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Integrated multi-dimensional
deep neural network model
improves prognosis prediction
of advanced NSCLC patients
receiving bevacizumab
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Background: The addition of bevacizumab was found to be associated with

prolonged survival whether in combination with chemotherapy, tyrosine kinase

inhibitors or immune checkpoint inhibitors in the treatment landscape of advanced

non-small cell lung cancer (NSCLC) patients. However, the biomarkers for efficacy

of bevacizumab were still largely unknown. This study aimed to develop a deep

learning model to provide individual assessment of survival in advanced NSCLC

patients receiving bevacizumab.

Methods: All data were retrospectively collected from a cohort of 272 radiological

and pathological proven advanced non-squamous NSCLC patients. A novel multi-

dimensional deep neural network (DNN) models were trained based on

clinicopathological, inflammatory and radiomics features using DeepSurv and N-

MTLR algorithm. And concordance index (C-index) and bier score was used to

demonstrate the discriminatory and predictive capacity of the model.

Results: The integration of clinicopathologic, inflammatory and radiomics features

representation was performed using DeepSurv and N-MTLR with the C-index of

0.712 and 0.701 in testing cohort. And Cox proportional hazard (CPH) and random

survival forest (RSF) models were also developed after data pre-processing and

feature selection with the C-index of 0.665 and 0.679 respectively. DeepSurv

prognostic model, indicated with best performance, was used for individual

prognosis prediction. And patients divided in high-risk group were significantly

associated with inferior PFS (median PFS: 5.4 vs 13.1 months, P<0.0001) and OS

(median OS: 16.4 vs 21.3 months, P<0.0001).
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Conclusions: The integration of clinicopathologic, inflammatory and radiomics

features representation based on DeepSurv model exhibited superior predictive

accuracy as non-invasive method to assist in patients counseling and guidance of

optimal treatment strategies.
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1 Introduction

Bevacizumab, an intravenously administered monoclonal

antibody targeting vascular endothelial growth factor (VEGF)

pathway, has been proved to have effect on the inhibition of

vascular growth, regression of newly formed vessels and

normalization of vasculature, thereby facilitate the delivery of

cytotoxic chemotherapy (1, 2). The pivotal ECOG4599 demonstrate

the efficacy of the addition of bevacizumab to first-line standard

chemotherapy in advanced non-squamous NSCLC patients, which

can firstly extend the overall survival (OS) to more than 1 year for

these patients (3). And the advantages of bevacizumab were also

demonstrated in Chinese patient population with the median OS

ranging from 17.7 to 24.3 months (4).

With the widespread use of immunotherapy and target therapy,

the importance of anti-angiogenesis including bevacizumab seems to

be weakened for the first-line treatment of advanced NSCLC patients.

It should be noted that the direct action of anti-angiogenesis is

vasculature in stroma rather than tumor cells, thus the combination

treatment is necessary, and their anti-tumor effect might be magnified

in several times (2). The pivotal study IMpower150 also demonstrated

the clinical benefit of combination of atezolizumab, bevacizumab and

chemotherapy, and the benefit was observed regardless of EGFR and

ALK status (5). Thus, bevacizumab likely remains an important role

in the treatment landscape for NSCLC patients in the future,

especially as a partner in combination treatment strategies.

Although the prognostic biomarkers for bevacizumab have been

investigated before, such as hypertension, circulating parameters

(6), there was still no robust applicable biomarker which is vital for

the selection of optimal treatment strategies and individual treatment

strategies. Based on the complexity of anti-angiogenesis, multi-

dimensional features might exhibit better ability to differentiate

survival risk of patients compared with single factor.

The predictive role of clinicopathological and systemic

inflammation has been proved in our previous studies (7). Besides,

radiomics refers to the highly throughout extraction and analysis of

quantitative image features from medical images, and has been used

to explore the potential relationship between clinical outcomes and

biology of tumor (8). Previous studies have indicated the widespread

application of radiomics in lung nodule detection, segmentation,

characterization, prognosis prediction and clinical decision

making (9).

