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Introduction: Cytoreductive surgery (CRS) and hyperthermic intraperitoneal

chemotherapy (HIPEC) are considered for patients with peritoneal metastasis

(PM). However, patients selection that relies on conventional prognostic factors

is not yet optimal. In this study, we performed whole exome sequencing (WES) to

establish tumor molecular characteristics and expect to identify prognosis

profiles for PM management.

Methods: In this study, blood and tumor samples were collected from patients

with PM before HIPEC. Tumor molecular signatures were determined using WES.

Patient cohort was divided into responders and non-responders according to

12-month progression-free survival (PFS). Genomic characteristics between the

two cohorts were compared to study potential targets.

Results: In total, 15 patients with PM were enrolled in this study. Driver genes and

enriched pathways were identified fromWES results. AGAP5 mutation was found

in all responders. This mutation was significantly associated with better OS (p =

0.00652).

Conclusions: We identified prognostic markers that might be useful to facilitate

decision-making before CRS/HIPEC.

KEYWORDS

hyperthermic intraperitoneal chemotherapy (HIPEC), peritoneal metastasis, whole
exome sequencing (WES), somatic mutation, AGAP5
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1 Introduction

Peritoneal metastases (PMs) are aggressive advanced-stage

manifestations that predominantly originate from intra-

abdominal malignancies such as gastric, colorectal, appendiceal,

and ovarian cancers. Patients with PM showed limited overall

survival (OS) of approximately 3.1 months (1). Cytoreductive

surgery and systemic chemotherapy are still the standard

treatments. Over the last two decades, marginal efficacy of

systemic palliative chemotherapy in PM management (2–4) has

led to an alternative approach: cytoreductive surgery (CRS) with

hyperthermic intraperitoneal chemotherapy (HIPEC) (5).

Poor distribution of systemic chemotherapy to the peritoneal

cavity is due to the plasma-peritoneal barrier and high interstitial

pressure of tumors. Therefore, intraperitoneal infusion offers

preferentially higher efficacy in delivering chemotherapeutic drugs

to tumor nodules while localizing the diffusion of these drugs in the

peritoneum to decrease their systemic toxicity (5, 6). Furthermore,

hyperthermia with the range of temperature from 41 to 43°C

augments the cytotoxic effect of intraperitoneal chemotherapeutic

agents via DNA repair inhibition, promotion of heat shock

proteins, immune cell recruitment (e.g., natural killer cells,

dendritic cells, T cells) and apoptosis (7, 8).

While systemic chemotherapy increases the median OS of

patients with PM to roughly 1 year (9-15 months) (6, 9, 10),

some results from CRS/HIPEC have shown superior efficacy to

improve the survival duration. Median survival times varied

according to the origin of the primary cancer. For colorectal

origin, the median OS of PM patients receiving CRS/HIPEC was

32-41 months (11, 12); patients with epithelial ovarian cancer

achieved a median OS of 45.7 months (13); and the duration of

survival for patients with mesothelioma was up to 53 months (14).

Despite these promising results, a considerable group of

patients were reported to have relapsed within 12 months

following CRS/HIPEC (15–17). In addition, recent randomized

clinical trials failed to confirm the favorable outcome of CRS/

HIPEC over mono-modal systemic chemotherapy or palliative

surgery in colorectal PM and recurrent epithelial ovarian cancer

(18, 19). The controversial results highlighted shortcomings of

current guidelines for CRS/HIPEC. First, the protocols vary

across institutes regarding open or closed abdominal perfusion,

chemotherapeutic drugs used, administration duration, and the

optimal temperature range, making it difficult to extrapolate

results to all patients (20, 21). Second, conventional prognostic

factors for CRS/HIPEC prominently depend on clinical and

pathological data such as patient’s clinical performance status

(Eastern Cooperative Oncology Group (ECOG) score, peritoneal

carcinomatosis index (PCI), histologic tumor grade, lymph node

status, signet ring cell differentiation, the completeness of

cytoreduction, and the experience of the operative team (22, 23).

Nonetheless, the biological heterogeneity of peritoneal tumors in

different patients raises concerns that the generally standardized

regimen of HIPEC might not be effective in all cases and plausibly

necessitates a personalized approach to optimize clinical decision-

making. Thus, insights of tumor molecular characteristics are of

great value to improve patient selection for CRS/HIPEC.
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Recently, high-throughput sequencing technology has shed

light on genomic profiles in individual cancer therapy. Indeed,

genomic application for prognostic significance after CRS/HIPEC

therapy was reported (24–26). However, the current information is

still not able to be translated into clinical applications (27). Herein,

we sought to unravel the tumor-specific genetic alterations, thereby

providing predictive genetic-guided factors associated with

HIPEC responsiveness.
2 Materials and methods

2.1 Patient cohort

This study was conducted with the approval of the Joint

Institutional Review Board of Taipei Medical University (approval

no. N201807067). The study design is demonstrated in Figure 1.

