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Host-pathogen interactions (HPIs) affect and involve multiple mechanisms in

both the pathogen and the host. Pathogen interactions disrupt homeostasis in

host cells, with their toxins interfering with host mechanisms, resulting in

infections, diseases, and disorders, extending from AIDS and COVID-19, to

cancer. Studies of the three-dimensional (3D) structures of host-pathogen

complexes aim to understand how pathogens interact with their hosts. They

also aim to contribute to the development of rational therapeutics, as well as

preventive measures. However, structural studies are fraught with challenges

toward these aims. This review describes the state-of-the-art in protein-protein

interactions (PPIs) between the host and pathogens from the structural

standpoint. It discusses computational aspects of predicting these PPIs,

including machine learning (ML) and artificial intelligence (AI)-driven, and

overviews available computational methods and their challenges. It concludes

with examples of how theoretical computational approaches can result in a

therapeutic agent with a potential of being used in the clinics, as well as

future directions.

KEYWORDS

host-pathogen interactions, machine learning, artificial intelligence, protein-protein
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1 Introduction

Pathogens refer to organisms such as viruses, bacteria, fungi, and prion. These

pathogens have evolved to adapt to their environment including multiple routes to

infect a host. HPIs provide the pathogen a means to enter and dysregulate host cells

(1). HPIs do not only refer to physical interactions of these two parties. It encapsulates the

whole spectrum, starting from the population level to the organism level and down to the

detailed molecular level, that is, physical interactions of a pathogen protein with host
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receptors, other proteins, and nucleic acids (1–4). This makes HPI

studies important toward both a better understanding of pathogen

invasion and host cell subversion strategies, as well as therapeutic

development to abort these processes. One of the earliest works on

HPI was by Zelle, who studied HPI in mouse typhoid caused

by Salmonella typhimurium (5).

Pathogen invasion can cause pathologies in the host body,

including cancer. A pathogen infection can lead to cancer

through several mechanisms. Pathogen-induced senescence and

chronic infection both contribute to and increase cancer

susceptibility (6). Pro-inflammatory cytokines and growth factors

released by senescent cells can induce proliferation in neighboring

cells stimulating tumor evolution (6, 7). Pathogens frequently

interfere with cellular mechanisms of host cells; they cause DNA

damage and an imbalance in tumor suppressor/oncogene

expression, resulting in cancer development (3, 6, 7). They can

also evolve to mimic a host protein or an available PPI interface in

the host. By employing this tactic, the pathogen protein can

compete with a host protein for binding to the designated partner

in the host metabolism. The entire host cell pathway is disrupted if

the pathogen gains the upper hand in this competition (8). Human

papilloma virus (HPV) is one of the pathogens that are a major risk

factor for cervical cancer. They force host cells to express viral

proteins with some of these, promoting the degradation of the

tumor suppressor protein retinoblastoma in the host (9). Pathogen

proteins expressed in host cells can also activate several host

pathways that are involved in cancer (2, 7). Overall, pathogen

infections are responsible for 20% of human malignancies (7),

making it crucial to develop strategies to prevent pathogen

infection of the human host or treatment to reverse the effects of

the infection.

To develop strategy and treatment options requires

understanding of pathogen entry into the host cell. Most

pathogen infections begin with a physical interaction between

pathogens/pathogen-released molecules and components of the

host cells (1, 10). Interfering with pathogen-host physical

interactions is one possible therapeutic approach for pathogen-

induced cancer (11). To that end, the precise mechanism of host-

pathogen PPIs (HP PPIs) is critical to comprehend. Computational

studies have long guided this field (12, 13). Several databases and

web servers identify PPI and HP PPI interfaces (14–20), protein-

ligand interaction sites (21–23) and host protein binding pockets

(24, 25). Molecular dynamics (MD) simulations (26), ML

techniques (27), and AI approaches in computationally guided

structural modeling, prediction of HP PPI interfaces, and drug

discovery have all contributed to HP PPIs research. These data and

resources assist in determining the mechanism of HP PPI and

developing strategies for successfully targeting them with rationally

designed small molecules and/or peptides (11).

In this review, we explain the importance of HP PPIs from a

structural point of view. We establish the relationship between

pathogens and cancer and how HP PPIs play a crucial role in this

association. We outline known HP PPI mechanisms and discuss

how different therapeutic approaches can be applied to target them.

