRCA patients into the low-

risk group and high-risk group and found out that the six mRLs

were differentially expressed in these two groups, predicting the 3-

year OS (57). Referring to osteosarcoma, Zheng et al., constructed a

risk signature, investigating the prognostic independence of the six

identified mRLs. The signature was systematically associated with

tumor immune microenvironment and immune-cell infiltration.

Only one named AC004812.2 was a protective factor and its lower

expression significantly correlated with worse OS (58). For these

reasons, they functionally validated this lncRNA in osteosarcoma

cell line, showing that its overexpression led to the inhibition of cell

proliferation and to the increase in m6A regulators expression

(IGF2BP1, YTHDF1). Little is known also about mRLs signatures

in glioma and gastric cancer, even if recent studies highlighted that

abnormal expression of m6A-related genes is associated with their

progression. In both cases, recent research highlight promising

epigenetic signatures for prognostic purposes (59, 60). Through

several bioinformatic and statistical analysis, Wu et al. and

collaborators constructed and verified a nine mRLs risk

stratification signature for pancreatic ductal adenocarcinoma

(PDAC) patients and confirmed its prognostic discriminatory

power, highlighting excellent accuracy in predicting 1- and 3-year

OS. In this work, they focused on the functional validation of

DCST1-AS1, already described as EMT-driver in triple-negative

breast cancer (74). Its silencing leads to the inhibition of cell

proliferation and migration of PDAC cells thus suggesting its

crucial role in sustaining PDAC progression (61). Moreover, they

showed that this mRLs signature significantly correlates with

immune-cell infiltration and sensitivity to chemoterapeutic drugs,
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adding a new layer of information also for the prediction of therapy

response in PDAC patients. Recent evidence suggests that mRLs

play a key role also in clear-cell renal cell carcinoma (ccRCC)

progression and in dictating immunotherapy efficacy. Referring to

ccRCC, Zeng et al. Chen and co-workers previously reported novel

prognostic signature based on six lncRNAs and on m6A RNA
Frontiers in Oncology 06
methylation regulator which display a good prediction power (75,

76). Consistently with these results, Ma et al. and collaborators

established a twelve-mRLs prognostic signature for stratifying

ccRCC patients, and demonstrated the remarkable prognostic

significance of these twelve lncRNAs indicating that were accurate

in predicting 1-,3-,5-years OS (62). Recently, Weng et al. identified a
TABLE 1 m6A-related lncRNAs signatures.

Malignancies m6A-related lncRNA signature References

Breast cancer (TCGA-BRCA) (Adenomas and Adenocarcinomas, Adnexal and
Skin Appendage Neoplasms, Basal Cell Neoplasms, Complex Epithelial
Neoplasms, Cystic, Mucinous and Serous Neoplasms, Ductal and Lobular
Neoplasms, Epithelial Neoplasms, NOS, Fibroepithelial Neoplasms, Squamous
Cell Neoplasms)

AL359076.1, MFF-DT, AC114947.2, MIATNB, FARP1-AS1,
AC106028.2, U73166.1, AP000919.3, ZNF197-AS1, AP005131.2,
SP2-AS1,AL592301.1, OTUD6B-AS1, AL138789.1, COL4A2-AS1,
AC024145.1, AL513218.1, LRRC8C-DT, AL021707.4, MIR302CHG,
AC012442.2 (56)

Breast cancer (TCGA-BRCA)
Z68871.1, AL122010.1, OTUD6B-AS1, AC090948.3, AL138724.1,
EGOT (57)

Osteosarcoma (TARGET-OS) (osseous and chondromatous neoplasms)
AP003119.2, LINC01816, AL139289.1, AC004812.2, AC005785.1,
AL353804.1 (58)

Gastric cancer (TCGA-STAD) (Adenomas and Adenocarcinomas, Cystic,
Mucinous and Serous Neoplasms)

AL049840.3, AC008770.3, AL355312.3, AC108693.2, BACE1-AS,
AP001528.1, AP001033.2, AC092574.1, AC010719.1, AC009090.3,
SAMD12-AS1 (59)

Glioma (TCGA-GBM) and (TCGA-LGG)
AL390755.1, AL445524.1, AL359643.3, LINC00641, AL117332.1,
LNCTAM34A, CRNDE, AP001486.2, CARD8. AS1 (60)