Patients diagnosed with AJCC (American Joint Committee on

Cancer) stage IV peritoneal metastasis based on computerized

tomography (CT) scans, no comorbidities such as heart disease,

epilepsy, severe kidney, or liver dysfunction, aged 20–75 years, and

with a body weight of 50–100 kilograms were recruited for this study.

All eligible patients have signed informed consent forms. After

surgery, patients with at least 12 months of follow-up were

stratified into two groups based on the 12-month progression-free

survival (PFS) (or early recurrence): responders and non-responders.

PFS was defined as the time interval from CRS/HIPEC to the

first occurrence of the following events: local or systemic recurrence

evaluated by imaging assessment and/or histological confirmation

by a laparotomy/laparoscopy; and death from any cause. OS was

also investigated from the date of surgery to the date of death from

any cause or censored on the date of last follow-up for alive patients.
2.2 HIPEC procedure and
specimen collection

HIPEC was performed with closed technique for 1 to 2 hours.

The PerformerHT (RanD, Medolla, Italy) was used to assure the

target temperature ranging from 42.0 to 43.0°C. Chemotherapeutic

agents were used in HIPEC as monotherapy or in combination

according to primary cancer types, including mitomycin C,

docetaxel, cisplatin, and others (etoposide, doxorubicin,

mesna, Ifosfamide).

Tumor and matched peripheral blood samples of all patients

were collected prior to the HIPEC regimen in the operating room.

The collected tumor tissues were stored in RNAlater and kept in

liquid nitrogen. The tumor tissues were ground with tissue

homogenizers for DNA isolation. Peripheral blood mononuclear

cells (PBMCs) were extracted from peripheral blood using Ficoll.

DNA was isolated from the tumor tissue and PBMCs with Allprep

DNA/RNA kit (Qiagen) according to the manufacturer’s protocol.

The DNA concentration per sample was assessed by absorbance

measures using the NanoDrop Spectrophotometer (Thermo

Scientific, Waltham, MA, USA) and by fluorometric method with

the Qubit 2.0 Fluorometer (Thermo Scientific).
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2.3 Whole exome sequencing and
bioinformatic analysis

WES was performed with the Illumina NovaSeq 6000 platform

at 150-bp pair-end reads. The average sequencing coverage was

200× for the samples. To assess raw sequencing reads, quality

control was performed using FastQC and trimming was

performed using Trimmomatic. The Genome Analysis Toolkit

version 4.0 (GATK4) was applied for variant calling according to

the GATK best practice (28).

The processed reads were mapped and aligned to the reference

human genome (GRCh38/hg38) using Burrows-Wheeler Aligner

(BWA) (29). BAM files were sorted using SAMtools; polymerase

chain reaction (PCR) duplicates were omitted with MarkDuplicates

(Picard). Somatic variants (single nucleotide variants (SNVs) and

insertions/deletions (INDELs)) were called using GATK4 Mutect2.

Subsequently, Ensembl’s Variant Effect Predictor (version 104.3)

was used to annotate the variants (30).

The tumor mutational burden (TMB) was calculated as the total

number of non-synonymous somatic mutations per mega-base

(Mb) of WES data. Mutational data were then analyzed and

visualized using the Maftools package (31). Driver genes were

identified from the oncodriveCLUST pipeline integrated in the

Maftools package. This tool takes into account genes with

mutations that are clustered in particular regions of the protein,

which are potentially functionally deleterious (32). Kyoto

Encyclopedia of Genes and Genomes (KEGG) pathway analysis

was subsequently carried out using the web-based tool, Enrichr, for

this gene list (33).
2.4 Copy number variation analysis

To call the allele-specific copy number for each sample, BAM

files were subjected to the Sequenza pipeline, and the GRCh38/hg38

human reference genome assembly was used for annotation (34).

Segmentation output files from Sequenza were used as the input for
Frontiers in Oncology 03
Genome Identification of Significant Targets in Cancer (GISTIC)

version 2.0 to detect CNV events at gene level and identify regions

with significant amplification or deletion in each cohort (i.e.,

responders and non-responders) (35). To avoid gender bias, the X

and Y chromosomes were excluded from the CNV analysis.

