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Identifying radiomics signatures
in body composition imaging
for the prediction of outcome
following pancreatic
cancer resection
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Background: Computerized radiological image analysis (radiomics) enables the

investigation of image-derived phenotypes by extracting large numbers of

quantitative features. We hypothesized that radiomics features may contain

prognostic information that enhances conventional body composition analysis.

We aimed to investigate whether body composition-associated radiomics

features hold additional value over conventional body composition analysis

and clinical patient characteristics used to predict survival of pancreatic ductal

adenocarcinoma (PDAC) patients.

Methods: Computed tomography images of 304 patients undergoing elective

pancreatic cancer resection were analysed. 2D radiomics features were

extracted from skeletal muscle and subcutaneous and visceral adipose tissue

(SAT and VAT) compartments from a single slice at the third lumbar vertebra. The

study population was randomly split (80:20) into training and holdout subsets.

Feature ranking with Least Absolute Shrinkage Selection Operator (LASSO)

followed by multivariable stepwise Cox regression in 1000 bootstrapped re-

samples of the training data was performed and tested on the holdout data. The

fitted regression predictors were used as “scores” for a clinical (C-Score), body

composition (B-Score), and radiomics (R-Score) model. To stratify patients into

the highest 25% and lowest 25% risk of mortality compared to the middle 50%,

the Harrell Concordance Index was used.

Results: Based on LASSO and stepwise cox regression for overall survival, ASA ≥3 and

age were the most important clinical variables and constituted the C-score, and

VAT-index (VATI) was the most important body composition variable and constituted

the B-score. Three radiomics features (SATI_original_shape2D_Perimeter,

VATI_original_glszm_SmallAreaEmphasis, and VATI_original_firstorder_Maximum)
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emerged as the most frequent set of features and yielded an R-Score. Of the mean

concordance indices of C-, B-, and R-scores, R-score performed best (0.61, 95% CI

0.56–0.65, p<0.001), followed by the C-score (0.59, 95% CI 0.55-0.63, p<0.001) and

B-score (0.55, 95% CI 0.50–0.60, p=0.03). Kaplan-Meier projection revealed that C-,

B, and R-scores showed a clear split in the survival curves in the training set, although

none remained significant in the holdout set.

Conclusion: It is feasible to implement a data-driven radiomics approach to body

composition imaging. Radiomics features provided improved predictive

performance compared to conventional body composition variables for the

prediction of overall survival of PDAC patients undergoing primary resection.
KEYWORDS

pancreatic cancer, PDAC, body composition, wasting disorders, survival, radiomics
Introduction

The impact of cachexia, sarcopenia and myosteatosis on

outcome following oncological surgery has been widely

established (1–3). Reduced muscle function has been shown to be

associated with myosteatosis, which is defined as increased inter-

and intramyocellular fat stores (4, 5). It can be quantified by

assessing skeletal muscle radiation attenuation (SM-RA) on

Computed Tomography (CT)-scans (6–8). Both myosteatosis and

high visceral adiposity have been reported to be associated with

worse overall survival following a pancreatic oncological resection

of Pancreatic ductal adenocarcinoma (PDAC) (9). Surgical

resection is the only curative therapy available for the treatment

of PDAC, but due to loco-regional advancement or metastasis, only

20% of pancreatic carcinomas are treatable by resection (10).

Despite efforts to improve treatment efficacy, overall short- and

long-term survival rates have remained poor over the past decades

(11). This is partly due to wasting conditions such as cachexia and

sarcopenia which occur in the vast majority of patients with

pancreatic cancer (12, 13). Identifying patients who are

predisposed to respond badly to surgical treatment based on body

composition is of added value for personalized treatment strategies

or pursuing non-surgical treatment alternatives.

Advances in CT image analysis have enabled identification of

‘tumor phenotypes’ by extracting large numbers of quantitative

features from radiological images, i.e. the field currently known as

radiomics. Radiomics features have been shown to provide

prognostic value in predicting clinical outcomes of several tumor

entities, including head and neck cancer and lung tumors (14–17).