Deep neural network (DNNs), a subset of artificial intelligence

(AI), is an especially promising method that could automatically
02
identify highly intricate and linear/nonlinear associations in data (10),

thereby providing evaluations in a quantitative manner. In contrast to

machine learning methods, DNNs can realize automated

quantification and selection of features and excel at extracting

complex features from high-dimensional data and images (11).

DNNs have increasingly been deployed in radiomics and

development of multi-dimensional models.

The Cox proportional hazard (CPH) regression, which performs

the multivariate linear regression between survival time and variables,

is the most common survival prediction (12). One limitation of CPH

is the linear nature which might result in the neglection of nonlinear

relationships between features, while DNN could excel at this task in

theory. The potential advantage of DNNs, such as Cox-nnet,

DeepSurv (13) and AECOX (14), has been confirmed in predicting

prognosis compared to Cox-PH and traditional ML models (15). Yet,

the predictive role of DNNs prognostic model based on radiomics is

still unclear for advanced NSCLC patients receiving bevacizumab.

This study aimed to explore the prognostic effect of radiomics features

for advanced NSCLC patients receiving bevacizumab. And we

proposed to develop a respective integrated DNN survival model

based on three kinds of variables, and perform the comparison of

performance between DNNs model and machine learning model to

identify the superiority of DNN survival model.
2 Materials and methods

2.1 Patient population

Patients with advanced NSCLC who underwent bevacizumab

plus standard chemotherapy in Shandong Cancer Hospital, between

July 2014 and October 2019, were enrolled in this study. This study

was approved by the Ethics Committee of Shandong Cancer Hospital

and was conducted in accordance with the principles of the 1975

Declaration of Helsinki and its later amendments or comparable

ethical standards. The inclusion criteria were as follows, (1)

radiological and pathological confirmed stage IIIB-IV non-

squamous NSCLC; (2) first or second line treated with bevacizumab

plus standard chemotherapy for at least two cycles (3 weeks as one

cycle); (3) available clinicopathological and hematological data. The

exclusion criteria included (1) the synchronization application with

target therapy or immunotherapy; (2) combined with other

malignancies or hematologic diseases. Moreover, advanced non-

squamous NSCLC patients, who met the selection criteria, from
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Phase III clinical trials which compared the efficacy between

bevacizumab and QL1101-002 or BP102 were retrospectively

enrolled into external validation cohort.
2.2 Acquisition of clinical and
inflammatory variables

The medical records of each patient were reviewed with respect to

consecutive laboratory clinical factors and complete blood count

during bevacizumab treatment. All data were acquired

retrospectively using uniform database templates to ensure

consistent data collection. Specifically, clinical parameters included

gender, age, smoking status, EGFR status, anatomical location

(central or peripheral), and the presence or absence of liver, brain,

or bone metastases.

Inflammatory factors included NLR, PLR, LMR and lactate

dehydrogenase (LDH). NLR was defined as the ratio of absolute

neutrophil count to absolute lymphocyte count; PLR was the ratio of

absolute platelet count to lymphocyte count; LMR was constructed

with the ratio of absolute lymphocyte count to absolute monocyte

count. The dynamic changes of systemic inflammatory factors were

collected during bevacizumab treatment. ROC curves were performed

to confirm the cut-off of inflammatory factors.
2.3 Acquisition of CT images

The contrast-enhanced CT images before bevacizumab treatment

were extracted from Picture Archiving and Communication Systems

using a SOMATOM Definition AS (Siemens Healthineers) for each

population in this study. The scanning parameters were as follows:

tube voltage, 120 kVp; tube current, 200 mAs; detector, 64 ×

0.625 mm; reconstruction thickness, 5 mm; reconstruction interval,

5mm. The CT images were exported and stored in the form of Digital

Imaging and Communications for further analysis.
2.4 Patient follow‐up and outcomes

The primary endpoint was progression free survival (PFS) and the

secondary endpoint was OS. Tumor response was measured

according to Response Evaluation Criteria in Solid Tumors

(RECIST) version 1.1. PFS and OS were defined as the time from

the initiation of bevacizumab to the date of progression and the date

of death or last follow-up, respectively. The last follow-up time was

until December 2019.
2.5 Training and validation of
prognostic model based on the
machine learning methods