Significantly recurrent focal CNV regions in each cohort were

determined by GISTIC 2.0 with a false discovery rate (FDR) q-

value of < 0.25. The CNV event of a gene was defined as

amplification, gain, loss, or deletion based on the GISTIC score.
2.5 Statistical analysis

Pre-, peri-, and postoperative clinicopathological data were

compared between responders and non-responders. Chi-squared

test or Fisher’s exact test was performed for categorical variables.

For continuous variables, Student’s t-test and MannWhitney-U test

were respectively used for normally distributed and non-normally

distributed data. Survival analyses were conducted using the

Kaplan-Meier method, and the log-rank test was used to compare

survival curves across different groups of interest. A p value of <

0.05 was considered statistically significant. All statistical analyses

were performed in R version 4.0.5.
3 Results

3.1 Patient characteristics

In total, 15 patients with PM receiving CRS/HIPEC at Wanfang

Hospital (Taipei, Taiwan) were enrolled in this study. Preoperative-,

intraoperative-, and postoperative-related clinical data were

recorded for analysis (Tables 1, 2). Five patients (33.3%) had

primary colorectal cancer (CRC), seven patients (46.7%) had

primary gastric cancer, two patients (13.3%) had primary ovarian

cancer, and one patient (6.7%) had mesothelioma. This cohort was

divided into responders (n = 6) and non-responders (n = 8) based
FIGURE 1

Study design.
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on their 12-month PFS after CRS/HIPEC. One patient was excluded

due to loss of follow-up at three months after CRS/HIPEC. No

statistically significant difference was observed between the two

groups in any of the patients’ baseline or operative characteristics

(Tables 1, 2). As to clinical outcomes, responders achieved a median

PFS of 21 (range, 17–33) months and an average OS of 24.83

months, whereas non-responders had a median PFS of 8 (range, 4–

11) months and an average OS of 13.12 months (p = 0.002 and

0.015, respectively).
3.2 Somatic mutational profiles in tumor
samples of all patients (n = 15)

There were 15 tumor and matched blood samples obtained

prior to the HIPEC regimen for WES. Missense mutations were the

highest among the mutational classifications (Figures 2A, B), and

SNVs dominated all mutational types (Figure 2C). The T>C and

C>T transitions constituted the highest proportion of SNVs, at

approximately 50% of events (Figure 2D). Overall, the median total

number of mutations per tumor sample was 6350 (range, 253–

10,166) (Figure 2E). The top 10 genes with the highest rate of

mutation were MUC16 (87%), FLG (100%), MUC3A (93%),

AHNAK2 (93%), HRNR (93%), MUC12 (93%), FCGBP (100%),

IGFN1 (87%), KCNJ18 (100%), and KCNJ12 (100%) (Figure 2F).

Alterations in FCGBP, FLG, KCNJ12, and KCNJ18 were observed in

all tumor samples. Detailed classifications of variants harbored in

the top 15 mutated genes are presented in a waterfall

plot (Figure 2G).
Frontiers in Oncology 04
3.3 Driver genes and pathway analysis
across all tumor samples (n = 15)

In total, 1904 potential driver genes were annotated in this

cohort using OncodriveCLUST (p < 0.05, FDR < 0.05) (Table S1).

These genes were used as input for the functional gene enrichment

analysis (i.e., the KEGG pathway analysis) in the Enrichr web-based

tool, which revealed significantly enriched pathways related to

signaling, metabolism, tumorigenesis, and immune response

(Figures 3A, B). Among those, ‘axon guidance’ was a significantly

enriched pathway in this cohort. Molecules involved in this pathway

are listed in Table S2. As shown in the Figure 3C, mitogen-activated

protein kinase 1 (MAPK1) and MAPK3 were the most frequently

clustered genes in the top annotated enriched pathways.
3.4 Comparisons of tumor molecular
characteristics between responders and
non-responders

We further compared the TMB between responders and non-

responders. Results revealed higher TMB in pretreatment tumors of

non-responders; however, the difference did not reach statistical

significance (median TMB of 133.04 mutations/Mb vs. 71.14

mutations/Mb, p = 0.4316) (Figure S1). Likewise, while the total

number of non-synonymous (ns)SNVs was relatively higher in

non-responders than in responders (median of 3147 vs. 1892, p =

0.4908), the impact of nsSNV loads on patient outcomes was not

clearly established (Figure S2).
TABLE 1 Baseline and preoperative characteristics by response status (*) to CRS/HIPEC.