We also discuss the current landscape of computation-guided

prediction of HP PPIs, including available datasets, web servers,
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and tools, as well as the gaps and drawbacks in these approaches.

We demonstrate how predicting and better understanding of HP

PPIs can help cancer research with several case studies. We

conclude by discussing lessons to be learnt from these approaches

and future directions.
2 The importance of predicting and
understanding the HP PPIs

Proteins do not act alone, and more than 80% of all proteins in

the cell interact with other molecules to execute their function (28,

29). The human interactome contains an estimated 650,000 PPIs

with approximately 53,000 human binary protein interactions (30).

They are responsible for a wide range of cellular processes such as

signal transduction, transcription, replication, and membrane

transport (31, 32). Protein interactions explain how proteins build

metabolic and signaling pathways that allow them to perform their

work (33). PPI dysregulation is frequently observed as the primary

cause of a variety of pathologies, making them appealing drug

targets. Proteins must have direct physical contact with their

respective binding sites in order to interact, whether in a stable or

transient mode (34). Such binding sites are known as “interfaces”,

which are three-dimensional structures formed by groups of amino

acid residues that are directly responsible for partner recognition

and binding. Different PPI interfaces may have distinct structural

and physicochemical properties, affinity, and binding specificity.

Structural insight into the PPI interface can reveal the role of the

complex in disease and its potential as a therapeutic target by

providing information on its kinetics, thermodynamics, and

molecular functions.

HP PPIs, like any other PPIs, require knowledge of the pathogen

and host protein architectures and repertoires, their evolutionary

mechanisms, and information on relevant biological data sources.

Pathogens exhibit vast differences in genomic composition,

evolutionary patterns, and protein function when compared to the

relatively well-conserved processes found in cellular organisms. These

pathogen variations are considered when studying HP PPIs (10). HP

PPI interfaces can be classified as endogenous interfaces mediating

intra-organism specific interactions such as pathogen–pathogen or

host–host interactions, and exogenous interfaces, which mediate

host-pathogen interactions.

Pathogens can interact with the host through different

mediators, such as proteins, metabolites, and nucleic acids (3, 4).

Pathogenic organisms or their products enter the cytoplasm of a

target cell to function, survive and replicate. Pathogen proteins can

interact with the host proteins by having a similarly shaped

interface without sequence homology. Pathogens mimic host

counterparts in sequence, motif, and interface at the structural

level, permitting them to manipulate host signaling through HP

PPIs (35–37). Mimicking a host PPI is a primary hijacking strategy

employed by pathogens to produce a new HP PPI. These newly

created interactions result in new pathways and network crosstalk.

Pathogens can target essential human network hub proteins and

alter cells making them acquire cancer characteristics. Therefore,

creating the structural network of the ‘superorganism’ provides
frontiersin.org
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insight into potential pathogens transformation approaches (37).

With a mimicking strategy, pathogens can alleviate host

immune surveillance.

At the same time, passing through the plasma membrane is not

commonly used for pathogen entry (38). Bacteria, their toxins, and

parasites, never use this mode of entry. The most common solution

for pathogens or their toxins is to enter the cell via an existing entry

mechanism established by exogenous interactions or for small

metabolites, diffusion. These entry mechanisms can be studied

using three different approaches (Figure 1). Ligand-induced

endocytosis can occur in the cellular membrane, allowing

pathogens to enter the host cell via endocytic vesicles (39). The

SV40 virus (40) is an example of ligand-induced endocytosis

(Figure 1A). Extracellular interaction between a pathogen protein

and a host receptor cripples cellular events, including dysregulation

of gene expression, enhancing/preventing specific signaling

cascades, and even allowing pathogen genomic material to enter

the host cells (Figure 1B). Interaction of the viral spike protein of

SARS-CoV-2 and angiotensin-converting enzyme 2 receptor of the

host allows viral genomic material to enter host cells (41). The

initial attachment of the SARS-CoV-2 virus to the host cell is

initiated by this extracellular interaction. Finally, bacterial outer

membrane vesicle (OMV)-mediated protein delivery to host cells is

an important HP PPI mechanism (Figure 1C). According to new

evidence, OMVs contain differentially packaged short RNAs that

have the potential to target host mRNA function, such as stability.

Gram-negative bacteria, such as P. aeruginosa, produce OMVs,

which are important for host colonization (42). The content of

OMV, the endocytic vesicle genetic material released into the host

cell further interacts with host proteins to interfere with normal

cellular functions and induce the expression of their own proteins.