The region of interest (ROI) in each slice of CT images was

defined as the primary lesion of tumor and contoured manually by

two radiation oncologists using open‐source imaging biomarker

explorer (IBEX) software (http://bit.ly/IBEX_MDAnderson) with
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the window/level of 600/1000 HU. All CT images were countered

twice with the interval of about two months in order to reduce the

operator bias. The 3D ROI was then preprocessed, and a set of 1041

radiomics features were extracted using IBEX software. All features

were divided into nine categories including Intensity, Intensity

Histogram, Shape, Gradient Direction Histogram, Gray Level Co-

occurrence Matrix 25 (GLCM25), Three-Dimensional Gray Level Co-

occurrence Matrix (GLCM3), Two-Dimensional Neighbor Intensity

Difference (NID25), Three-Dimensional Neighbor Intensity

Difference (NID3), Gray Level Run Length Matrix (GLRLM). Intra-

class and Inter-class correlation coefficient (ICC) were calculated for

the features extracted from the ROI delineated by two physicians, and

features with ICC≥0.75 were screened as stable imaging features. 75%

of patients were selected at random to be held out for radiomics

feature selection, and validation was done on the remaining 25%

of patients.

Univariate and multivariate Cox regression was performed for

feature selection among clinicopathological and hematological

inflammatory factors. LASSO-Cox analyses were performed to

achieve feature dimension reduction for radiomics features.

Machine learning prognostic models were performed using CPH

and random survival forest (RSF) algorithm.
2.6 Training and validation of multi-
dimensional deep neural network
survival models

DNN survival models were trained with the network of DeepSurv

(16) and Neural Multi-Task Logistic Regression (N-MTLR) (17), and

nonlinear variation of parameters was the core of DNN. DeepSurv is a

nonlinear extension of CPH model and constructed by using

feedforward deep neural network and multilayer perceptron. In

addition, the multilayer perceptron is used to estimate the

probability of the occurrence of interested events in different time

intervals and build the N-MTLR model. Various combinations of

hyperparameters were explored in order to optimize the DNN,

including batch size, layer of the network and number of neurons

of network. The final DNN model was a balance between

performance and computing cost, and assigned precise weight to

each variable after training and iterations. All patients were divided

into high-risk and low-risk group based on the DNN model.

The clinicopathological and inflammatory variables and

radiomics features were used as the input of DNN, and PFS time

and PFS status were the output. The graphical flow chart of the study

was shown in Figure 1.
2.7 Statistical analyses

All patients were randomly divided into training cohort and

testing cohort with the split of 70% and 30% once for the train and

test of prognostic models. Concordance index (C-index), integrated

Brier scores (IBS) and median absolute error (MAE) were used to

evaluate and compare the performances of prognostic models of

different models. The IBS measures the accuracy of probabilistic

predictions of models and the lower IBS indicates the accurate
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predictions. MBE measures the variability between predictions and

realities. The evaluation of model was performed three times in

testing cohort, and the median of C-index, IBS and MAE were

calculated to evaluate the performance.

Kaplan-Meier survival analysis was performed to calculate median

survival time and plot the survival curve, and log-rank was used to

compare the survival curves. All statistical analyses are two-sided and P

value less than 0.5 was considered as significant. Train of DNN is based

on the “NumPy” and “SciPy” function, and PyTorch framework, and

train of CPH and RSF model is based on “CoxPHModel” and

“RandomSurvivalForestModel” function of python 3.6.0.
3 Results

3.1 Patient demographics and characteristics

There were 272 advanced non-squamous NSCLC patients

enrolled in this study, and CT images before bevacizumab

treatment were available for 195 of them. Entire 195 patients were

randomly and automatically split into a training cohort and

validation cohort. The baseline detail characteristics of enrolled

population were shown in Table 1, and clinicopathological and

demographic parameters were balanced between two cohort of

patients. 147 patients were included in training cohort, and the

median PFS and OS were 8.3 and 26 months respectively.
3.2 Training and validation of prognostic
model based on the conventional machine
learning methods