However, a recently published study of non-small cell lung

carcinoma (NSCLC) patients undergoing chemotherapy treatment

was unable to identify radiomics features that predict muscle loss

(18). That study only investigated radiomics features of muscle

tissue for the prediction of muscle loss. Chen et al, recently

implemented a radiomics approach to the identification of

sarcopenia in gastric cancer patients, and showed that radiomics

measured sarcopenia outperformed conventional body composition
02
analysis for survival and complication prediction (19). We

hypothesized that additional phenotypic information related to

body composition can be extracted from muscle, subcutaneous

fat, and visceral fat compartments by a radiomics-based analysis of

CT images in PDAC patients.

Our goal was to investigate whether radiomics-based body

composition features can discriminate between patient groups with

increased or decreased overall survival following curative resection for

the treatment of PDAC. In addition, the performance of radiomics-

based body composition analysis for the stratification of short versus

long overall survival was compared to body composition variables

obtained by conventional manual CT-scan analysis and established

clinical patient characteristics.
Methods

Patients

All patients that had a resectable PDAC of the pancreatic head

and were treated at Uniklinik Aachen (UKA) or Maastricht

University Medical Center (MUMC), between 2010 and 2017

were eligible for inclusion. Patients were excluded from analysis

on the basis of American Society of Anesthesiology (ASA)

classification V, (severe liver cirrhosis with Child grade C, end-

stage renal disease requiring dialysis, severe heart disease), New

York Heart Association class IV, and/or chronic obstructive

pulmonary disease (COPD) requiring (home)oxygen therapy

and administration of neoadjuvant treatment. In addition,

patients were excluded if CT-scans did not include the abdominal

wall or when the interval between the time of the scan and surgery

was greater than three months. Besides body composition, we

evaluated age at the time of surgery and ASA-classification and

BMI as clinical predictors (20, 21). Clinical data was acquired from

a prospectively acquired database and retrospectively analysed.

Ethical approval was obtained prior to this study from the local

medical ethical board.
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CT body composition variables

Body composition was analysed using electronically stored

venous or porto-venous intravenous contrast phase of abdominal

CT-scans acquired during routine clinical practice. CT-scans were

selected and analysed while blinded to the mortality outcomes by an

experienced single investigator, trained using the gold standard of

bodycomposition imaging methodology as described by Prado and

Baracos et al, using Slice-O-matic software, version 5.0

(Tomovision, Montreal, QC, Canada) (22).

An overview of the different scanner parameters can be found in

Appendix 1 of the Supplemental Material.

The third lumbar vertebra (L3) was used as a standard

landmark to measure tissue cross-sectional area in cm2 as

previously reported (13). In short, skeletal muscle area (SMA),

visceral adipose tissue (VAT) area, and subcutaneous adipose tissue

(SAT) area were quantified on CT images with manual

segmentation using predefined Hounsfield Unit (HU) ranges (SM:

-29 to 150 HU, VAT: -150 to -50 HU, and SAT: -190 to -30 HU)

(23). SM, VAT, and SAT were corrected for stature to calculate the

skeletal muscle index (SMI), VAT-index (VATI), and SAT-index

(SATI) in cm2/m2, providing good estimates of total body SM,

VAT, and SAT mass (23). Skeletal muscle radiation attenuation

(SMRA) was assessed by calculating the average HU value of the

total muscle area within the specified range of -29 to 150 HU.