Additionally, as noted above, mimicking host protein interfaces give
Frontiers in Oncology 03
pathogen proteins an advantage in interacting with host proteins

(Figure 1D). A better understanding of HP PPIs is critical for the

development of new therapies, such as small molecules capable of

binding and blocking pathogenic interactions (Figure 2) (43, 44).

Current drug discovery process has three major steps: identifying a

potential drug target, studying its properties, and designing a

corresponding ligand (45). Insight into protein-protein

interactions can help in the design of molecules that target

protein complexes involved in these pathologies (Figure 2). The

action of Maraviroc as an inhibitor of HIV-1 entry into host cells is

a classic example of HPIs being blocked at the interface level. This

drug binds to the cellular co-receptor CCR5, preventing it from

interacting with viral GP120 protein, which is required for HIV-1

infection (46).

However, studying HP PPIs and developing drugs to target

them are challenging tasks. A variety of factors can exacerbate the

difficulty of identifying small molecules that inhibit such

interactions. Some of the challenges include the flatness of the

interface, the lack of a small molecule backbone as a starting point

for drug design, the difficulty of characterization of the binding

kinetics, and the size of small molecule libraries (47). Advances in

molecular biology, chemistry, and computational modeling

techniques have made progress in alleviating some of these issues,

with some approaches creating small molecules that target HP PPIs

(Figure 2). FDA-approved drugs are pre-screened and tested

experimentally (48). Screening aids in identification of drugs that

bind to interfaces and compete with the native binding partners (11,

49). Interacting partners can be identified in silico, making these

approaches widely used in drug design, including repurposing

applications (Figure 2) (50). The druggability of protein-protein

interactions with small molecules have been challenging. However,

with advancements, including in computational modeling and
B C DA

FIGURE 1

Several pathogen interaction mechanisms with the host cells. (A) Endocytic vesicle engulf the pathogen completely or partially after an initial
interaction between host-pathogen proteins for recognition. (B) Pathogen proteins interact with host receptors and trigger series of cellular events.
(C) Pathogenic OMVs release their content into the host cells. (D) Pathogen proteins mimic the interface of the host proteins and compete with
them to bind to their partner.
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experimental structural methods such as X-ray crystallography,

NMR and cryo-EM, and innovative strategies, involving e.g.,

bifunctional small molecule ligands, as in the case of K-Ras (51),

fragment-based drug discovery (52), and orthosteric and allosteric

(53) PROTACs, there have been some successes. Several studies on

the kinetics and thermodynamic properties of protein-protein

interactions have also greatly contributed to a better

understanding of their affinity (54). Currently, PPIs can be

considered as challenging, but druggable.

The available PPI data was estimated to represent only a small

percentage of all PPIs in humans (55), and it may not be a good

representation of the entire interactome. As relatively little is

known, in silico approaches are emerging to help fill in the gaps.

Before discussing howHP PPI can aid in the treatment of pathogen-

driven diseases such as cancer, the following section describes the

current state of the art in in silico guided PPI prediction approaches

that can be used for HP PPI prediction and targeting.

3 The current landscape and gaps
in computer guided prediction
of HP PPIs

Predicting PPI involves predicting proteins that interact as well

as decoding their binding interfaces and the structures of their

complexes. The limitations of experimental methods make

computational prediction of PPIs an essential strategy. Structures
Frontiers in Oncology 04
and sequences are required for computer-aided PPI prediction.

Docking/simulation-based and data-driven/ML-based approaches

are adapted to use these data for prediction (56, 57).

The interaction interfaces and complex structures can be

predicted using docking/simulation-based techniques. Rigid body

or flexible docking can be used to evaluate surface complementarity.