3.2.1 Clinicopathological and hematologic
inflammatory characteristics preprocessing

There were 220 patients experienced disease progression among

272 patients, and the median PFS was 8.2 months. ROC curves of
Frontiers in Oncology 04
NLR, PLR, LMR and LDH based on 6-month PFS illustrated that

hematologic inflammatory characteristics after 4 cycles treatments

were the most predictive, which were included in further feature

selection. According to the ROC curves, the value with the maximum

Youden index was selected as the cut-off value, and the cut-off values

of NLR4, PLR4, LMR4 and LDH4 were set as 2.78, 212.1, 2.18 and

256, respectively (Supplementary Figure 1). All patients were divided

into high and low groups.

Univariate and multivariate Cox analysis indicated that smoking

history (HR=1.72, P=0.001), anatomical type (HR=1.95, P<0.0001),

bone metastasis (HR=1.45, P=0.025), liver metastasis (HR=1.52,

P=0.056), NLR4 (HR=1.98, P<0.0001) and LDH4 (HR=1.84,

P<0.0001) were the independent prognostic factors for

bevacizumab (Table 2).

3.2.2 Radiomic feature pre-processing
Total of 1041 radiomic features were extracted from patients in

training cohort. In order to ensure the stability and reproducibility, 740

radiomic features with ICC more than 0.75 were considered as stable

features and used in following analyses (Figure 2A). LASSO-Cox

analyses were performed to achieve feature dimension reduction

(Figure 2B). The model exhibited the optimal performance and the

least number of independent variables with the log l=0.107
(Figure 2C). As the values of l increased, the LASSO coefficients of

these variables were close to zero. As a result, six radiomic features were

utilized for the establishment of a prognostic signature. The correlation

analysis was further performed to reduce the redundant feature. Finally,

Information Measure Corr1, Inverse Variance, Local Std Max, Gauss

Area and Spherical Disproportion were selected based on Lasso-Cox

analysis (Figure 2D). The Radscore of each patient was calculated

according to the weight coefficients of these 5 independent features,

with the C-index of 0.65 and AUC of 0.703 after internal validation.

(Figure 2E). The result of multivariate cox analysis also showed that the

Radscore was the independent prognostic factor for NSCLC patients

receiving bevacizumab whether in training cohort and validation

cohort (Supplementary Table 1 and Supplementary Table 2).
FIGURE 1

Graphic flow chart of development of prognostic model.
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3.2.3 Training and validation of CPH
and RSF model

After data pre-processing, smoking history, anatomical type, bone

metastasis, liver metastasis, NLR4, LDH4 and Radscore were indicated to

be the independent prognostic factors of bevacizumab, and included in

the low dimensional feature set. And the CPH model and RSF model

were trained in training cohort and estimated in testing cohort. The

C-index of CPH prognostic model was 0.665, IBS was 0.13 andMAEwas

3.4. The RSF model was trained on the training set with 10,000 trees and

the maximum depth of the survival tree is 10. Prediction accuracy was

then measured on the test set, with the C-index of 0.679, IBS of 0.14 and

MAE of 3.56. The prediction error curve and calibration curve between

predicted and actual survival were shown in Figure 3.

3.2.4 Training and validation of prognostic model
based on the deep learning methods

Based on the automatic learning characteristics, optimal weight of

parameters could be obtained based on deep learning methods, and
Frontiers in Oncology 05
feature selection was not necessary. DeepSurv and N-MTLR

prognostic models were trained based on all parameters included in

clinicopathological, inflammatory, and radiomics characteristics. The

structure of the final model included one input layer, four hidden

layers, and one output layer, and each hidden layer has 100 neurons.

Hyperparameters were adjusted in order to achieve the prognostic

model with best performance. The He_uniform initialization method

applicable to ReLu activation functions was used to initialize weight

parameters. Batch normalization was performed to reduce internal

variance deviation. Dropout and L2 regularization were applied to

reduce overfitting, and the dropout rate was 0.2. Adam optimizer

based on gradient was used to obtain stable convergence. After 1000

iterations, the loss value achieved stability gradually, and the final

prognostic model was a balance between performance and computing

cost. Finally, the C-index of 0.712 and 0.701 was achieved for

DeepSurv and N-MTLR prognostic model respectively in testing

cohort. The IBS was 0.09 and 0.14, and MAE was 2.6 and 2.4 for

DeepSurv and N-MTLR respectively. The prediction error curve and
TABLE 1 Patient Demographics and Characteristics of 195 patients.