Pancreatic ductal adenocarcinoma (TCGA-PDAC)
AP005233.2, AC092171.3, AC010175.1, CASC8, TP53TG1,
SNAI3.AS1, FLRT1, AC022098.1, DCST1.AS1 (61)

Clear-Cell Renal Cell Carcinoma (ccRCC) (TCGA-KIRC)

AC009948.2, AC011752.1, AC018752.1, AF117829.1, AL008718.3,
AL133243.3, AL158071.5, COL18A1-AS1, DLEU2, LINC00115,
RPL34-AS1, SNHG10 (62)

Lung Squamous Cell Carcinoma (TCGA-LUSC) AL122125.1, HORMAD2-AS1 (63)

Lung Adenocarcinoma (TCGA-LUAD) (Acinar Cell Neoplasms, Adenomas and
Adenocarcinomas, Cystic, Mucinous and Serous Neoplasms)

ADPGK-AS1, AC103591.3, AC018529.1, AC010175.1, AC016747.2,
AC007613.1, AC026355.2, ABALON, AC034102.8, AC073316.3,
AL031667.3, AC005884.1, TSPOAP1-AS1 (64)

Lung Adenocarcinoma (TCGA-LUAD) (Acinar Cell Neoplasms, Adenomas and
Adenocarcinomas, Cystic, Mucinous and Serous Neoplasms)

TMPO-AS1, OGFRP1, LINC01117, HIF1A-AS1, LINC00592,
WWC2-AS2, TARID, LINC00628, ABCA9-AS1 (65)

Ovarian cancer (TCGA-OV) (Cystic, Mucinous and Serous Neoplasms)

WACAS1, TRAM2-AS1, SH3RF3-AS1, PCOLCE-AS1, MYCNOS,
LINC01270, LINC00592, LAMTOR5-AS1, FOXN3-AS1, DLGAP1-
AS2, DICER1-AS1, ARHGAP26-AS1 (66)

Ovarian cancer (TCGA-OV) (Cystic, Mucinous and Serous Neoplasms)
AC008669.1, AC010336.1, AC097376.3, AC130710.1, ACAP2-IT1,
AL138820.1, CACNA1G-AS1 (67)

Ovarian cancer (TCGA-OV) (Cystic, Mucinous and Serous Neoplasms) DNM3OS,WAC-AS1, FOXNS-AS1, LINC00997 (28)

Bladder (TCGA-BLCA) (Adenomas and Adenocarcinomas, Epithelial
Neoplasms, NOS, Squamous Cell Neoplasms,Transitional Cell Papillomas and
Carcinomas)

PTOV1-AS2, AC116914.2, EHMT2-AS1, AC004148.1, AL136295.2,
KCNQ1OT1, AC104564.3, AC073534.2, ATP1B3-AS1 (68)

Bladder (TCGA-BLCA) (Adenomas and Adenocarcinomas, Epithelial
Neoplasms, NOS, Squamous Cell Neoplasms,Transitional Cell Papillomas and
Carcinomas)

AC006160.1, AC004076.2, BDNF-AS, AC073575.4, AC097641.2,
MAP3K14-AS1, ZNF32-AS2, AL136295.2, ZFN436-AS1,
AC025280.1, SNHG16, ATP1B3-AS1, AP001469.1, AC005479.1 (69)

Acute myeloid Leukemia (TCGA-LAML)
FAM30A, HCP5, LINC00963,TMEM147-AS1,TTTY15, LINC00342,
MEG3, HCG18, N4BP2L2-IT2 (70)

Hepatocellular carcinoma (TCGA-LIHC) (Adenomas and Adenocarcinomas) ZEB1-AS1, MIR210HG, BACE1-AS, SNHG3 (71)

Hepatocellular carcinoma (TCGA-LIHC) (Adenomas and Adenocarcinomas)

AP001469.3, AL031985.3, SREBF2-AS1, AL442125.2,MKLN1-AS,
AL590705.3, TMCC1-AS1, NRAV, C2orf27A, POLH-AS1,
AL158166.1, LINC01138, WAC-AS1, AL117336.2 (72)

Colon adenocarcinoma (TCGA-COAD) (Adenomas and Adenocarcinomas,
Complex Epithelial Neoplasms, Cystic, Mucinous and Serous Neoplasms,
Epithelial Neoplasms, NOS)