Flexible docking involves a significantly larger number of

coordinates, whereas rigid body ignores the conformational

changes between the bound and unbound states (57). Simulation-

based methods can obtain a more refined structural model of the

complex. MD simulations can compute the interaction strength and

the conformational changes upon PPI formation using a force field

to represent atomic interactions and capture the entropic

contribution in the ensembles (58). These techniques often

employ physics-based and/or geometric models to look for

probable conformations with low interaction energy and high

surface complementarity (57). Through the sampling of the free

energy landscape, simulation-based methods capture kinetics,

mechanisms of action and binding affinities. Because simulation

timescale of binding events involve high computational cost,

techniques that include MD simulations and docking are typically

used to explore the dynamics of interactions or to evaluate their

strength rather than to identify which proteins interact with one

another and form a PPI network (54). Although binding events

normally require reaching at least the millisecond timescales,

current simulations frequently sample nanosecond to

microsecond timescales (59).
FIGURE 2

Combination of experimental and in silico methods aids rational therapeutics design to target HPI.
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One of the most significant differences between docking/

simulation-based methods and data-driven methods is that the

latter have a capacity to be used on a large scale. As many proteins

still lack structural information, the data-driven/ML approaches

that use sequence data are also frequently applied. Although new

methods are being developed employing structure, most of the data-

driven/ML approaches still use sequence-based information (60,

61). These methods can be used to extract features such as

evolutionary information, particularly correlated mutation

analysis, and secondary structures from the protein sequences. On

the other hand, structure-based data-driven/ML methods use

conserved interfaces among homologs as templates to study and

identify the interface of PPI of interest (62, 63). ML-based methods

require input data obtained from datasets of experimentally

determined or other available interfaces to train their algorithms.

The trained algorithms are used to predict the interface of a PPI of

interest (64, 65). Co-evolution based statistical models can be

considered as data driven as they utilize multiple sequence

alignment data. Interface residues are likely to coevolve, and the

alignment data is used to identify such residues (66). Recent

biotechnological advances are generating a wealth of protein data,

helping data-driven computational approaches improve

their performance.

Computer-guided PPI prediction approaches can also use

metabolic pathway mapping, gene neighbor, and domain fusion

analyses. Research suggests that proteins involved in a coupled

enzymatic reaction can form a temporary complex (67). A gene

neighborhood method has explored the functional linkages between

two proteins. The assumption here is that if two proteins are found

in the same neighborhood in different genomes from different

organisms, they are highly likely to be functionally linked (68).

Especially noteworthy is the emergence of AI-driven methods (69,

70), which are already being optimized and applied to prediction of

PPI (61, 71). The landmark AlphaFold does not involve a

homology-based strategy, nor does it model the prediction on

available PDB structures, as typical homology-based methods do.

Instead, it uses the PDB structural database to learn structural

patterns (69, 71, 72). We expect AI-driven approaches to dominate

the structural modeling of the HP PPIs field in the future. Still, AI-

driven methods, such as AlphaFold, are not perfect. They are

challenged by dynamic energy landscapes of biomolecular

function and allosteric mechanisms (73). To associate structure

and function, the populations and relative energies in protein
Frontiers in Oncology 05
ensembles should be considered. AlphaFold predictions are

unable to directly address it despite its impact. This functional

goal can only be achieved by their sampling (71).

Another challenge for predicting PPI is related to the geometric

features of the interfaces. Protein structures and their interaction

interfaces are not uniformly shaped. Most enzymes have binding

pockets shaped as cavities (Figure 3, left), whereas many PPI

interfaces have large flat surfaces (Figure 3, right). This makes

interface prediction and the drug design process difficult, because

determining where the drugs would bind is the first crucial step

(47). To address these issues and predict a flat binding interface,

some approaches are being developed (74, 75). Identifying residues

with higher contribution to the binding affinity and protein

recognition is one of them. Most of the affinity is provided by a

small set of residues at interfaces known as hot spots (76). Hot spots

are the primary targets of small compounds designed to disrupt

PPIs (50, 77). Below are databases and prediction methods for find

flat binding interfaces and cavities. They include structural

information, kinetics, thermodynamics, and molecular functions

of the PPI and their interfaces. Table 1 summarizes some

representative online protein binding pocket prediction tools as

well as interface and PPI databases that are available. There are

many databases with a large spectrum of approaches that can be

used to study HP PPIs. DeepSite, for instance, predicts putative

ligand binding sites in proteins using deep convolutional neural

networks (23). Protein structures are treated as 3D images, and

hydrophobic and aromatic features, hydrogen bond acceptor or

donor, charges, and metallic properties are assigned to each pixel

based on the atoms in it. Each pixel is assigned as positive or

negative based on the distance of each pixel to the geometric center

of the pocket. The threshold for negative and positive assignments

was selected with consideration of common binding sites from the

literature. Their neural networks use these data from the literature

to train its algorithm to predict a binding site.