Total
(n = 15)

Responders
(n = 6)

Non-responders
(n = 8)

p-value

Gender (%)

Female 8 (53.3) 4 (66.7) 4 (50.0) 0.627c

Male 7 (46.7) 2 (33.3) 4 (50.0)

Age at inclusion (mean (SD)) 61.67 (9.21) 63.33 (10.25) 60.25 (9.47) 0.571a

BMI (cm/kg2) (mean (SD)) 23.28 (4.26) 24.00 (5.38) 22.98 (3.80) 0.684a

ECOG score (median [range]) 1 [1-2] 1 [1] 1 [1-2] 0.471b

Primary cancer (%) 0.564c

Colorectal cancer 5 (33.3) 2 (33.3) 2 (25.0)

Gastric cancer 7 (46.7) 2 (33.3) 5 (62.5)

Ovarian cancer 2 (13.3) 1 (16.7) 1 (12.5)

Mesothelioma 1 (6.7) 1 (16.7) 0 (0.0)

Time to metastasis (months) (median [range]) 3 [0-54] 7 [0-54] 2 [0-46] 0.947b

PCI score (median [range]) 31 [0-39] 17.5 [0-35] 31 [0-39] 0.3b
fron
BMI: Body Mass Index, ECOG: Eastern Cooperative Oncology Group, PCI: peritoneal carcinomatosis index.
a: Performed by Student T-test; b: Performed by Mann-Whitney U test; c: Performed by Chi-squared test or Fishers exact test.
(*) Excluded one patient without 12-month PFS data (follow-up < 12 months).
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In the CNV analysis, fewer amplification than deletion events

were observed in responders at the chromosome-arm level, while

there were only amplified chromosomal events in non-responders

(Figures 4A, C). Specifically, gains of 4p, 5q, 10q, 17q, 20q, and

gains of 1q, 5q, and 8p were respectively reported for responders

and non-responders. Meanwhile, chromosomal losses of 4p, 5q, 6q,

10q, 16q, 17p, and 20q were exclusively observed in responders. In

total, eight recurrent focal amplification and nine deletion peaks

were also identified across cohorts (q value of < 0.25) (Figure 4B).

Among them, amplification at 4p11 (67%), 17q11.1 (67%), and

20q11.21 (67%) and deletion at 6q27 (50%) and 17p11.2 (50%) were

the most frequent events in responders. On the other hand,

amplification of 5q11.1 (75%) was mostly observed in non-

responders. The amplification and deletion events at gene level

are summarized in Table S3.
3.5 Mutations of AGAP5 associated with
prognostic significance

To identify differentially mutated genes, we conducted Fisher’s

exact test for all genes with alterations between responders and non-

responders. Fourteen genes were recurrently and preferentially

mutated in either responders or non-responders (p < 0.05)

(Figure 5A). Among those, CFAP46, TRIM28, TOP3B, TAS1R2,
Frontiers in Oncology 05
POU4F1, MAP3K21, MAP3K13, HPS1, DYSF, DIDO1, and

CACNA1A were found as unique in tumors from non-responders.

Notably, AGAP5 was the top differentially mutated gene, with

missense mutations reported in all responding tumors (100%)

and one of eight samples in non-responders (12.5%). The pattern

of missense mutations on different functional domains of AGAP5 is

demonstrated with a lollipop plot (Figure 5B). In the survival

analysis, mutated AGAP5 was significantly correlated with better

OS following CRS/HIPEC compared to the wild-type gene (p =

0.00652, hazard ratio (HR) = 3.75 × 10-10) (Figure 6). Besides

AGAP5, results of the survival analyses for the remaining genes are

shown in Figure S3. No significant associations were identified.
4 Discussion

In this study, molecular signatures from WES may facilitate

clinical decision-making for PM management. First, alterations in

FCGBP, FLG, KCNJ12, and KCNJ18 were observed in all tumor

samples, regardless of the responsiveness towards HIPEC. FCGBP is

involved in the intestinal immune defense against inflammation

and carcinogenesis. Reduced expression of FCGBP was frequently

observed in colorectal adenoma and CRC (36). FLG acts as a

defense line (i.e., establishment of a skin barrier (GO:0061436))

that exhibits mutations in several cancer types (e.g., non-melanoma
TABLE 2 Operative and postoperative characteristics by response status (*) to CRS/HIPEC.