Body composition greatly varies with gender. SM, VAT, SAT,

SM-RA were therefore expressed as Z-scores. The Z-score is defined

as the number of standard deviations each patient differs from the

mean value of patients belonging to the same sex. The use of Z-

scores facilitates comparison of the effects of body composition in

heterogeneous patient cohorts, normalizing for the sex-

based differences.
Defining endpoints

The main clinical endpoint for the evaluation of survival

following surgery was overall survival with a follow up of 5 years

following surgery. In order to stratify patients into the best and

worst performing 25% regarding overall survival compared to the

middle 50%, Harrell Concordance Indexes (c-index) was used as the

statistical discrimination metric. A body composition radiomics

model was designed to evaluate whether bodycomposition

radiomics features could predict best, middle and worst

performing patients regarding overall survival, i.e. low, middle

and high risk patients following pancreatic resection.
Radiomics features optimization
and model building

In each segmented body composition region (SMA, VAT, and

SAT), 114 individual radiomics features (342 in total) were

automatically extracted using the open-source software library

PyRadiomics 2.0.1 (24). The images were interpolated to a fixed
Frontiers in Oncology 03
2mm grid during feature extraction to reduce unwanted variation.

No digital image pre-processing filter was used. The model-building

process consisted of the following key steps (illustrated

schematically in Figure 1):

Step 1: Training and holdout validation subsets

The study population was split 80:20 into training and holdout sets,

respectively, each maintaining the same proportion of Aachen and

Maastricht patients as in the whole population. Survival outcome

was calculated as time interval to death from date of surgery.

Step 2: Feature value transformation

A Yeo-Johnson transformation, followed by centering to a mean of

zero and scaling to a standard deviation of one, was used to correct

for highly skewed distributions of body composition and radiomics

features in the training set (25). These same transformations,

without recomputation, were applied directly on the holdout set.

Step 3: Radiomics feature selection through regularization

Due to the use of single CT-slices for analysis, thus no 3D imaging,

we excluded all the 3D shape features from the feature selection. We

first created 1000 random bootstrap samples (i.e. resampling from

the training set with replacement) of the same size as the training

set. These same 1000 resamples were kept fixed for feature selection

(FS) and model development.

FS was applied only on the 342 radiomics features. For the

clinical and body composition models, FS was omitted because

these feature sets were already quite small (containing 3 and 4

predictors respectively as described in step 4).

In each bootstrap FS sample, we first calculated the radiomics

features with very high pair-wise Spearman correlations (> 0.90). A

recursive elimination algorithm was then used to remove the

maximum number of redundant features. A 5-fold internally

cross-validated LASSO (Least Absolute Shrinkage and Selection

Operator) Cox regression was applied to the remaining features.

The LASSO-selected individual features from each of the 1000

bootstrapped FS samples were pooled and ranked (from high to

low) by its frequency of selection. We called these “surviving”

features the “feature pool”. Since there is currently no universally

accepted threshold for how frequently features ought to appear in a

pool, we arbitrarily chose a cut-off frequency of 500. Features

appearing less than 500 times out of 1000 bootstrap samples were

assumed to be too sensitive to sampling and were therefore

excluded from the stepwise regression step.

Step 4: Signature pooling with stepwise Cox regression

The same 1000 subsamples as described above were used to

assemble a multivariable Cox model using backwards stepwise

regression, with the objective to minimize the Akaike Information

Criterion (26). This has the effect of testing different combinations

of the most frequently LASSO-retained radiomics features. As

before, we summed up the selected frequency of sets of features

that appeared together, which we called the “signature pool”. Given

that there is no consensus regarding which signature to choose from

a number of alternatives, we decided to take the most-frequently

appearing combination of features from the signature pool. The

same process was used to build the clinical and body composition

signatures. The clinical features selected by clinical experience a

priori were – Age, BMI, ASA ≥3 and sex. The body composition

features selected a priori were – SM-RA, SMI, VATI and SATI.
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Statistical analysis

The above mentioned feature selection and statistical analysis for

survival was performed in R (20). Following Altman et al. (21), we

computed a linear predictor, or “score”, from the sum of products of

each feature with its coefficient. We computed the Harrell Concordance
Frontiers in Oncology 04
Index (C-index) for the training and holdout sets (23). The fitted

regression predictors were used as “scores” for a clinical (C-Score), body

composition (B-Score), and radiomics (R-Score) model. In order to

stratify patients into the best and worst performing 25% regarding

overall survival compared to the middle 50%, Harrell Concordance

Indexes (c-index) was used as the statistical discrimination metric.
FIGURE 1

Flowchart showing methodological approach to radiomics feature extraction from CT scans, as well as the statistical model building methodology
approach as described in the model building section.
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Results