Parameters Training cohort (%) Validation cohort (%) P

Age 0.90

≤57 72 (49%) 24 (50%)

>57 75 (51%) 24 (50%)

Gender 0.76

Male 82 (55.8%) 28 (58.3%)

Female 65 (44.2%) 20 (41.7%)

Smoking History 0.33

No 100 (68%) 29 (60.4%)

Yes 47 (32%) 19 (39.6%)

Anatomical type 0.56

Peripheral 107 (72.8%) 37 (77.1%)

Central 40 (27.2%) 11 (22.9%)

EGFR 0.31

Wild type 78 (53.1%) 30 (62.5%)

Sensitive mutation 51 (34.7%) 10 (20.8%)

Resistance mutation 5 (3.4%) 3 (6.3%)

NA 13 (8.8%) 5 (10.4%)

Bone metastasis 0.94

No 94 (63.9%) 31 (64.6%)

Yes 53 (36.1%) 17 (35.4%)

Brain metastasis 0.87

No 106 (72.1%) 34 (70.8%)

Yes 41 (27.9%) 14 (29.2%)

Liver metastasis 0.85

No 127 (86.4%) 42 (87.5%)

Yes 20 (13.6%) 6 (12.5%)
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calibration curve between predicted and actual survival of deep

learning prognostic models were shown in Figure 4.

The comparison of performance between machine learning and

deep learning prognostic model was illustrated in Figure 5A. All

patients were divided into high-risk and low-risk group based on

DeepSurv prognostic model (Figure 5B), and the performance was

further validated with Kaplan-Meier curves. Patients in high-risk

group were significantly associated with inferior PFS (median PFS: 5.4

vs 13.1 months, P<0.0001) and OS (median OS: 16.4 vs 21.3 months,

P<0.0001) compared to patients in low-risk group (Figure 5C, D).
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3.2.5 Validation of DeepSurv model in external
validation cohort

There were 39 advanced non-squamous NSCLC patients from

Phase III clinical trials receiving bevacizumab or QL1101-002 or

BP102 were enrolled into external validation cohort, and median PFS

was 7.1 months (95%CI 5.7-8.5 months). Baseline characteristics were

balanced between patients in retrospective and external validation

cohort (Table 3). And the Deepsurv model also performed well in

external validation cohort, with the C-index of 0.73 and the IBS of

0.15. Patients were also divided into high-risk and low-risk group.
TABLE 2 Univariate and multivariate cox analysis of 272 patients.

Parameters Uni-HR 95% CI P Multi-HR 95% CI P

Age 1.2 0.94-1.6 0.13

Gender 0.8 0.61-1 0.1

Smoking History 1.9 1.4-2.5 <0.0001 1.72 1.25-2.37 0.001

Anatomical type 1.3 1.2-1.5 <0.0001 1.95 1.42-2.68 <0.001

EGFR 0.15

Sensitive mutation 0.74 0.55-1.1 0.057

Resistance mutation 1.02 0.53-1.9 0.96

Bone metastasis 1.3 0.97-1.7 0.087 1.42 1.05-1.92 0.025

Brain metastasis 0.94 0.7-1.3 0.67

Liver metastasis 2.1 1.4-3 0.00012 1.52 0.99-2.34 0.056

NLR4 2.3 1.6-3.1 <0.0001 1.98 1.42-2.74 <0.001

PLR4 1.4 1-1.9 0.031

LMR4 0.59 0.44-0.8 0.001

LDH4 1.9 1.4-2.6 <0.0001 1.84 1.32-2.57 <0.001
B C

D E

A

FIGURE 2

Selection of radiomics features and construction of Radscore. (A) ICC map of radiomics feature from two independent radiologist. (B) Partial likelihood
deviance of radiomics features revealed by the LASSO-Cox regression model. The red dots represented the partial likelihood of deviance values, the gray
lines represented the standard error (SE), the two vertical dotted lines on the left and right represented optimal values by minimum criteria and 1-SE criteria,
respectively. Minimum criteria were used to select host radiomics features in model. (C) LASSO coefficient profiles of the survival-related radiomics features.
(D) Correlation analysis of radiomics features selected by LASSO-Cox regression model. (E) ROC curve of Radscore with the AUC of 0.703.
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The median PFS was 10.1 months of high-risk patients and was

