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Background:Nicotinamide adenine dinucleotide (NAD+)metabolism is involved in

a series of cancer pathogenesis processes, and is considered a promising

therapeutic target for cancer treatment. However, a comprehensive analysis of

NAD+ metabolism events on immune regulation and cancer survival has not yet

been conducted. Here, we constructed a prognostic NAD+ metabolism-related

gene signature (NMRGS) associated with immune checkpoint inhibitor (ICI)

efficacy in glioma.

Methods: 40 NAD+ metabolism-related genes (NMRGs) were obtained from the

Reactome database and the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database. Glioma cases with transcriptome data and clinical information were

obtained from Chinese Glioma Genome Atlas (CGGA) and The Cancer Genome

Atlas (TCGA). NMRGS was constructed based on the calculated risk score using

univariate analysis, Kaplan–Meier analysis, multivariate Cox regression, and

nomogram. This NMRGS was verified in training (CGGA693) and validation (TCGA

and CGGA325) cohorts. The immune characteristics, mutation profile, and response

to ICI therapy were subsequently analyzed for different NMRGS subgroups.

Results: Six NAD+ metabolism-related genes, including CD38, nicotinamide

adenine dinucleotide kinase (NADK), nicotinate phosphoribosyltransferase

(NAPRT), nicotinamide/nicotinic acid mononucleotide adenylyltransferase 3

(NMNAT3), poly(ADP-Ribose) polymerase family member 6 (PARP6), and poly

(ADP-Ribose) polymerase family member 9 (PARP9), were ultimately used to

construct a comprehensive risk model for glioma patients. Patients in the

NMRGS-high group showed a poorer survival outcome than those in the

NMRGS-low group. The area under curve (AUC) indicated that NMRGS has good

potential in glioma prognostic prediction. A nomogram with improved accuracy

was established based on independent prognostic factors (NMRGS score, 1p19q

codeletion status, and WHO grade). Furthermore, patients in the NMRGS-high

group showed a more immunosuppressive microenvironment, higher tumor

mutation burden (TMB), higher human leucocyte antigen (HLA) expression and a

more therapeutic response to ICI therapy.
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Conclusions: This study constructed a prognostic NAD+ metabolism-related

signature associated with the immune landscape in glioma, which can be used

for guiding individualized ICI therapy.
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Introduction

Glioma is the most common primary brain tumor originating from

neuroglial progenitor cells, accounting for 80% of malignant tumors in

the central nervous system (1). According to the WHO grading system,

gliomas are classified into four grades. Glioblastoma (GBM; WHO grade

IV) is the most aggressive glioma type, with a median overall survival of

approximately 15 months (2). Despite advances in surgical treatment,

radiotherapy, and chemotherapy, the effectiveness of glioma treatment is

still not satisfactory (3). In recent years, immunotherapy like immune

checkpoint inhibitors (ICIs) has emerged as a promising treatment for

glioma patients (4). However, given that the immune environment is

frequently immunosuppressive and characterized by T cell exhaustion,

M2 macrophage infiltration, and increased expression of immune

checkpoints, immunotherapy for glioma still faces significant

challenges. Overcoming tumor immune resistance to promote tumor

eradication has become a problem for immunotherapy (5). On the basis

of the inherent intra-tumor heterogeneity, individual tumors may

contain immunologically distinct subtypes, each of which will respond

differently to immunotherapy treatment. Thus, it is essential to identify

molecular markers that accurately evaluate prognosis and guide

individualized immunotherapy in glioma patients.

Metabolic reprogramming is recognized to occur in all cellular

components of the tumor microenvironment. NAD+ is an essential

redox cofactor in cellular metabolism, affecting gene expression, energy

production, glycolysis, DNA repair, and cell cycle progression (6). Several

processes associated with NAD+ signaling are dysregulated in cancer (7).

High levels of NAD+ have been consistently observed in gliomas, and

90% of gliomas are sensitive to NAD+ depletion (8). Recently, several

studies have indicated that NAD metabolism is involved in cancer

immune suppression (9, 10). For example, nicotinamide

phosphoribosyltransferase (NAMPT)-mediated NAD+ metabolism

enhanced interferon gamma-induced programmed cell death 1 ligand

1 (PD-L1) expression and drove tumor immune evasion in a CD8+ T

cell-dependent manner (11). Microparticle delivery of NAMPT inhibitor

targeting NAD+ salvage pathway at the tumor site was found to alter an

immune tumor microenvironment that could potentiate checkpoint

immunotherapy for glioblastoma (12). The NAD-dependent

deacetylase SIRT2 participated in tumor immune response by

regulating T cell differentiation (13). Therefore, the immunotherapy

strategy based on NAD+ metabolism reprogramming to achieve anti-

cancer benefits is highly promising. However, current studies have

mainly focused on the function of individual NMRG in only a few

cases. A comprehensive analysis based on a large-scale cohort for glioma

immunotherapy is needed.
02
In this study, we systematically profiled the NAD+ Metabolism-

Related genes of glioma patients and then developed a prognostic

signature for glioma. We then investigated the potential value of this

signature in predicting prognosis, evaluating the immune

microenvironment, and guiding clinical treatment in glioma

patients. Our findings demonstrated that NMRGS score was a

promising prognostic index associated with the therapeutic effect of

ICI therapy in glioma.
Materials and methods

Acquisition of data in patients with glioma

The Cancer Genome Atlas (TCGA, https://portal.gdc.cancer.gov/)

database and the Chinese Glioma Genome Atlas (CGGA, http://www.

cgga.org.cn/) database were employed for downloading RNA-seq

transcriptome data and clinical information of glioma patients. The

criteria for including patients were as follows: (a) patients with survival

data and overall survival (OS) ≥ 30 days; (b) patients with mRNA

sequencing data; and (c) patients with definitive histopathological

diagnosis. With these inclusion criteria, 1486 patients with gliomas

were included in the follow-up analysis. Specifically, the CGGA693

dataset (n=638) served as a training cohort. At the same time, the

TCGA dataset (n=550) and the CGGA325 dataset (n=298) served as a

validation cohort. The detailed clinical information of glioma patients

from the training and validation cohort was shown in Supplementary

Table S1.
Characteristics evaluation of the NAD+
metabolism-related genes

40 NAD+ Metabolism-Related genes were obtained from the

Reactome database (R-HAS-196807) and Kyoto Encyclopedia of

Genes and Genomes database (has00760). The detail of the NAD+

Metabolism-Related genes is shown in (Supplementary Table S2).