Patient characteristics

Of the 425 patients included in the cohort, body composition

analysis could be performed for 304 patients. In 52 cases, there was

missing survival data, 14 patients were excluded on the basis of

poor-quality CT scans, 25 were excluded due to scans not showing

the abdominal wall, and 30 patients were excluded due to an

interval greater than three months between the time of the scan

and surgery. 53% of patients were male, with a mean age of 67.7 (SD

10.2) and mean BMI of 25.4 kg/m2 (SD 4.2). 42% of patients had a

high ASA-score (≥3). 91.7% of patients underwent a Pylorus-

Preserving Pancreatico Duodenectomy (PPPD) and 8.3%

underwent a Whipple procedure (the same operation without

preservation of the pylorus). Only PDAC cases (ductal

adenocarcinoma) were included in the study. Ninety-day and

two-year mortality rates were 10% and 45%, respectively. No

differences were observed between in- and excluded cases

regarding sex, age, ASA-score, or TNM classification (all p>0.10).

Patient demographics across the training and validation cohorts are

shown in Table 1.
Feature selection and pooling results

Model building from feature selection to signature pooling

(steps 1 to 4) was performed (see Figure 1) to select the most

significant clinical-, body composition- and radiomics features and

yielded a clinical score (C-score), body composition score (B-score),

and a radiomics score (R-score).
Frontiers in Oncology 05
C-score

Age at surgery in years, ASA ≥ 3 and sex were used as

prognostic clinical features for overall survival. The linear

predictor equation in the Cox regression model was:

C − Score = 0:01353*(Age in years)

+ 0:4087*(ASA ≥ 3) + 0:2803*(sex; male = 1)

(Equation 1)
B-score

The relative importance of the body composition variables SMI,

SM-RA, VATI, and SATI for survival is shown in Figure 2.

Increased VATI emerged as prognostic clinical feature for overall

survival. The Cox model linear predictor was:

B − Score  = 0:1988*(VATI) (Equation 2)
R-score

The results of feature pooling and signature pooling of the

radiomics feature selection are shown in Figure 3 and Figure 4,

respectively. Four candidate radiomics features showed up more

than 500 times and were selected from the LASSO-based feature

pool. Various combinations of these four features were tested in the

signature pooling step, and the most frequent set of features yielded

an R-Score linear predictor comprising only 3 radiomics features:

R − Score =

0:3100*(SATI _ original _ shape2D _ Perimeter)

−0:2302*(VATI _ original _ glszm _ SmallAreaEmphasis)

+0:1353*(VATI _ original _ firstorder _Maximum)

(Equation 3)

To evaluate whether combined clinical, bodycomposition and

radiomics models might outperform individual scores, we created

combined CR (clinical & radiomics), CB (clinical and

bodycomposition) and CBR (clinical, body composition and

radiomics) scores.
Modelling results for overall survival

In the training set, the mean Harrell C-indices for the overall

survival time model were highest for the R-score (0.61, 95% CI 0.56

– 0.65, p<0.001), followed by the C-score (0.59, 95% CI 0.55 - 0.63,

p<0.001) and B-score (0.55, 95% CI 0.50 – 0.60, p=0.03).

All three concordance indices were comparable in the holdout

set compared to the training set: R-score: 0.60, 95% CI 0.53 – 0.68,

p=0.04, C-score: 0.60, 95% CI 0.51 - 0.68, p=0.02, and B-score: 0.53,

95% CI 0.44 – 0.62, p=0.48, with the B-score not retaining

significance in the hold out set (Table 1 and Figure 5). Combined

CR-score: 0.63, 95% CI 0.58 – 0.67, p<0.001, CB-score: 0.60, 95% CI
TABLE 1 Demographics.