Total
(n = 15)

Responders
(n = 6)

Non-responders
(n = 8)

p-value

CC score (median [range]) 2 [0-3] 1 [0-3] 2 [0-3] 0.122b

Operative duration (mins) (mean (SD)) 426.67 (178.28) 481.17 (136.67) 414.12 (200.40) 0.496a

Hospitalization duration (days)
(median [range])

11 [5-58] 9 [8-31] 14 [5-58] 0.398 b

Postoperative complications (%) 6 (40) 3 (50.0) 3 (37.5) 1c

Pneumonia 2 (14.3) 0 (0.0) 2 (25.0)

UTI 1 (6.7) 1 (16.7) 0 (0.0)

Bowel leakage 1 (6.7) 1 (16.7) 0 (0.0)

Abscess 1 (6.7) 1 (16.7) 0 (0.0)

Intraabdominal infection 3 (20.0) 2 (33.3) 1 (12.5)

Wound infection 2 (13.3) 0 (0.0) 2 (25.0)

Postoperative therapy (%) 13 (86.7) 4 (66.7) 8 (100) 0.321c

Chemotherapy & Radiotherapy 4 (26.7) 1 (16.7) 3 (37.5)

Chemotherapy 9 (60.0) 3 (50.0) 5 (62.5)

Follow-up (months) (mean (SD)) 17.13 (10.15) 24.83 (6.65) 13.12 (8.76) 0.015 a

PFS (months) (median [range]) 10 [3-33] 21 [17-33] 8 [4-11] 0.002 b

OS (months) (mean (SD)) 17.13 (10.15) 24.83 (6.65) 13.12 (8.76) 0.015 a
fron
CC, completeness of cytoreduction; PFS, progression-free survival; OS, overall survival.
a: Performed by Student T-test; b: Performed by Mann-Whitney U test; c: Performed by Chi-squared test or Fishers exact test.
(*) Excluded one patient without 12-month PFS data (follow-up < 12 months). Significant p-values (<0.05) are shown in red.
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skin cancer, CRC, cervical cancer, and prostate cancer) (37),

whereas KCNJ12 and KCNJ18 are involved in regulating

transmembrane transport (GO:0034762), which is important in

cell proliferation, differentiation, and apoptosis (38). Acquired

mutations may imply impaired functions of these genes in

primary tumorigenesis as well as the development of PM.

Importantly, ‘axon guidance’ was annotated as the most

important pathway in our cohort. The ‘axon guidance’ pathway

modulates a variety of key biological functions including cell

survival, proliferation, differentiation, migration, and invasion in

different cancer types (39). Dysregulation of axon guidance

molecules has frequently been reported in cancers. EPHB6 was

down-regulated in several cancer types such as metastatic lung

cancer, melanoma, and CRC (40–42), while high expression of

SEMA4D promoted angiogenesis in many tumors (43, 44).

Pepinemab, an anti-SEMA4D has been developed and tested in

several solid tumors (45, 46). An early phase clinical trial has
Frontiers in Oncology 06
demonstrated that Pepinemab combined with other immune

checkpoint inhibitors was well-tolerated and showed anti-tumor

activity in immune-resistant tumors (46). Recently, Yu et al.

reported that suppression of ERBB2 (Erb-B2 Receptor Tyrosine

Kinase 2) was observed with the negative regulatory activity on

MAPK1/MAPK3 signaling pathway that led to the hinderance of

tumor progression in ovarian cancer cells (47). Taken together,

these findings revealed potential therapeutic targets for PM.

Our results indicated that TMB was higher in non-responders

than that in responders, which is consistent with a previous finding

of colorectal PM treated with CRS/HIPEC (48). Conversely, the

correlation between high TMB and better responses to HIPEC was

reported in gastric PM patients (49). The inconsistent results might

be due to the tumor heterogeneity. In addition, the CNV analysis

revealed targets with prognostic potential for therapeutic response

and survival outcomes. For example, ABCC3 (17p11.2) and ABCC2

(10q11.21) were found to be deleted in responders. These ATP-
D

A B

E F

G

C

FIGURE 2

Summary of the non-synonymous mutational landscape (n = 15 patients). (A, B) Classifications of non-synonymous mutations (i.e., single-nucleotide
variants (SNVs) and insertions/deletions (INDELs)). (C) Types of non-synonymous mutations. (D) Frequencies of transition and transversion events in
SNVs. (E) Total mutational loads in each tumor sample. (F) The top 10 genes with the highest rate of mutation. (G) Oncoplot showing the top 15
most frequently mutated genes with detailed annotations in each tumor sample.
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A