Pearson correlation analysis among the NAD+ Metabolism-Related

genes was conducted in the CGGA693 set. RNA-seq transcriptome

data of normal tissue were derived from Genotype-Tissue Expression

(GTEx, https://www.gtexportal.org/) database. The “clusterProfiler”

software package of R (version 4.1.3) was used to analyze the gene

ontology (GO) and KEGG pathway for functional annotation of these

NAD+ metabolism-related genes with a significant p-value (<0.05).
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Construction and validation of the
prognostic NMRGS

Univariate Cox regression analysis was performed to identify

OS-associated NMRGs (p < 0.05). Kaplan-Meier (K-M) method was

used further prognostic identification (p < 0.05). Subsequently, the

multivariate Cox regression analysis was then used to filter the

independent OS-associated NMRGs. The Lasso regression analysis

was conducted to ensure that overfitting was avoided. Finally, the

selected NMRGs were applied to establish the NMRGS based on the

multivariate Cox regression coefficient. The risk score for each

patient was determined using Equation: NMRGS score =

expression level of gene1 × coefficient of gene1 + expression level

of gene2 × coefficient of gene2 +… + expression level of genen
×coefficient of genen.

Patients were then divided into two groups according to the median

NMRGS score, including the NMRGS-low group and the NMRGS-high

group. The difference in clinicopathologic factors and NMRGs

expression between the NMRGS-low group and the NMRGS-high

group was exhibited with a heatmap. The comparison of OS between

the NMRGS-low group and the NMRGS-high group was conducted

using K-M survival curves with the “survminer” package in R. The

receiver operating characteristic (ROC) curves were plotted to evaluate

the accuracy of NMRGS with the “timeROC” package in R. Univariate

and multivariate Cox regression analyses were conducted to identify the

NMRGS score as an independent predictor for OS with the “survival”

package in R. Similar validation analyses were performed simultaneously

in both training and validation cohorts.

To predict the one-, three-, and five-year survival rates of glioma

patients, we constructed a nomogram based on NMRGS score and the

independent prognostic clinicopathologic parameters in the training

cohort by employing the R package “rms,” “regplot,” and “Hmisc. The

availability of this nomogram was evaluated by the C-indices and

calibration curves.
Mutation profile analysis

TMB is defined as the total number of somatic mutations and has

emerged as a quantitative biological marker of the immune response. We

analyzed the TMB value and visualized the mutation profiles in the

NMRGS-low group and the NMRGS-high group via the “Maftools”

package in R. Relevant mutation data were downloaded from the TCGA

database. The correlation between TMB value and NMRGS score was

analyzed with the spearman method. The influence of TMB value on

glioma patient survival was evaluated among the NMRGS-low group and

the NMRGS-high group with K-M method.
Tumor microenvironment (TME) analysis and
ICI therapy response

Enrichment analysis to understand the immune-associated signal

transduction pathways in which the NMRGS were involved was

conducted using Gene set enrichment analysis (GSEA) between the

NMRGS-low group and the NMRGS-high group. Those signaling

pathways meeting the screening criterion (P < 0.05 and false
Frontiers in Oncology 03
discovery rate (FDR) < 0.25) were considered significantly enriched.

Single-sample GSEA (ssGSEA) analysis was conducted to identify

immune cell-related infiltrating scores and immune-related pathways

using the “gsva” package in R. In addition, CIBERSORT was used to

determine the relative proportions of 22 types of immune cells between

the NMRGS-low group and the NMRGS-high group. ImmuneScore,

StromalScore, ESTIMATEScore, and TumorPurity were calculated by

ESTIMATE (Estimation of Stromal and Immune Cells in Malignant

Tumor Tissues Using Expression Data) algorithm utilizing the R-

package “estimate.” The relationships between NMRGS score and the

recognized immune checkpoint genes were conducted. In addition,

Tumor immune dysfunction and exclusion (TIDE, https://tide.dfci.

harvar.edu) algorithm were used to assess the difference in sensitivity to

immunotherapy between the NMRGS-low group and NMRGS-

high group.
Clinical sample collection and expression
detection

All clinical samples obtained by surgical resection from glioma

patients were collected from the Neurosurgery Department of Wuhan

Union Hospital. The informed consent was acquired from each involved

patient. In order to detect the expression of NMRGs at mRNA level in

tissues, total RNA was extracted by RNAiso Plus (Takara 9109) and

reverse transcribed into cDNA with RT Supermix Reagent Kit (Vazyme

R323). The detection and amplification of the respective genes were

conducted using SYBR qPCRMaster Mix (Q311-02/03) according to the

manufacturer instruction. Correlation data was calculated based on the

DDCT of the target gene, and Glyceraldehyde-3-Phosphate

Dehydrogenase (GAPDH) was kept as an endogenous control. The

primer sequences are shown in Supplementary Table S3. Tissue samples

w e r e t h en in v e s t i g a t e d f o r NMRGs e xp r e s s i o n b y

immunohistochemistry. All specimens were sectioned four mm thick

after being fixed with 10% formalin and embedded in paraffin. Sections

were deparaffinized in xylene and then hydrated with a descending

alcohol concentration. After dewaxing and hydration, the sections were

boiled in citrate buffer (pH=6) to realize antigen retrieval and treated with

methanol containing 3% hydrogen peroxide to inhibit endogenous

peroxidase activity. To block nonspecific staining, tissue sections were

incubated with 3% bovine serum albumin. Next, the slides were set at 4°C

overnight with a primary antibody for NMRGs. Secondary antibodies

were added for incubation at 37°C for 50 min after washing with PBS.