Training-set Validation-set p-value

Age (mean) 66 68 0.21

Sex

Male 114 28 0.86

Female 132 31

BMI (mean) 25.6 25.9 0.48

ASA (mean) 2.41 2.47 0.39

Tumor stage 0.47

1A 3 1

1B 12 1

2A 46 17

2B 161 36

3 23 4

SMI (mean) 44.7 46.9 0.90

SM-RA (mean) 34.4 34.2 0.91
Demographics of relevant study parameters across training- and validation-cohorts. P-value
calculated using independent T-test for continuous variables and Chi-square test for
binary variables.
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0.55 – 0.64, p<0.001 and CBR-score: 0.63, 95% CI 0.58 – 0.70,

p<0.001, showed similar predictive value as individual scores, which

were mostly reproduceable in the hold-out set CR-score: 0.62, 95%

CI 0.53 – 0.70, p:0.007, CB-score: 0.58, 95% CI 0.49 – 0.67, p=0.07

and CBR-score: 0.61, 95% CI 0.52 – 0.69, p=0.02 and were therefore

not plotted in the survival curves (Figure 5).

From the survival curves (Figure 6), it can be seen that C-, B-,

and R-scores all produced survival plots which discriminated

between patients with an improved and decreased overall survival

(p<0.001, p=0.035, and p<0.001, respectively). C- and R-scores

showed best discrimination between patients with high, medium,

and low risk for worse overall survival. However, the splits of all

scores could not be significantly reproduced in the holdout sets.
Discussion

In this study, we showed that it is feasible to implement a data-

driven radiomics approach to body composition imaging, and that

radiomics features can be extracted which perform comparably to
Frontiers in Oncology 06
conventional body composition variables for the prediction of

overall survival of PDAC patients undergoing primary resection.

Our data additionally indicate that VAT, SM, and SAT all contain

radiomics features with potential predictive information for

overall survival.

CT-based analysis of body composition has been validated for the

quantification of whole-body muscle mass. This method has become

increasingly popular to investigate the association betweenmuscle mass,

visceral adipose tissue mass, subcutaneous adipose tissue mass, and

patient survival and/or response to treatment (22, 24, 27). Combined

high visceral adipose tissue mass and lowmuscle mass have been shown

to be associated with increased postoperative morbidity and mortality

following oncological pancreatic resection (28). More recently, it has

become evident that SM-RA, a radiological marker ofmyosteatosis, may

be more indicative of wasting and decline of general condition and

mortality in certain tumor entities, including pancreatic cancer (7,

29–31). In the current cohort, however, visceral adiposity was the

most important conventional body composition variable associated

with overall survival following pancreatic resection. In addition, the

radiomics feature signature pool with the highest association with
FIGURE 3

Relative importance of radiomics features on overall survival. “least absolute shrinkage and selection operator” (LASSO) penalized Cox regression
with 5-fold cross-validation. Bootstrap resampling with univariate rejection and LASSO was repeated for a total of 1,000 unique random number
generator seeds. The figure shows the frequency table of every radiomic feature that had a non-zero coefficient., with
SAT_original_shape2D_Perimeter showing the highest number of repeats, i.e. being the most important radiomics feature. “VAT”, “SAT”, and “SM” in
the formula refer to radiomics features extracted from visceral adipose tissue, subcutaneous adipose tissue, and skeletal muscle, respectively.
FIGURE 2

Relative importance of body composition variables of CT-scans on overall survival. “least absolute shrinkage and selection operator” (LASSO)
penalized Cox regression with 5-fold cross-validation. Bootstrap resampling with univariate rejection and LASSO was repeated for a total of 1000
unique random number generator seeds. The frequency table, i.e. “feature pool”, of each body composition variable is shown; Visceral Adipose
Tissue Index (VATI), Skeletal Muscle Radiation Attenuation (SM-RA), Skeletal Muscle Index (SMI), Subcutaneous Adipose Tissue Index (SATI).
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overall survival included features from the visceral and subcutaneous