significantly superior to patients in low-risk group, which illustrated

the external applicability and generalization ability of DeepSurv

prognostic model (Figure 6).
4 Discussion

In this study, we initially demonstrated the predictive role of

radiomics for the prognosis of advanced NSCLC patients receiving

bevacizumab. More importantly, a robust DNN prognostic model was

developed using DeepSurv and N-MTLR algorithm respectively,

which could be conveniently used by physicians for accurate

prognosis prediction and development of individual treatment

strategies for advanced NSCLC patients.

Radiomics is an emerging field in quantitative imaging, and has

been widespread adopted in diagnosis, staging and evaluation of

clinical outcomes for cancer patients, which might have fantastic

application prospects in personalized medicine (8). Radiographic
Frontiers in Oncology 07
phenotypes were found to be capable of representing the

underlying pathophysiology and microenvironment of tumor (18),

and thus were more suitable for predicting prognosis and therapeutic

response of bevacizumab which acts on the vasculature of tumor. This

study firstly indicated the prognostic role of radiomics for

bevacizumab treatment in NSCLC patients by development of

Radscore using Lasso-Cox. And the Radscore was also found to be

the independent factor of bevacizumab.

However, the predictive ability of single type of variables were

limited, and clinicopathological and systemic inflammation were also

included to develop a prognostic model in this study. CPH and RSF is

by far the most commonly used method for survival analysis. While,

the setting outcomes of these methods were the linear fitting of

covariates, whose intrinsic complex nonlinearities were largely

ignored (19). With the extensive application of artificial intelligence

in cancer research process, DNN provide a new prospective on non-

linear prognostic model by construction of complex correlations

through multiple hidden layers. The DNN has been widely used in

clinical and translational cancer research including diagnosis, staging,
B

C
D

A

FIGURE 3

Prediction error curve and correction curve of CPH and RSF model. (A) Prediction error curve of CPH model. (B) Prediction error curve of RSF model.
(C) Correction curve of CPH model. (D) Correction curve of RSF model.
B

C D

A

FIGURE 4

Prediction error curve and correction curve of DeepSurv and N-MTLR model. (A) Prediction error curve of DeepSurv model. (B) Prediction error curve of
DeepSurv model. (C) Correction curve of N-MTLR model. (D) Correction curve of N-MTLR model.
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evaluation of efficacy and adverse effect (20, 21). Hosny A et al. have

trained a CNN for automatic quantification and feature selection,

thereby to prediction the 2-year OS of NSCLC patients. And the

results indicated the reliable prediction performance of CNN with an

AUC of 0.70, better than that of RSF, and were also robust in

independent external datasets (22). However, the survival outcomes

of this study were dichotomous variable rather than the survival or
Frontiers in Oncology 08
censor time, which cause the loss of outcome information and might

contribute to the reduction of the prediction accuracy.

This study firstly trained the DNN prognostic model applying

DeepSurv and N-MTLR for prognosis prediction of bevacizumab,

whose output variables were set as PFS time and status. And the input

layer of DNN consisted of clinicopathological, systemic

inflammation, which has been demonstrated to be related to the
B

C D

A

FIGURE 5

The comparison and validation of the performance of DeepSurv models. (A) The comparison of performance of machine learning and deep learning
models. (B) All patients were divided into high-risk and low-risk group according to DeepSurv model. (C) Comparison of Kaplan-Meier survival curves of
PFS between high-risk and low-risk patients. (D) Comparison of Kaplan-Meier survival curves of OS between high-risk and low-risk patients.
TABLE 3 Comparison of baseline characteristics of patients in retrospective and external validation cohort.