After visualization with diaminobenzidine, sections were counterstained

with hematoxylin, followed by cover glasses mounting. The details of

primary antibodies are shown in Supplementary Table S4.
Statistical analysis

R version 4.1.3(Institute of Statistics and Mathematics, Vienna,

Austria), Perl language, and GraphPad Prism 8.3.0 (GraphPad

Software Inc, La Jolla, CA, USA) were used to analyze the data or

visualized pictures. Mann–Whitney U-test was used to detect the

differences in the continuous variables between the NMRGS-low

group and the NMRGS-high group. Comparisons of categorical

variables between the NMRGS-low group and the NMRGS-high
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group were executed with the Chi-square test. Spearman’s test was

used to evaluate the correlation coefficient. P value <0.05 was

regarded as statistically significant (*P < 0.05, **P < 0.01, ***P

< 0.001).
Results

NMRGs is differentially expressed in glioma
tissues compared with normal brain tissue
and is correlated with glioma grade

The research workflow diagram for NMRGS construction and

corresponding analyses is presented in Figure 1. The co-expression
Frontiers in Oncology 04
relationship among the 40 NMRGs was illustrated in Supplementary

Figure S1. A comparison of expression levels of 40 NMRGs was made

between the TCGA glioma samples and the GTEx normal brain

samples. A total of 33 NMRGs were significantly different between the

two groups, including 12 downregulated genes and 21 upregulated

genes (Figure 2A). Subsequently, we further explored the expression

levels of NMRGs among different WHO grades. Most NMRGs were

significantly correlated with WHO grades analyzed in CGGA glioma

samples. (Figure 2B). A similar correlation also can be seen in TCGA

glioma samples (Supplementary Figure S2), suggesting that NMRGs

may be involved in the malignant progression of glioma. The Gene

Ontology (GO) enrichment and KEGG analyses were performed

based on these 40 NMRGs. The top 5 biological processes (BP) and

top 5 molecular functions (MF) enriched by GO analysis were
FIGURE 1

Flow chart of this study.
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presented in Figure 2C, indicating that the NMRGs were mainly

enriched in projects linked to nicotinamide nucleotide metabolic

process, pentosyltransferase activity, ADP-ribosylase activity,

nucleotidase activity, and glycosyltransferase activity. The nine

enriched pathways are shown in Figure 2D, involving Nicotinate

and nicotinamide metabolism, biosynthesis of cofactors,

pantothenate and CoA biosynthesis, starch and sucrose

metabolism, etc.
NMRGS was constructed based on the
expression level and regression coefficient
of the six survival-related NMRGs

Univariate Cox regression analysis was performed to identify the

NMRGs correlated with OS based on the data of the training cohort

(Figure 3A). Afterward, Kaplan–Meier survival analysis was

conducted to filter these genes further. In the end, a total of 24

NMRGs were found associated with prognosis (Supplementary Figure

S3). Subsequently, these genes were screened out for further

multivariate Cox regression analysis. Finally, six NMRGs were

found to be independent predictors for OS, including three risky

factors (NMNAT3, NADK, PARP9) and three protective factors

(CD38, NAPRT, PARP6) (Figure 3B). No overfitting within these
Frontiers in Oncology 05
genes was proved by lasso regression (Supplementary Figures S4A, B).

NMRGS was constructed based on the multivariate Cox regression

coefficient and the expression of six crucial genes. The NMRGS score

of every glioma patient was obtained as follows: NMRGS score =

(-0.28992*CD38 expression) + (0.38315*NADK expression) +

(-0.04654*NAPRT expression) + (0.2211*NMNAT3 expression) +

(-0.24486*PARP6 expression) + (0.29991*PARP9 expression).
NMRGS could accurately predict the
prognosis of glioma patients

Taking the median NMRGS score as a cut-off, we divided the

glioma patients of the training cohort into NMRGS-low group and

NMRGS-high group. The heat map showed the differential

clinicopathological characteristics expression levels of six crucial

genes in the two NMRGS subgroups (Supplementary Figure S5).

KM analysis suggested that patients with high NMRGS scores had

shorter OS than patients with low NMRGS scores (Figure 3C). To

further evaluate the accuracy of these six genes in predicting

prognosis and OS, individual KMs were added to evaluate the OS

for each gene based on TCGA database. In addition, The AUC value

of one year (AUC = 0.823), three years (AUC = 0.903), and five years

(AUC = 0.821) for ROC analysis revealed that the NMRGS score had
B

C D

A

FIGURE 2

Evaluation of NMRGs in glioma. (A) Comparison of the expression levels of the NMRGs in normal brain tissue (GTEx) and glioma (TCGA). (B) Comparison
of the NMRGs expression in different grades of glioma analyzed in CGGA glioma samples. (C, D) GO and KEGG pathway analysis of the NMRGs.
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a strong ability to predict the survival of patients with glioma, better

than individual hub genes (Supplementary Figure S6). Consistent

trends were observed in different subgroups based on

clinicopathological characteristics (Supplementary Figure S7). The

distribution plot of the NMRGS score and survival status of every

glioma patient was displayed in Figure 3D. The AUC value of one year

(AUC = 0.754), three years (AUC = 0.802), and five years (AUC =

0.804) for ROC analysis revealed that the NMRGS score had a strong

ability to predict the survival of patients with glioma, better than other
Frontiers in Oncology 06
clinicopathological factors (Figures 3E–G). Moreover, the univariate