adipose tissue compartments. Although only the highest ranking

radiomics features could be selected for cox regression analysis, the

runner-up feature pool did contain radiomics features from the skeletal

muscle compartment. Thus, although our radiomics model did not

contain radiomics features from skeletal muscle VAT, SAT, and SM

compartments may all contain radiomics features that hold predictive
Frontiers in Oncology 07
information for overall survival. Interpreting the descriptive nature of

the radiomics features in our work or evaluating the association with

anatomical or biological changes is speculative. When evaluating the

nature of the radiomics features in our feature pools, it becomes

apparent that all radiomics features are associated with subcutaneous

and visceral fat area, not withmuscle area. Implying a higher association

of outcome with fat areas than with skeletal muscle. When specifically
FIGURE 5

Mean Harrell concordance indexes of Clinical (C-score), body composition (B-score) and Radiomics (R-score) as well as combined clinical + body
composition (CB-score), body composition + radiomics (BR-score) and clinical + body composition + radiomics (CBR-score) with corresponding
95% confidence intervals (error bars) and p-values from Log rank testing of both the training set (red) and hold-out-set (blue) are shown.
FIGURE 4

Frequency table for every combination of unique pooled features. Features were pooled by using 1,000 unique bootstrap samples consisting of a
random 75% of the FS subset into a backwards stepwise Cox regression against survival time to assemble individual features into predictive
signatures. The stepwise elimination criterion was the Akaike Information Criterion [1]. Frequency tables were compiled for every unique
combination of features, ie signature. The pool with the highest number of repeats (pool 1) was finally selected for further modeling.
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evaluating the radiomics features in our highest performing feature pool

(feature pool 1), the most concrete association we could interpret, is

SAT_original_shape2D_Perimeter. This implies a relationship with the

two dimentional surface area of the subcutaneous fat area. However, the

remaining features, VATI_original_glszm_SmallAreaEmphasis

VATI_original_firstorder_Maximum are more difficult to interpret.
Frontiers in Oncology 08
The former is related to the Gray Level Size Zone (GLSZM), which

quantifies gray level zones in an image. A gray level zone is defined as a

the number of connected voxels that share the same gray level intensity

within the visceral fat area. VATI_original_firstorder_Maximum

describes the first order intensity of the signal within the visceral fat

area. How these features relate to biological variations is difficult to
D

A B

E F

C

FIGURE 6

Kaplan-Meier charts with corresponding P-values for clinical (C-Score) for overall survival following pancreatic head resection for the treatment of
PDAC. Blue, yellow and gray lines constitute the highest 25-, lowest 25-, and middle 50 percentages of risk. We computed the Harrell Concordance
index (C-index) for the training set (A) and hold-out set (B) (25). The fitted regression predictors were used as “scores” for a clinical (C-Score) model.
In order to stratify patients into the highest 25% and lowest 25% risk of mortality compared to the middle 50%. A Harrell Concordance Index (c-
index) was used as the statistical discrimination metric. Kaplan-Meier charts with corresponding P-values for body composition (B-Score) for overall
survival following pancreatic head resection for the treatment of PDAC. Blue, yellow and gray lines constitute the highest 25-, lowest 25-, and
middle 50 percentages of risk. We computed the Harrell Concordance index (C-index) for the training set (C) and hold-out set (D) (25). The fitted
regression predictors were used as “scores” for a body composition (B-Score) model. In order to stratify patients into the highest 25% and lowest
25% risk of mortality compared to the middle 50%. A Harrell Concordance Index (c-index) was used as the statistical discrimination metric. Kaplan-
Meier charts with corresponding P-values for radiomics (R-Score) for overall survival following pancreatic head resection for the treatment of PDAC.
Blue, yellow and gray lines constitute the highest 25-, lowest 25-, and middle 50 percentages of risk. We computed the Harrell Concordance index
(C-index) for the training set (E) and hold-out set (F) (25). The fitted regression predictors were used as “scores” for a radiomics (R-Score) model. In
order to stratify patients into the highest 25% and lowest 25% risk of mortality compared to the middle 50%. A Harrell Concordance Index (c-index)
was used as the statistical discrimination metric.
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extrapolate based on the data within this work and warrants further

investigation into the basis of biological variation of radiomics features

within fat tissue.