AC027307.2, MIR200CHG, RHOA-IT1, AC009996.1, AL138831.2,
AC010168.2, AC007066.2, AC019118.1, ALMS1-IT1, UBA6-AS1,
SNHG16, FENDRR, RAMP2-AS1, AC013652.1 (73)
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mRLs signature for predicting lung squamous cell carcinoma

(LUSC) patients ’ prognosis, constructing a risk model

encompassing only two immune-associated lncRNAs. AL122125.1

emerged as an independent prognostic factor, providing novel

information about LUSC risk-stratification (63). Similar approach

has also been applied for the analysis of bladder, colon cancers,

hepatocellular carcinoma and hematological malignancies, in

particular like acute myelocytic leukemia (28, 64–73, 77, 78).
5 m5C-related lncRNAs signatures

Also in the case of m5C the epigenetic signatures of m5C-

related lncRNAs show to have prognostic significance (79). The

experimental approach is similar to the ones reported for the mRLs

signature (Table 2).

Some relevant and recent data are reviewed hereafter. Yuan H.

and co-authors demonstrate that, in PDAC, the risk score depends

on the m5C-related lncRNAs expression and can predict PDAC

patients’ OS. In addition, to determine the risk score, the authors
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explore the relationship with the immune microenvironment

through bioinformatics analysis. Pancreatic cancer and normal

tissues also display a significantly different expression of m5C-

related lncRNAs. Eight m5C-related lncRNAs and their clinical

nomogram predicts 3-years survival time, even though an external

database and in vivo validations should be performed (34). About

two months later, another group of scientists analysed m5C-related

lncRNA signature in PDAC. Using TCGA information and

bioinformatic analysis, they extracted three m5C-related lncRNAs

eventually building a risk signature. One of the three selected

lncRNAs (AC009974.1) is part of an epithelial-mesenchymal

transition-lncRNA signature that predicts the prognosis in PDAC

patients. The prognostic nomogram provides also promising

immunotherapeutic strategies. Additionally, the authors showed

that the patients with high m5C-related lncRNA signature manifest

worse prognosis (80). Pan J. and colleagues identified in LUAD 14

m5C-related lncRNAs with prognostic value. Through

bioinformatic analysis, they discovered how these 14 m5C-related

lncRNAs are immune-related. Moreover, these lncRNAs predict

patient prognosis and OS independently of molecular
TABLE 2 m5C-related lncRNAs signatures.

Malignancies m5C-related lncRNA signature References

Pancreatic Ductal Adenocarcinoma (TCGA-PDAC) AC022098.1, AL031775.1, AC005332.6, AC096733.3, AC025165.1,
AC009974.1, CASC8 and PAN3-AS1

(34)

Pancreatic Cancer (TCGA-PDAC) (Adenomas and Adenocarcinomas Cystic,
Mucinous and Serous Neoplasms Ductal and Lobular Neoplasms, NOS)

TRPC7-AS1, TRAF3IP2-AS1 and AC009974.1 (80)

Lung Adenocarcinoma (TCGA-LUAD) AC005911.1,AC090948.1, AC106047.1, AC124045.1, AL513550.1,
HLA-DQB1-AS1, LINC00654, AL035701.1, LINC00578, SH3BP5-
AS1, ABALON, AL034397.3, NKILA, and TMPO-AS1

(81)

Lung Adenocarcinoma (TCGA-LUAD) LINC00628, LINC02147, and MIR34AHG (82)

Lung Squamous Cell Carcinoma (TCGA-LUSC) ERICD, AL021068.1, LINC01341, AC254562.3, and AP002360.1 (83)

Breast Cancer (TCGA-BRCA) (Adenomas and Adenocarcinomas, Adnexal and
Skin Appendage Neoplasms, Basal Cell Neoplasms, Complex Epithelial
Neoplasms, Ductal and Lobular Neoplasms, Epithelial Neoplasms, NOS,
Fibroepithelial Neoplasms, Squamous Cell Neoplasms)

AP005131.2, AL121832.2 and LINC01152 (84)

Prostate Cancer (TCGA-PRAD) MAFG-AS1, AC012510.1, AC012065.3, AL117332.1, AC132192.2,
AP001160.2, AC129510.1, AC084018.2, UBXN10-AS1,
AC138956.2, ZNF32-AS2, AC017100.1, AC004943.2, SP2-AS1,
Z93930.2, AP001486.2, and LINC01135

(85)

Lower-Grade Gliomas (TCGA-LGG) LINC00265, CIRBP-AS1, GDNF-AS1, and ZBTB20-AS4 (86)