and multivariate regression analyses proved that the NMRGS score,

1p19q codeletion status, and WHO grade were independent risk

factors for survival in the CGGA693 data cohort (Figures 3H, I). The

correlation between the NMRGS score and clinicopathological factors

was clarified in the training cohort. We also analyzed the correlation

between the six NMRGs and clinicopathological factors. The results

suggested that the NMRGS score was closely associated with 1p19q

codeletion status, isocitrate dehydrogenase (IDH) mutation status, O-
B

C

D

E F G

H I

A

FIGURE 3

Development and validation of the NMRGS in CGGA693 cohort. (A) Univariate Cox regression analysis of the NMRGs. (B) Multivariate Cox regression
analysis for NMRGS construction. (C) Kaplan-Meier analysis for survival in CGGA693 cohort. (D) Distribution plot of NMRGS score and survival status of
glioma patients in CGGA693 cohort. (E-G) ROC curve analyses of NMRGS and the clinicopathological characteristics in predicting 1-, 3-, and 5-year
overall survival in CGGA693 cohort. (H, I) Univariate and multivariate regression analyses of NMRGS and the clinicopathological characteristics in
CGGA693 cohort.
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6-Methylguanine-DNA Methyltransferase (MGMT) methylation

status, and WHO grade (Supplementary Figures S8, S10).

Significant correlation can also be found between the six NMRGs

and clinicopathological factors (Supplementary Figures S11, S12).

Similar analyses were conducted in TCGA and CGGA325 cohorts

for validation. Kaplan-Meier curves showed that the OS of patients in

the NMRGS-low group was better than that in the NMRGS-high

group, indicating that the NMRGS score was a valid prognostic index

(Figures 4A, B). The NMRGS score and survival status distributions

of glioma patients demonstrated that patients in the NMRGS-high

group had higher mortality rates than those in the NMRGS-low group

(Figures 4C, D). The time-dependent ROC analysis revealed that

NMRGS score was an OS-predicting index in both TCGA cohort (1-

year AUC = 0.823, 3-year AUC = 0.903, 5-year AUC = 0.821)

(Figure 4E) and CGGA325 cohort (1-year AUC = 0.720, 3-year

AUC = 0.810, 5-year AUC = 0.850) (Figure 4F). Univariate and
Frontiers in Oncology 07
multivariate Cox regression analyses revealed that NMRGS score had

satisfactory prognostic efficiency independent of clinical factors

(Supplementary Figure S13). Glioma is molecularly classified into

four different subtypes: proneural, neural, mesenchymal, and

classical. Further analysis was conducted to assess how these 6

NAD+ metabolism-related genes could benefit the glioma IV

subtypes based on TCGA database. Heatmap analysis shows the

patient distribution of the IV subtypes (Supplementary Figure

S14A). Patient fraction of these four different subtypes in NMRGS-

low group and NMRGS-high group found significant correlations

between NMRGS score and the molecular classification

(Supplementary Figure S14B). Bar chart statistics further proved

this discovery (Supplementary Figure S14C). In addition, we

analyzed the relationship between the six individual genes and

molecular classification. Our results show that all these hub genes,

except NAPRT, are associated with molecular classification
B

C D

E F

A

FIGURE 4

Validation of the NMRGS in TCGA and CGGA325 cohorts. (A, B) Kaplan-Meier analysis for survival in TCGA and CGGA325 cohorts. (C, D) Distribution plot
of NMRGS score and survival status of glioma patients in TCGA and CGGA325 cohorts. (E, F) ROC curve analyses of NMRGS in predicting 1-, 3-, and 5-
year overall survival in TCGA and CGGA325 cohorts.
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(Supplementary Figures S14D–K). Finally, KM analysis was

conducted in different subgroups based on molecular classification.

We found that patients with high NMRGS scores had shorter OS than

patients with low NMRGS scores in proneural subgroup and neural

subgroup but not in mesenchymal subgroup and classical subgroup

(Supplementary Figures S14L–O). Based on these analyses, we think

this NMRGS could benefit the glioma IV subtypes, especially the

proneural subgroup and neural subgroup.
A nomogram was constructed based on
NMRGS score, 1p19q codeletion status, and
WHO grade

A nomogram was constructed based on the independent risk

factors (NMRGS score, 1p19q codeletion status, and WHO grade)

found in Figure 3I to predict the OS of 1, 3, and 5 years, making the

NMRGS more applicable for clinical use (Figure 5A). Concordance

indices (C-indices) were used to evaluate the prediction accuracy of

the nomogram, valued at 0.801 ± 0.037 in CGGA693cohort, 0.815 ±

0.037 in TCGA cohort, and 0.749 ± 0.058 in CGGA325 cohort. The

calibration plots exhibited a perfect fit between the actual and

nomogram-predicted probability in both the training and validation
Frontiers in Oncology 08
cohorts, revealing that the nomogram had excellent concordance in

predicting the OS of 1, 3, and 5 years (Figures 5B–D).
NMRGS score is correlated with immune
landscape in glioma

Single-sample GSEA analysis showed a remarkable positive

correlation between NMRGS score and immune-related functions.