B

C

FIGURE 4

Comparison of copy number variation between responders and non-responders. (A) Amplifications and deletion peaks identified by GISTIC2.0
(q < 0.25); (B) Recurrent focal amplification and deletion regions detected for each tumor; (C) Circos plot summarizing copy number variation
distribution in the two cohorts.
A

B

C

FIGURE 3

Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis for the driver gene list. (A, B) Top 10 enriched pathways (p < 0.05, false
discovery rate (FDR) < 0.05); (C) Clustergram representing genes involved in the enriched pathways.
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binding cassette (ABC) transporters regulate the efflux of drugs

from cancer cells; therefore, deletions in these gene loci were

previously described as producing favorable responses to

neoadjuvant chemotherapy (50). In contrast, five of eight non-

responding samples exhibited amplified ANK1 and FGFR1 in the

8p11.23 region. High expression of ANK1 and FGFR1 are associated

with poor outcomes in several cancer types (51, 52).
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Here, we identified 11 exclusively mutated genes in non-

responders, namely CFAP46, TRIM28, TOP3B, TAS1R2, POU4F1,

MAP3K21, MAP3K13, HPS1, DYSF, DIDO1, and CACNA1A.

Importantly, we found that mutated AGAP5 was observed in all

responders and was associated with increased OS after CRS/HIPEC.

In addition, deletion of AGAP5 was also detected in responders

HT034 and HT038 (Figure 5A).

AGAP5 is a protein-coding gene with the function of a GTPase

activity activator. AGAP5 consists of an ADP-ribosylation factor (Arf)

GAP domain, ankyrin repeat (ANK) domains, and pleckstrin

homology (PH) domain 5 (Figure 5B). The PH domain is a critical

protein-binding site for catalyzing GTPase activity, and the PH-Arf

GAP domain interaction is necessary to activate AGAP function (53).

Arfs are proteins that belong to a subfamily of Ras small GTPases

without intrinsic GTPase activities. Arfs are activated by GTP exchange

factors (Arf GEFs) that assist the conversion of GDP to GTP and are

terminated by GTPase-activating proteins (Arf GAPs) (54). In

addition, a growing body of evidence suggests the functions of Arf

GAPs through an Arf-independent manner (55–57). Under normal

physiological circumstances, Arf proteins play important roles in

regulating key cellular functions, including membrane trafficking,

lipid metabolism, energy utility, cell motility, mitosis, apoptosis, and

transcription (54, 58). Upregulation of Arf1, Arf4, and Arf6 were found
FIGURE 6

Overall survival of patients receiving CRS/HIPEC with or without a
mutated AGAP5 gene (N = 14).
A

B

FIGURE 5

Differentially mutated genes in tumor samples between responders and non-responders. (A) Differentially mutated genes between the two cohorts
with frequencies and classifications of mutations. (B) Lollipop plot demonstrating mutated amino acids on different functional domains of AGAP5.
ANK, ankyrin repeat; PH, pleckstrin homology.
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in breast, gastric, prostate, or lung cancer. Furthermore, overexpression

of Arf GAPs (i.e., AGAP1 and AGAP2) was identified in different

cancer types such as breast, colon, lung, ovarian, and hepatocellular

carcinoma (57). AGAP2 with regulatory activity on Arf1 and Arf5

enhances cancer cell survival, migration, and invasion in glioblastoma

(59). Amplified AGAP2 and ASAP1 were associated with impaired OS

and progression-free survival in uveal melanoma (60).

The limitation of this study is the small sample size. To establish

a better signature to predict the therapeutic outcomes, more clinical

samples for further analysis are needed. In addition, our cohort

comprised patients with PM derived from different origins (i.e.,

CRC, gastric cancer, ovarian cancer, and mesothelioma); thus, sub-

group analyses according to primary cancer types should be

considered to generate more stringent conclusions. Despite these

shortcomings, we successfully identified potential shared genetic

markers with prognostic value for CRS/HIPEC. These exploratory

findings may provide a rationale for clinical decision-making.

In conclusion, we uncovered the molecular characteristics from

PM patients and reported a list of driver genes as well as enriched

signaling pathways. The results might be helpful for further drug

discovery. Importantly, AGAP5 was found to be significantly

associated with the better OS. This finding is helpful to detect the

good responders after CRS/HIPEC. In summary, our study provides

a tailor prognostic signature for CRS/HIPEC therapy.
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