AlloPred makes predictions of allosteric pockets on proteins by

perturbing normal modes (78). AlloPred simulates how the

dynamics of a protein would change if a modulator were to

occupy a particular pocket. They used the Fpocket algorithm (94)

to initially locate the pockets on the protein. The elastic network

model was then used to determine the normal modes. At the active

site, the impact of this disruption (binding) was measured. The

findings were integrated with output from Fpocket in a support

vector machine (SVM). DeepSite and AlloPred, are two different
FIGURE 3

Representation of a protein with binding pockets/cavities and proteins with large flat interfaces.
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approaches showing that both simulation-based and data-driven

approaches can be adapted for similar purposes.

The variability in PPI interface datasets comes from both the

protein types that are listed in such databases and the methods used

to create them. PIFACE present all available PPI clusters (until

2012) via their interface structures. They identified 22,604 unique

interface clusters. These clusters can be used to identify and

investigate both shared and unique protein binding sites (14).

HPID3.0 is a curated database tailored for HP PPIs (17). There

are still more specialized databases available, such the HCVpro, PPI

database for the hepatitis C virus (HCV) (92). The HCVpro is a

knowledgebase database that contains consolidated information on

PPIs, functional genomics, and molecular data that was gathered
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from various virus databases (95–97). VirHostNet combines one of

the largest human interactomes (10,672 proteins and 68,252 non-

redundant interactions) reconstructed from publicly available data

with an extensive and unique dataset of virus-virus and virus-host

interactions (2671 non-redundant interactions) representing more

than 180 different viral species (93). Noticeably, the methods for

predicting PPIs and their interfaces have clearly improved.

Nonetheless, for computer-aided PPI predictions (CAPP), like

any other prediction methods, several challenges are still relevant

(32, 93). Some of the challenges and gaps are common to all

methods mentioned above, while others are specific to the

prediction approach environment.

Some of those common challenges for PPI prediction are related

to the nature of PPIs. Transient (domain–motif) interactions are

not well-covered in available PPI databases. Stable PPIs typically use

large interfaces, whereas transient PPIs use short linear peptides

making the prediction more difficult (10). Also, because of the lack

of conservation across species, conservation-based analysis is

inapplicable to transient interactions (32). Not only the transient

interactions but the dynamic nature of proteins is one of the most

prominent challenges for CAPP (98). Including protein flexibility in

the calculations is computationally highly expensive. Therefore,

many CAPP tools consider protein structures as rigid bodies (33).

The distinction between protein isoforms is another critical issue.

PPI of only one protein isoform is frequently listed in the databases,

though it is unknown whether any other isoform interacts with the

same partner via the same interface (99). Furthermore, CAPP

algorithms determining which proteins interact with which may

predict multiple complexes as feasible from energy or/and

structural point of view. However, in reality, it may not be

feasible for them to be in physical contact, since they do not

share the same temporal and spatial compartment (100).

Advanced computational techniques such as ML and deep

learning (DL) suffer from different types of drawbacks. A large

amount of data is needed for model training. A model might not be

able to learn the rules because only a few thousand structures of

complexes are available across the databases. Data imbalance is a

challenge in any learning process. Third, there is a requirement for

high-quality experimental data because a model cannot afford to

learn from low-quality data (101).

HP PPI-focused algorithms and databases have their own set of

challenges. There is still a lack of domain knowledge for some

viruses with genomes larger than 20 kb, and many of their proteins

have neither an assigned domain nor a known function (10). The

fact that HP PPI prediction is based on a diverse range of

experimental methods, as well as having curation error and

redundancy, are additional problems (102). Moreover, certain

databases provide pathogen data at the species level disregarding

interspecies interaction (17, 87).

Overall, CAPPs need rigorous validation because they are error

prone. Although there are many protein-protein docking programs,

there are few ways to systematically assess the predicted PPI

complexes (64). International benchmarking studies, such as

critical assessment of predicted interactions (CAPRI), show how

imperfect predictive methods are and how they can be improved.

Effectiveness depends on the capacity to curate and derive the best
TABLE 1 List of available representative methods/algorithms/databases
for protein binding pocket prediction, PPIs and PPI interfaces.