Immune cell-related infiltrating scores and immune-related pathways

were significantly different between the NMRGS-low group and the

NMRGS-high group (Figure 6A). Gene set enrichment analysis

(GSEA) in the CGGA693 cohort revealed that NMRGS score was

associated with immune-related pathways, including IL6-JAK-

STAT3-signaling, interferon-gamma response, leukocyte

transendothelial migration, natural killer cell-mediated cytotoxicity,

t cell receptor signaling pathway and so on (p < 0.05, FDR < 0.25)

(Figure 6B). In order to comprehensively analyze the immune

microenvironment, we used CiberSort to calculate the permeability

of 22 immune cells. The immune cell proportion of glioma samples in

the CGGA693 cohort was shown in Figure 6C. Different immune

characteristics were found between the NMRGS-low group and the

NMRGS-high group. Higher infiltration of B cells native, CD4+
B C D

A

FIGURE 5

Construction and evaluation of a nomogram. (A) A nomogram was constructed based on the independent risk factors (NMRGS score, 1p19q codeletion
status, and WHO grade) in CGGA693 cohort. (B–D) Calibration curves showing the concordance between the actual and nomogram-predicted 1-, 3-,
and 5-year overall survival in CGGA693, TCGA, and CGGA325 cohorts.
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memory resting T cells, T cells gamma delta, macrophages (M0, M1,

and M2), activated dendritic cells, and neutrophils were observed in

NMRGS-high group, while B cells memory, CD4+ T cells naive, NK

cells activated and monocytes infiltrated more in the NMRGS-low

group (Figure 6D). In addition, higher ImmuneScore, StromalScore,

ESTIMATEScores, and lower TumorPurity were found in the

NMRGS-high group. ImmuneScore or StromalScore scores were

positively correlated with elevated immunity or stromal ratios,

which represented greater proportions of the corresponding

components in TME (Figures 6E–H). Similar results analyzed on
Frontiers in Oncology 09
the TCCA and CGGA325 datasets were presented in Supplementary

Figure S15.
A robust correlation was found between
TMB and NMRGS score

TMB was thought to be correlated with the immune infiltration of

tumor patients. We analyzed the genetic mutation profile of the

TCGA cohort to gain further insight into the immunologic nature of
B

C

D

E F G H

A

FIGURE 6

Association between NMRGS and immune landscape in glioma. (A) Comparison of ssGSEA scores between NMRGS-low group and NMRGS-high group.
(B) GSEA analysis of immune-related pathways between NMRGS-low group and NMRGS-high group. (C) Proportion of the immune cell infiltration of
glioma samples in CGGA693 cohort. (D) Comparison of immune cell infiltration between NMRGS-low group and NMRGS-high group. (E–H) Comparison
of ImmuneScore, StromalScore, ESTIMATEScores, and TumorPurity between NMRGS-low group and NMRGS-high group. ns, not significant; *p < 0.05,
**p < 0.01, ***p < 0.001.
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different NRGPI subgroups. In total, somatic mutations were found in

249/269 (92.57%) samples in the NMRGS-high group and 265/272

(97.43%) samples in the NMRGS-low group. The top 20 genes with

the highest mutation rates in NMRGS subgroups were identified.

Figures 7A, B showed different mutation classifications in the

NMRGS-low group and the NMRGS-high group. The comparison

of TMB between the NMRGS-high group and the NMRGS-low group

found that TMB was significantly higher in NMRGS-high patients

(Figure 7C). In addition, a robust correlation between TMB and

NMRGS score was found in Figure 7D (R=0.59, p < 2.2e-16). KM

analysis was performed to evaluate the influence of the NMRGS score

combined with the TMB on survival. Patients in high-TMB group

survived shorter than the low-TMB group (Figure 7E). More

importantly, patients with high NMRGS and high TMB were found

have the worst outcome (Figure 7F).
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NMRGS score is associated with HLA system

The current understanding of the pathways leading to the restoration

of HLA expression could be utilized to conceive immunotherapies.

Tumor cells evade immune detection by developing deficiencies in

their HLA presentation pathways, allowing important tumor antigens

to persist undetected by the immune system. We compared the

expression of various HLA molecules between the NMRGS-high group

and the NMRGS-low group. The correlation between multiple HLA

molecules and NMRGS score has also been further studied. Our study

showed that HLA molecules were uniformly under-expressed in the

NMRGS-high group compared with the NMRGS-low group (Figure 8A;

Supplementary Figures S16A, S17A). Significant positive correlations

were found between various HLA molecules and the NMRGS score

(Figures 8B–U; Supplementary Figuress S16B–U, S17B–U). In addition,
B
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FIGURE 7

Association between NMRGS score and TMB. (A) Top 20 mutated genes in NMRGS-low group. (B) Top 20 mutated genes in NMRGS-high group.
(C) Comparison of TMB between NMRGS-low group and NMRGS-high group. (D) The correlation between NMRGS score and TMB. (E) KM
analysis between the high-TMB group and the low-TMB group. (F) Comprehensive KM analysis of the effects of NMRGS and TMB on survival.
***p < 0.001.
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the analysis results show that the six hub NMRGs are also correlated with

the HLA system (Figure 8V; Supplementary Figures S16V, S17V).
NMRGS may have the potential to serve as
an indicator for predicting the effectiveness
of ICI therapy in glioma

The expression level of immune checkpoints is directly related to

the therapeutic effect of ICI. Representative immune checkpoints

were investigated in both CGGA693, TCGA and CGGA325 cohorts.
Frontiers in Oncology 11
Significantly higher expression levels were detected in all these

represent immune checkpoints between NMRGS-high group and

NMRGS-low group (Figures 9A, B; Supplementary Figure S18A). In

addition, we collected 36 other immune checkpoints and compared

the expression of these checkpoints between the two groups

(Supplementary Figure S19). NMRGS score was found to have

strong positive correlations with these represent immune

checkpoints (Figures 9C, D; Supplementary Figure S18B). Besides,

the correlations between NMRGs and these represent immune

checkpoints were investigated (Figures 9E, F; Supplementary Figure
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FIGURE 8

(A) Comparison of HLA molecules between NMRGS-low group and NMRGS-high group. (B–U) Correlations between HLA molecules and the NMRGS
score. (V) Correlations between HLA molecules and the six hub NMRGs.
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S18C). Further, the tumor immune dysfunction exclusion (TIDE)

algorithm was used to evaluate the potential response to ICI therapy.