Lower-Grade Gliomas (LGG) PAXIP1-AS2, RP11-303E16.2, RP11-157J24.2, RP11-108L7.15,
C091878.1, LNC00632, RP11-158M2.3, and CTD-2377O17.1

(87)

Bladder Urothelial Carcinoma (TCGA-BLCA) (Adenomas and Adenocarcinomas,
Epithelial Neoplasms, NOS, Squamous Cell Neoplasms, Transitional Cell
Papillomas and Carcinomas)

AC004803.1, AC004839.2, AC005229.3, AC007319.1, AC011503.2,
AC022001.3, AC024451.4, AC079160.1, AC109449.1, AC124016.1,
AL133297.1, AL445228.2, AP003059.1, C2-AS1, HDAC4-AS1,
LINC01018 and PCAT7

(88)

Uterine Corpus Endometrial Carcinoma (TCGA-UCEC) CDKN2B-AS1, NBAT1, NRAV, HM13-IT1, AL078644.2,TTLL11-
IT1, FMR1-IT1, NNT-AS1, EMSLR, AC092953.2, YEATS2-AS1,
LINC02474, AP001347.1, RAB11B-AS1, BX322234.1, CERNA1
and AL645568.1

(89)

Hepatocellular Carcinoma (TCGA-LIHC) AC026412.3, AC010969.2, AP003392.5 and SNHG4 (90)

Stomach Adenocarcinoma (TCGA-STAD) (Adenomas and Adenocarcinomas,
Cystic, Mucinous and Serous Neoplasms)

AC005586.1, AL590666.2, AP001271.1, IPO5P1, HAGLR and
AC009948.1

(91)
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characteristics and clinical risk factors. As they themselves point

out, their study presents limitations such as the limited number of

datasets, the fact that they validated the prognostic value of lncRNA

only at cytological level and the lack of some experiments to

confirm m5C modification sites (81). In another article published

in 2022, the authors apply the bioinformatic analysis of lung TCGA

datasets demonstrating how the m5C score of the lncRNAs is

involved in cytoplasmic translat ion, lymphocyte and

endolysosome migration. They detected 16 m5C-related lncRNAs

with prognostic relevance. Using LASSO regression, they

constructed a prognostic signature consisting of LINC00628,

LINC02147, and MIR34AHG. Subsequently, focusing on

LINC00628 they discovered that it correlates with lung

progression, since the knockdown of this lncRNA causes a

reduction of migration and invasion rates. The limitations of their

studies are that they performed only bioinformatics analysis

without validation on cross-cohort samples (82). Also in

hepatocellular carcinoma, uterine corpus endometrial carcinoma,

bladder, breast and prostate cancers and lower-grade gliomas the

scientists analysed a specific signature on m5C-lncRNAs. In almost

all tumors studied, the signature correlates with cancer metabolism,

immune microenvironment and tumor immune-cell infiltration. In

some cases, also, with the tumor copy number variation and

mutations. The scientists discovered that high m5C score

correlates with activation of tumor malignancy-related pathways

and decreasing function of immune microenvironment. Overall, the

relevant emerging information is that the m5C-related lncRNA

signature predicts the patients’ OS. Future directions and clinical

studies will unveil whether these lncRNAs could be used as

biomarkers and therapeutic targets (83–91). Moreover, the

signature is supported by a previous 2020’s pan-cancer study

showing that lncRNAs could work as biomarkers including

breast, pancreatic, lung and hepatocellular carcinoma (92).

Notably, the lncRNAs could be released in saliva, urine, blood

and serum or other body fluids (93). Hence, they feature the

potential to be stable biomarkers for tumor prognosis.

A great resource is represented by the recent construction of the

m5C-Atlas. The m5C-Atlas currently lacks of the datasets

concerning the lncRNAs and the integration with these data will

represent a significant improvement to the translatability of these

information (94).
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6 Concluding remarks

Many authors in the last few years focused on the importance of

understanding the potential link of m6A and m5C epigenetic

modification and lncRNAs in solid and hematological

malignancies. Since, the discovery of modified lncRNAs in cancer

is still at its infancy, many other investigations are needed to

confirm the appropriateness and applicability of these predictive

models in other independent patients cohorts. All signatures might

provide predictive and/or prognostic tools aimed at improving the

molecular knowledge of cancer responsiveness and progression.
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