Name Website link

Protein binding pocket prediction methods

DeepSite https://www.playmolecule.com/deepsite/ (24)

PockDrug http://pockdrug.rpbs.univ-paris-diderot.fr/ (25)

AlloPred http://www.sbg.bio.ic.ac.uk/allopred/home (78)

POCASA http://altair.sci.hokudai.ac.jp/g6/service/pocasa (79)

PPI and PPI interface databases

PIFACE http://prism.ccbb.ku.edu.tr/piface (14)

PLIC http://proline.biochem.iisc.ernet.in/PLIC/index.php (21)

ProtCID http://dunbrack2.fccc.edu/ProtCiD/default.aspx (80)

3did https://3did.irbbarcelona.org (81)

sc-PDB http://bioinfo-pharma.u-strasbg.fr/scPDB (22)

HPIDB 3.0 https://hpidb.igbb.msstate.edu/ (16, 17)

MINT https://mint.bio.uniroma2.it/mint/ (19)

DIP http://dip.doe-mbi.ucla.edu (15)

IntAct http://www.ebi.ac.uk/intact (82)

BIND http://www.bind.ca/ (83)

BRITE http://www.genome.jp/brite/ (84)

BID http://tsailab.org/BID/ (85)

STRING https://string-db.org/ (86)

Viruses.
STRING

http://viruses.string-db.org/ (87)

HHPID https://www.ncbi.nlm.nih.gov/genome/viruses/retroviruses/hiv-
1/interactions/ (88)

InterSPPI http://zzdlab.com/InterSPPI/ (18)

HMI-PRED
2.0

https://hmipred.org (20, 89)

BioGRID https://thebiogrid.org/ (90)

HPRD http://www.hprd.org/ (91)

HCVPro http://cbrc.kaust.edu.sa/hcvpro/ (92)

VirHostNet https://virhostnet.prabi.fr/ (93)
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knowledge input. Along these lines, additional structural

information about protein complexes will significantly increase

the performance of computational methods, enhancing their

capability (103). Notwithstanding, CAPP approaches are already

helping in predicting, and thereby clarifying howHP PPIs can aid in

studies of cancer. In the next section we discuss a few case studies

that demonstrate the importance of CAPP approaches in HP PPI

and cancer research.
4 How predicting HP PPIs can help
cancer research

The precise molecular mechanisms by which pathogens rewire

the host pathways to trigger malignant transformation remain

unknown, despite the abundance of data on their role in cancer.

Pathogens can have an impact at any stage of the multi-step process

of carcinogenesis. Here, we discuss some examples from the

literature documenting how insight into HP PPI mechanisms can

help cancer and pathogen-driven cancer research.

Frisan (104) explains that interaction of bacterial toxins with

subcellular membrane compartments induce DNA damage and

trigger the DNA damage response (DDR). Normally, damaged cells

halt the cell cycle and, by activating DNA repair mechanisms,

induce senescence or apoptosis (105, 106). However, cells with

toxin-induced DNA damage are more likely to survive and bypass

the DDR-induced cell death or cellular senescence, resulting in

genomic instability. Chmiela et al. (107) and Gagnaire et al. (7)

discuss possible mechanisms of gastric cancer initiation in response

to H. pylori infection. Similarly, DNA damage combined with

impaired repair processes, as well as mitochondrial DNA

mutations, make infected cells more susceptible to tumor growth

(108). Although the expression of DNA mismatch repair (MMR)

proteins increases in response to DNA damage, H. pylori-induced

gastric inflammation impairs MMR (109). Some of the bacterial

proteins activate the PI3K-AKT-MDM2 pathway, which causes p53

degradation in gastric epithelial cells (7). Gagnaire et al. also

describe how different host pathways that are activated in cancer

are also activated by bacteria as part of their infection cycle. These

include the nuclear factor-kB (NF-kB), PI3K-AKT, MAPK, and b-
catenin pathways. In addition to causing DNA damage, bacteria can

disrupt the DDR by attacking important participants in the

response, such as p53. Oncoviruses known to target p53 to

promote cellular transformation include the HPV, hepatitis B,

hepatitis C, and Epstein-Barr virus (EBV), some bacteria may also

do this.

In brief, the first impacts of a pathogen on a host cell are the

production of reactive oxygen species, DNA damage, imbalances in

the activity of cellular pathways including but not limited to MAPK

and b-catenin activation, and p53 degradation. These responses are

followed by an inflammatory state, immunosuppression, and the

impairment of DNA damage repair mechanisms. These lead to

genomic instability, uncontrolled cell growth, and proliferation,

which are some of the hallmarks of cancer. Figure 4 describes how

HPI mechanisms can cause these responses and lead to emergence

of cancer, and how advanced computational methods can help
Frontiers in Oncology 07
decipher these mechanisms. By studying related HPI mechanisms,

it is possible to find new drug targets, biomarkers, and therapeutic

candidates for cancer treatment.