Lower dysfunction score (Figures 9G, H; Supplementary Figure

S18D), higher exclusion score (Figures 9I, J; Supplementary Figure

S18E), and higher TIDE score (Figures 9K, L; Supplementary Figure

S18F) were found in the NMRGS-high group. In addition, the

responders showed to have significantly higher NMRGS scores than

that of non-responders (Figures 9M, N; Supplementary Figure S18G).

There were more responders to ICI therapy in NMRGS-high groups

compared with NMRGS-low groups in both CGGA693 and TCGA

cohorts (CGGA693: 88/319 vs. 11/319, p<0.0001 and TCGA: 35/275

vs. 2/275, p<0.0001; Figures 9O, P; Supplementary Figure S18H). A

high accuracy of NMRGS in predicting ICI response was evident from

the ROC curves (AUC of CGGA693 = 0.799, AUC of TCGA = 0.803,
Frontiers in Oncology 12
AUC of CGGA325 = 0.719; Figures 9Q, R; Supplementary Figure

S18I). In combination, NMRGS may be used as an indicator for

predicting the effectiveness of ICI therapy in glioma.
The six hub NMRGs was differently
expressed in glioma tissues compared with
adjacent non-tumor tissue samples

A validation of the expression patterns of the six hub NMRGs was

performed in glioma tissues and adjacent non-tumor tissues, which

were seen as normal brain tissues (NBT). According to the results of

qRT-PCR, the mRNA expressions of CD38, NADK, PARP9 were

significantly elevated in glioma tissues compared with NBT, while the
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FIGURE 9

Association between NMRGS and ICI therapy response. (A, B) Comparison of representative immune checkpoints between NMRGS-low group
and NMRGS-high group in CGGA693 and TCGA cohorts. (C, D) Analyses of correlation between NMRGS and representative immune
checkpoints expression in CGGA693 and TCGA cohorts. (E, F) Analysis of correlation between the hub genes and representative immune
checkpoints expression in CGGA693 and TCGA cohorts. (G–L) Comparison of dysfunction score, exclusion score, and TIDE score between
NMRGS-low group and NMRGS-high group in CGGA693 and TCGA cohorts. (M, N) Comparison of NMRGS score between responders and non-
responders in CGGA693 and TCGA cohorts. (O, P) Patient fraction of responders and non-responders in NMRGS-low group and NMRGS-high
group. (Q, R) ROC curve analysis of NMRGS in predicting the efficacy of ICI treatment.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1051641
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Jiang et al. 10.3389/fonc.2023.1051641
mRNA expressions of NAPRT and PARP6 showed a significant

downward trend in glioma tissues (Figures 10A–F). Results

consistent with the mRNA levels were found through

immunohistochemistry staining at the protein level. Representative

pictures of IHC staining are shown in Figures 10G–L. Besides,

western blots of the genes were performed in cell lines, including

normal human astroglia (NHA) cell line and seven human glioma cell

lines (U251, U87, U118, LN229, T98G, A172, KNS-89). Contrary to

expectations, except for NMNAT3, the expression of other hub genes

was not consistently overexpressed or underexpressed in these glioma

cell lines compared to NHA. Interestingly, the expression of CD38,

NADK and NAPRT in these cells showed a similar trend
Frontiers in Oncology 13
(Supplementary Figure S20). Further insight basic research needs to

be carried out.
Discussion

Glioma is the most common primary intracranial tumor.

Although progress has been made in diagnosis and treatment,

glioma is still cancer with high morbidity and mortality. The

application of immunotherapy in glioma holds promise recently.

However, the immunotherapeutic effects vary among individuals

wi th g l ioma , prompt ing researcher s to cons ider the
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FIGURE 10

Expressions of the six hub NMRGs in glioma and normal tissues. (A–F) The mRNA expressions of the six hub NMRGs in tissues. (G–L) Representative IHC
staining of the six hub NMRGs in tissues. ns, not significant; *p < 0.05, **p < 0.01, ***p < 0.001.
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immunosuppressive tumor microenvironment and the moderate level

of immunity in the central nervous system (14). Tumor

microenvironments result from changes in tumor cells that support

unrestricted growth and proliferation, leading to further alterations in

cellular behavior that are critical to tumor progression (15). Different

glioma subtypes present different modifications in their

microenvironment (16). Cancer cells have increased demands for

DNA repair activity and high energetic requirements, as well as a high

rate of NAD turnover. It has been shown that NAD+ metabolism

impacts a wide range of processes that are dysregulated in cancer.

Increasing evidence indicates that NAD+ metabolism is associated

with tumor immune microenvironment and response to ICI therapy.

It was reported that NAMPT overexpression in glioma cell lines

increases tumorigenic properties controlling stem cell pathways and

enriching the cancer-initiating cell population (17). NAD+

metabolism was found to maintain inducible PD-L1 expression to

drive tumor immune evasion (11). NAD+ depletion was found to

radiosensitize 2-DG-treated glioma cells by abolishing metabolic

adaptation (18). These previous findings have aroused our interest

in systematically exploring the prognostic value of these NMRGs and

their relationship with anti-tumor immunity.