Radiomics imaging analysis originated in tumor imaging

studies, where it was shown that large numbers of qualitative

and quantitative CT features, which cannot be easily interpreted

by the unaided human eye, could supply additional information

about tumor heterogeneity, thereby giving a non-invasive

estimation of disease severity (14–16, 32). De Jong et al. recently

investigated whether skeletal muscle radiomics features are

different in patients who develop muscle loss and those who

maintain their muscle function after chemotherapy in a NSCLC

cohort (18). Their study used two timepoints, prior to and

following chemotherapy, to investigate changes in muscle mass

and did not identify any muscle radiomics features associated

with loss of muscle mass during treatment. The above-mentioned

study solely extracted radiomics features from skeletal muscle

and did not investigate the association between body

composition, radiomics, and outcome, or correct for sex specific

body composition variation.

Our clinical model (C-score) included age at the time of surgery,

ASA-classification, and sex, and our body composition model (B-

score) corrected for sex specific differences in body composition by

implementing Z-scores. Due to a limited cohort size, splitting the

cohort into male and female subgroups for radiomics analysis would

have greatly underpowered our radiomics analysis. It was therefore

not possible to establish whether sex specific differences in body

composition produce different, sex-specific, radiomics signatures. It is

however noteworthy, that despite the inability to perform sex-specific

radiomics analysis, the radiomics model performed better than the

body composition model for prediction of overall survival. This may

imply that radiomics signatures are less subject to sex-specific

differences than conventional body composition analysis.

We implemented a purely data driven approach to feature selection

and modeling. However, it is important to note that predictive models

which use a large number of candidate image features are susceptible to

an increased risk of type I errors (32–34). This particularly holds true

for studies with limited cohort sizes. Our cohort size implies a small

holdout set. This could explain why all scores that showed a significant

split of the Kaplan-Meier curves in the training set could not be

reproduced in the holdout set. Although statistical significance was not

achieved in the holdout set, we did observe a trend toward significance

for the R-score. This could imply that our data may be underpowered

to show the discriminatory value of radiomics for overall survival in the

holdout set. The limited sample size additionally ruled out including all

relevant radiomics features in our time-to-event model. Only one

signature pool, containing three features, could be used for the time-to-

event model for overall survival. This may have led to an

underestimation of the cumulative effect of all relevant features. We

were not able to test for repeatability and reproducibility of extracted

radiomics feature values due to the fact that we did not have any

explicit test-retest sample or multiple expert observers annotating the

body compartments independently. However, we are confident that

our method of 1000-times replication sampling and nested 10 times

repeated 5-fold cross-validation with testing in a holdout set implicitly
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averaged out most of the instabilities of radiomics features with respect

to hospitals, scanners, and imaging protocols. It is also likely that this

approach limits the degree of overfitting in the current cohort.

Although body composition (i.e. sarcopenia and visceral

adiposity) has been shown to be associated with worse outcome

following pancreatic resection, body composition analysis has not

found its way into clinical oncological treatment algorithms yet.

Our data indicate that it is possible to identify a group of patients

at risk for worse outcome based solely on body composition

using radiomics. Our cohort, however, did not include patients

receiving neoadjuvant- or palliative chemotherapy. Further

evaluation of radiomics body composition analysis for the

purpose of the identification of body composition-associated risk

in chemotherapy treatment groups would provide valuable insights

for clinical decision making and for the development of future

treatment strategies.
Conclusions

We found that it is feasible to implement a data-driven radiomics

approach to body composition imaging, and we were able to extract

radiomics features which held improved predictive value compared

to conventional body composition variables for the prediction of

overall survival of PDAC patients undergoing primary pancreatic

resection. Furthermore, our data shows that VAT, SAT, and SM

compartments all contained radiomics features that hold predictive

information for overall survival. To gain actionable insight, larger

cohort studies are needed to further investigate the added value of

radiomics for the prediction of outcome for cancer patients.
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