People living with HIV are more likely to develop the following

cancers: Kaposi’s Sarcoma, non- Hodgkin’s lymphoma, and cervical

cancer (in women), and as the HIV-positive population ages, the

incidences of colon, breast, and prostate cancer also increase (110).

Further, since people with HIV are more vulnerable to chronic

infections, they can develop HPV-associated tumors. Cervical and

anal cancers are the most common HPV-related tumors in HIV

patients (111). HPV is thought to be responsible for 30% of the head

and neck cancers and the majority of oropharyngeal cancers (112).

Hence, generating a HIV-human interactome becomes important

(88, 113). Brass et al. identified a set of proteins important for HIV

survival (HIV-dependency factors (HDFs)) (113). Pinney et al.

compared this list of HDFs with the HHPID database of curated

HIV interactions and identified 36 overlapping proteins (88). Then,

based on the gene ontology terms associated with the HDFs, they

discovered that the HDFs are associated with cellular processes such

as mRNA transport, protein transport, and lipoprotein

biosynthesis. Thus, stopping the spread of AIDS will aid in the

fight against cancer, providing information on HIV-host

interactions, which along with the potential of a systems biology

approach, will be invaluable in drug development.

The Epstein-Barr virus is an oncovirus that secretes the lytic-

cycle protein BARF1 to undermine host immunity by interacting

with human cytokine CSF1 (114). Guven-Maiorov et al. used HMI-

PRED to successfully pinpoint the BARF1-CSF1 complex and the

interaction surface (8, 89). Then, in addition to discovering the

interaction of the BARF1-CSF1 complex, they presented 155 new

potential HP PPIs for the BARF1 protein. Some host immunity

proteins, including the T-cell receptor beta 1 chain C region

(TRBC1), immunoglobulin constant heavy chains (IGHe), and
tumor necrosis factor (TNFa), are among the 155 potential

targets. These findings imply that the BARF1 protein can

influence alternative host immunity pathways in addition to the

canonical pathway (CSF1R). These potential HP PPIs and the

structures of their complexes could offer a mechanistic

understanding into how EBV evades host recognition and

survives for years. They also built an integrated structural

network with structures for all pairwise interactions for

oncoviruses and their human hosts (8). This network helps to

identify some hub proteins, including UBC, UBB, B2MG, A102,

CALM2, and TRBC1, that are commonly targeted by oncoviruses.

As interface mimicry is a more common strategy for the pathogens

than mimicking the whole protein structure, interface-based

methods are more successful than global structure similarity-

based methods to identify the HP PPIs. Large-scale application of

interface-based methods has the potential to improve the HP PPI

predictions (36). Dyer et al. used experimentally discovered

interactions between human proteins and proteins from B.

anthracis, F. tularensis, and Y. pestis to create an HPI network for

each (115). They conducted a network analysis using the

GrapHopper algorithm (116), defined the Conserved Protein

Interaction Module (CPIM), and discovered that pathogen

proteins have a propensity to interact with human proteins that
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act as hubs and bottlenecks in the human PPI network. They

noticed that the three networks contain hubs of conserved human

proteins like NF-kB. Additionally, they discovered that some Y.

pestis proteins can interact with CXC-chemokine receptor 4

(CXCR4), which is a promising new target for anti-HIV

medications because of its role as a main coreceptor for the

human immunodeficiency virus (117). These novel networks aid

in the discovery of new interactions that are important in

pathogenesis and host response and can be applied toward the

discovery of vaccines and immunotherapeutics.

Lin et al. (118) adapted a drug repurposing strategy powered by

ML models to address the urgent need for an effective anti-HPV

drug. They built, tested, and chose machine learning predictive

models to predict antivirals that might potentially interact with

HPV proteins. To perform the comparatively extensive in silico
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screening for the 9 HPV-16 protein, they gathered and examined 96

FDA-approved antiviral drugs. They were able to correctly predict

57 pairs of antiviral-HPV protein interactions out of 864 pairs of

antiviral-HPV protein associations made up of the combination of 9

HPV-16 proteins and 96 antiviral drugs. One of the drugs they

identified as a potential anti-HPV treatment is docosanol, which

was predicted to interact with HPV-16 protein E7. Docosanol is an

FDA-approved anti-EBV drug. Interestingly, a recent clinical case

report claimed that HPV infection were successfully treated using

Docosanol, curcumin, and other medications in combination (119).