In this study, 40 NMRGs were identified, 6 of which were selected

to construct the NMRGS. No matter for the training cohort

(CGGA693) or the validation cohorts (TCGA and CGGA325), the

NMRGS showed robust capacity in predicting the survival outcomes

of glioma patients, which is demonstrated by survival analysis, ROC

curve, and Cox regression analysis. A nomogram with improved

predictive capacity was developed by combining the prognostic

NMRGS with other independent prognostic factors (1p19q

codeletion status and WHO grade). Biological processes and

pathways associated with immunity were identified in functional

enrichment analyses. We further uncovered the differential immune

landscape between the two risk subgroups by comparing the

abundance of immune cells, immune and stromal scores, and

expression levels of immunoregulatory molecules. Additionally, the

NMRGS score may be associated with differences in ICI

therapy efficacy.

The NMRGS comprised six crucial genes, including CD38,

NADK, NAPRT, NMNAT3, PARP6, and PARP9. The first key

gene, CD38, is the major NAD-hydrolyzing ectoenzyme in most

mammals and has recently been implicated in regulating metabolism

and the pathogenesis of cancers (19). However, the understanding of

the impact of CD38 on tumor progression remains limited,

ambiguous, and controversial. CD38 was found to function as a

tumor‐promoting factor in melanoma, esophageal, and lung cancers,

though conflicting data does exist on the influence of CD38 in the

progression of prostate cancer (20). CD38 expression on tumor cells

was reported to rise in murine and human origins in response to PD-

L1 antibody therapy, which led to dysfunction of tumor-infiltrating

CD8 T cells due to increasing adenosine production (21). The second

key gene, NADK, uses ATP as a phosphate donor to phosphorylate

NAD+ to NADP, which is then reduced to nicotinamide adenine

dinucleotide phosphate (NADPH). NADPH plays an essential role in

proliferating cancer cells and neutralizing the dangerously high levels

of reactive oxygen species produced by metabolic activity (22–24).

Given its role in metabolism and ROS regulation, it is unsurprising

that several recent studies have identified NADK as a potential
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therapeutic target for cancer treatment (25, 26). The third key gene,

NAPRT, is responsible for the first step in converting nicotinic acid to

NAD. The primary NAD salvageable precursor in human cells is

nicotinamide, catalyzed by NAMPT. Nicotinic acid is more effective

at increasing NAD levels, so some tissues may preferentially use the

nicotinic acid salvage pathway (27). By causing metabolic stress,

inhibition of NAMPT offers a novel therapeutic approach in

tumors that lack NAPRT expressions, such as glioblastoma and

lymphoma. At the same time, normal cells are saved by NA by

activating the NAPRT pathway (28–30). The fourth key gene,

NMNAT3, is a member of the NMNAT family. NMNAT is

another rate-limiting enzyme reversibly catalyzing the critical step

in the biosynthesis of NAD from ATP and NMN (31). NMNAT was

found to enhance NAD-dependent posttranslational modifications of

p53 and deacetylation of p53 by inhibiting DNA damage-p53-

caspase-3 signaling pathway, allowing glial cells with harmful

mutations to survive and multiply (32). Besides, A study found that

depletion of NMNAT-2 led to increased polysome association,

enhanced translation of specific mRNAs, and decreased ovarian

cancer growth (33). The remaining two key genes, PARP6 and

PARP9, are all members of Poly(ADP-ribose) polymerase (PARP)

family and are involved in the genesis and development of some

tumors (34). PARP6 was confirmed can inhibit the expression of

XRCC6 by inducing degradation and thus regulate the Wnt/b-catenin
pathway, which contributes to the suppression of hepatocellular

carcinoma (35). However, pharmacological inhibition of PARP6

triggered multipolar spindle formation and led to apoptosis in a

subset of breast cancer cells and antitumor effects (36). As for PARP9,

it has a carboxy-terminal amino acid sequence similar to other PARPs

but lacks PARP activity. The overexpression of PARP9 has been

demonstrated to positively correlate with the pathological progression

of lymphoma, breast cancer, and prostate cancer (37–40). In

summary, these six selected NMRGs were directly or indirectly

involved in regulating NAD+ Metabolism in cancer.

Recent d i scover i e s have revea led tha t the g l ioma

microenvironment affects tumorigenesis and its response to

immunotherapeutic treatment. A deep understanding of the

complex heterogeneity of glioma immune microenvironment may

be the key to unleashing the full potential of immunotherapy

strategies. In our study, we found significant differences in TME

among NMRGS subgroups, especially in the tumor immune

microenvironment. GSEA and ssGSEA showed different immune

functional statuses between the two groups, including Interferon

response, NK cell-mediated cytotoxicity, cytolytic activity, MHC

class I expression, and so on. Glioma cells deprived nutrients and

secreted interferential metabolites to remold the immune

microenvironment, which activated anti-inflammatory and tolerant

mechanisms and hindered anti-tumor responses. Metabolic

remodeling injured the tumor recognition, phagocytosis and lysis of

cytotoxic T lymphocytes, natural killer cells, glioma-associated

macrophages, and dendritic cells, conferred immune silencing

phenotypes on dendritic cells and macrophages, and promoted the

expansion and infiltration of immunosuppressive regulatory T cells

and myeloid-derived suppressor cells. Tumor-associated

macrophages recruited to the glioma microenvironment can release

growth factors and cytokines in response to the activity of cancer cells,

exhibiting an immunosuppressive M2 phenotype and functional
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behavior (41). Our findings showed that M2-type macrophages were

overwhelmingly numerically superior to other immune cells, which is

consistent with previous research in the scientific community. In the

NMRGS high group with poor survival outcomes, we found

significantly higher enrichment of M2 macrophages, indicating that

the NMRGS high group had higher immunosuppressive

characteristics. Natural killer cells are at the forefront of the body’s

defense system and are powerful effectors of the anticancer immune

response, rapidly recognizing and killing tumor cells with little

response to healthy tissue. Evidence has shown that the infiltration

and cytotoxicity of NK cells in cancer tissues affect therapeutic

efficacy and survival, but their function is often influenced by

factors released by tumors or other immunosuppressive cells (42).