Parameters Retrospective cohort (%) External Validation cohort (%) P

Age 0.54

≤57 139 (51.1%) 22 (56.4%)

>57 133 (48.9%) 17 (43.6%)

Gender 0.50

Male 155 (57%) 20 (51.3%)

Female 117 (43%) 19 (48.7%)

Smoking History 0.12

No 175 (64.3%) 20 (51.3%)

Yes 97 (35.7%) 19 (48.7%)

Anatomical type 0.16

Peripheral 194 (71.3%) 32 (82.1%)

Central 78 (28.7%) 7 (17.9%)

EGFR 0.26

Wild type 155 (57%) 16 (41%)

(Continued)
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efficacy of bevacizumab before (7), and radiomics variables. Besides,

feature selection is not necessary as weight allocation has been

performed for all parameters. DeepSurv takes the top layer of

hidden layer as the input variable of proportional hazards model

(13), and N-MTLR builds multi-layer neural network at different time

intervals to evaluate the probability of event occurrence (17).

The result indicated the best performance of DeepSurv model

with the C-index of 0.712 compared to CPH and RSF models.

The robust performance of DeepSurv model was also validated

in external dataset, which indicated the extensive generalization

and applicability of DNN model for prognostic prediction of

bevacizumab. Our results indicated the superiority of DNN in

prognosis prediction, especially in the analysis of high-dimensional

features. It can be seen that DNN prognosis prediction is not only

theoretically feasible but also can be extended to clinical practice to

assist decision-making.

The prognostic biomarkers of bevacizumab were still inconclusive

for advanced NSCLC patients. Our previous studies have found the

predictive value of clinicopathological and systemic inflammatory

factors for bevacizumab in NSCLC patients (7, 23). This study also

indicated the prognostic value of radiomics features. Compared to

single factor, the integrative model contains more information and
Frontiers in Oncology 09
can achieve better prediction performance. Thus, we developed

DeepSurv prognostic model, which can be conveniently used by

clinicians before and during treatment. For patients in high-risk

group, another treatment strategy such as immunotherapy or

combination treatment might be selected.

Although our study had many strengths, several limitations

should be addressed here. Firstly, the sample size was still small,

which might inevitably limit the performance and stability of DNN.

Secondly, although thousands of variables were included in this study,

they were still uncomprehensive and genomics, histological feature

and others were not included. Thus, large cohort with more

comprehensive variables are needed to optimize the DNN. Besides,

DNNs are still more or less a kind of “black box” which could

automatically modulate the weights of every variable upon the

outcome, the potential biological mechanism needed to be further

investigated in future studies.
5 Conclusions

Integrative DNN prognostic model was initially developed by

combining radiomics signature with clinicopathological and
TABLE 3 Continued

Parameters Retrospective cohort (%) External Validation cohort (%) P

Sensitive mutation 81 (29.8%) 16 (41%)

Resistance mutation 11 (4%) 3 (7.7%)

NA 25 (9.2%) 4 (10.3%)

Bone metastasis 0.91

No 170 (62.5%) 24 (61.5%)

Yes 102 (37.5%) 15 (38.5%)

Brain metastasis 0.15

No 193 (71%) 32 (82.1%)

Yes 79 (29%) 7 (17.9%)

Liver metastasis 0.15

No 236 (86.8%) 37 (94.8%)

Yes 36 (13.2%) 2 (5.1%)
BA

FIGURE 6

Validation of the performance of DeepSurv models in external validation cohort. (A) Patients in external validation cohort were divided into high-risk and
low-risk group. (B) Comparison of Kaplan-Meier survival curves of PFS between high-risk and low-risk patients.
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inflammatory feature using DeepSurv. The superior performance and

robustness of DeepSurv model were observed, which open up

prospects for the cross disciplines between AI and survival analysis

of cancer patients. This easy-to-operated DNN model could not only

assist in personalized treatment and surveillance strategies, but also

provide patient consultation services, and was strongly suggested to

be widely applied in clinical practice.
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