For the development of anti-HPV drugs, Lin et al. produced

promising drug candidates.

These studies, which have been compiled from a variety of

sources, demonstrate the wide range of computational approaches

to identify new HPIs and cellular mechanisms that are affected by
FIGURE 4

Different cellular mechanisms interfered by pathogens in host cells that might result in cancer.
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pathogen infections. They can help in screening novel or

repurposed drug compounds against HPI complexes, and in

producing drug candidates. A framework that summarizes the

benefits of these studies is shown in Figure 5. Input data from

different sources including amino acid residue properties, protein

sequences, experimental data, protein 3D structures, available PPI

interface databases, as well as tissue locations, can be processed

using different computational techniques and databases discussed

throughout the review. Proper operation of these approaches can

help to discover pathogen-driven cancer biomarkers, host-pathogen

complex structures, pathogen induced cellular pathways,

therapeutics against the pathogens and HPI networks.
5 Conclusions and future perspectives

Since PPIs are crucial for cell function, studies of protein

interactions are essential to comprehend how biological systems

operate. Aberrant, pathologic HPIs can influence downstream

target genes, resulting in a variety of diseases, including cancer.

HPI interface identification with high accuracy has many

applications in computer-aided rational drug design. Although

computational prediction of protein interfaces has made

significant strides in recent years, there is still much room for

improvement and innovation. The bottlenecks and drawbacks can

be divided into twomain categories: shortcomings of computational

approaches and challenges due to the nature and physicochemical

characteristics of the HPI. Traditional protein docking algorithms

can work for complexes consisting of two partners. Increasing the

number of proteins in the complex challenges these methods. In

protein-protein docking, deeper pockets on the protein surface as

well as the presence of hot spot residues, diversify the HPI and may,

or may not, assist in accurate prediction (56). An intrinsic
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bottleneck in docking, especially of proteins and small ligand

inhibitors, is protein flexibility, which is challenging to include,

and algorithms which produce rigid models, like AlphaFold, cannot

(71). Recent applications also emphasize the need for

improvements in the scoring functions, which pose a further

challenge. ML and DL techniques can help and are increasingly

incorporated in prediction algorithms. However, they depend on

the data that they learn, which may, or may not, have abundant

candidates in the ‘correct’ conformation. For example, consider that

drug targets are frequently the ‘active’ conformation, however, the

PDB populates the more stable inactive structures. That is, the

biologically relevant state of the protein may not be sufficiently

populated in the docking ensemble. High throughput data can offer

useful co-evolutionary information. Inverse-covariance-matrices

have recently made significant improvement in protein structure

prediction (120). However, data is mixed as far as their usefulness in

predictions of protein complexes. Consider that pathogens are

unlikely to possess the time for their evolutionary acquisitions.

These hurdles hamper the predictions and design of potent

molecules that can destabilize (or, if repressor, stabilize) HPIs.

While there is progress and there are successes, further

improvements will have a significant impact on HPIs in disease

pathways (101). Together with the vast amount of protein

sequences currently available, the PDB has been building up a

large number of atomic resolution structures, which provide

learning and training data for machine learning algorithms (56,

121) and functional information.

In summary, even though it is still not possible to predict HPI

interactions with ‘perfect’ accuracy, computational methods can

predict the most likely interaction models based on the input data.

These interactions can act as the basis for further experimental

studies. When combined, information on gene expression and

protein interactions are expected to increase the confidence in the
FIGURE 5

A scheme of benefits that can be obtained from computational approaches in HPI-related cancer research. Data such as experimental analysis,
available protein structures, available PPI interface databases, amino acid residue properties, small molecule libraries, disease data and amino acid
sequences of the proteins of interest provide input. Various computational methods including but not limited to MD simulations, docking, ML, AI,
neural networks, free energy perturbations, virtual screening process these data and can identify novel cancer biomarkers, unravel unknown HPI
complex structures, produce HPI networks, screen for novel therapeutics and identify cellular pathways that they impact.
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HPI and the corresponding HPI network. Recent advancements are

also paving the way for the generation of networks for identifying

HPI and signal transduction pathways playing role in cancer, all

toward rational drug design.
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