In our study, the infiltration of activated NK cells in NMRGS-high

group was less than that in NMRGS-low group, which further

reflected that NMRGS-high group had a higher state of

immunosuppression. Our results suggest that the interaction

between glioma cell NAD+ metabolism and immune cells in the

microenvironment may provide a new perspective for understanding

glioma immune escape and immunotherapy refractory.

Inhibitory and costimulatory receptors, known as “immune

checkpoints,” are one of the mechanisms by which cancer cells evade

immune surveillance, induce immune tolerance and escape immune

destruction (43). In recent years, immune checkpoint inhibitors have

revolutionized treatment options for many cancers. These treatments

have demonstrated higher efficacy and less toxicity than standard

cytotoxic chemotherapy, with some patients experiencing lasting

long-term disease control and even remission (44). However, the

therapeutic effect of ICI varies significantly among patients. Given

this variability, it is increasingly important to identify appropriate

biomarkers to select patients for ICI treatment (45). The main

intrinsic driver of tumor heterogeneity is genomic alterations. TMB,

traditionally defined as the number of non-synonymous exon

mutations per megabase (Mut/Mb), has recently been identified as a

promising new biomarker for the therapeutic response of ICI (46). A

large number of mutations in the exon region of somatic cells will lead

to the increase of neoantigen and increase the immunogenicity of cells,

thus improving the immune response. Based on this hypothesis,

individuals with higher TMB tend to have stronger immune

responses. In our study, we observed a strong relationship between

NMRGS and TMB, and the correlation coefficient reached 0.59. The

group with high NMRGS showed higher TMB than those with low

NMRGS, suggesting that the NMRGS-high group may respond better

to ICI treatment. The expression of immune checkpoint is the most

direct biomarker of ICI treatment (47). Ligands expressed by glioma

cells recognize and bind chaperone proteins (receptors) on the surface

of immune cells, which play an important role in maintaining

peripheral immune tolerance and controlling inflammatory

overreaction (48). The results showed that the expression of

inhibitory immune checkpoints such as PD-L1 was higher in the

NMRGS-high group, further indicating that ICI treatment may be

more effective in the NMRGS-high group. By calculating the genome-

wide expression profile of patients before treatment and simulating

tumor immune escape of different levels of cytotoxic T lymphocytes,
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Peng Jiang et al. established an online TIDE score combining the

characteristics of T cell dysfunction and T cell exclusion to predict the

response to immunotherapy (49). In prospective clinical trials, TIDE

score has shown outstanding superiority over other biomarkers in

predicting ICI response to treatment, and has been recognized as an

effective method for predicting immunotherapy response in solid

tumor patients (50). Our results showed that TIDE and dysfunction

scores were lower in the high NMRGS group, while exclusion scores

showed an opposite trend. A higher proportion of patients in the

NMRGS-high group responded to ICI therapy than in the NMRGS-low

group. Analysis of the ROC curve confirmed that NMRGS is an

excellent predictor of ICI response. All in all, our results suggest that

NMRGSmay be used as a potential ICI therapy management indicator.

In this study, we developed an NMRGS to predict glioma

prognosis and ICI treatment. However, it is worth noting that there

are still certain limitations in the present study. Firstly, further

experiments are needed to elucidate the roles and specific

mechanisms of the six hub genes in glioma. Secondly, retrospective

data were used to construct and validate NMRGS. Multi-center

prospective studies are needed to validate its clinical value and

make it more convincing. Finally, we indirectly assessed the

potential of NMRGS immunotherapeutic response with TIDE,

more studies are needed to confirm this conclusion.
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Patients fraction in different clinicopathological subgroups in CGGA325 cohort.
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(A, B) Comparison of immune cell infiltration between NMRGS-low group and

NMRGS-high group in TCGA and CGGA325 cohorts. (C–F) Comparison of
ImmuneScore, StromalScore, ESTIMATEScores and TumorPurity between

NMRGS-low group and NMRGS-high group in TCGA cohort. (H–K)
Comparison of ImmuneScore, StromalScore, ESTIMATEScores and
TumorPurity between NMRGS-low group and NMRGS-high group in

CGGA325 cohort.
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Association between NMRGS score and HLA molecules analyzed in TCGA

cohort (A) Comparison of HLA molecules between NMRGS-low group and
NMRGS-high group. (B–U) Correlations between HLA molecules and the

NMRGS score. (V)Correlations between HLAmolecules and the six hub NMRGs.
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Association between NMRGS score and HLA molecules analyzed in CGGA325
cohort (A) Comparison of HLA molecules between NMRGS-low group and

NMRGS-high group. (B–U) Correlations between HLA molecules and the
NMRGS score. (V)Correlations between HLAmolecules and the six hub NMRGs.
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Association between NMRGS score and ICI therapy response analyzed in

CGGA325 cohort. (A) Comparison of representative immune checkpoints
between NMRGS-low group and NMRGS-high group in CGGA325 cohort. (A)
Analysis of correlation between NMRGS and representative immune
checkpoints expression in CGGA325 cohort. (A) Analysis of correlation

between the hub genes and representative immune checkpoints expression

in CGGA325 cohort. (D–F) Comparison of dysfunction score, exclusion score
and TIDE score between NMRGS-low group and NMRGS-high group in

CGGA325 cohort. (G) Comparison of NMRGS score between responders and
non-responders in CGGA325 cohort. (H) Patient fraction of responders and

non-responders in NMRGS-low group and NMRGS-high group. (I) ROC curve
analysis of NMRGS in predicting the efficacy of ICI treatment analyzed in

CGGA325 cohort.
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Comparison of other immune checkpoints expression between NMRGS-low
group and NMRGS-high group in CGGA693, TCGA, and CGGA325 cohorts.
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Western blots of the hub genes in cell lines.
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