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based on metabolic syndrome
and its components
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Background: Little is known about applying machine learning (ML) techniques to

identify the important variables contributing to the occurrence of gastrointestinal

(GI) cancer in epidemiological studies. We aimed to compare different ML models

to a Cox proportional hazards (CPH) model regarding their ability to predict the risk

of GI cancer based on metabolic syndrome (MetS) and its components.

Methods: A total of 41,837 participants were included in a prospective cohort

study. Incident cancer cases were identified by following up with participants until

December 2019. We used CPH, random survival forest (RSF), survival trees (ST),

gradient boosting (GB), survival support vector machine (SSVM), and extra survival

trees (EST) models to explore the impact of MetS on GI cancer prediction. We used

the C-index and integrated Brier score (IBS) to compare the models.

Results: In all, 540 incident GI cancer cases were identified. The GB and SSVM

models exhibited comparable performance to the CPH model concerning the C-

index (0.725). We also recorded a similar IBS for all models (0.017). Fasting glucose

and waist circumference were considered important predictors.

Conclusions: Our study found comparably good performance concerning the C-

index for theMLmodels and CPHmodel. This finding suggests that MLmodelsmay

be considered another method for survival analysis when the CPH model’s

conditions are not satisfied.
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Introduction

Gastrointestinal (GI) cancer refers to cancers affecting the

digestive system. Gastric cancer, colorectal cancer, liver cancer,

esophageal cancer, and pancreatic cancer are recognized as

common GI cancers (1). According to an estimate in 2018, GI

cancer accounted for 26% of new cancer cases and 35% of deaths

related to cancer worldwide (1). The trend of GI cancers varies

geographically by specific types; for instance, the highest rates of

liver cancer, esophageal cancer, and gastric cancer are found in Asia

(2). Although the trend has been upwards for colorectal and

pancreatic cancer, the remaining cancers have experienced a

downwards trend since 1999; GI cancer remains one of the most

common cancers in Korea (3).

Although risk factors for specific types of GI cancer vary, lifestyle-

related factors contribute significantly to the development of GI

cancer (2). Specifically, a Western lifestyle has been documented to

be associated with a higher prevalence of GI cancer (2). Notably,

metabolic syndrome (MetS), which has been reported to be a global

epidemic, might be considered an important mediator of the effect of

a Western lifestyle on GI cancer development (2). MetS has been

described as a group of conditions including obesity, hypertension,

high blood sugar, and dyslipidemia (4). Currently, there are three

definitions used for MetS diagnosis, namely, the WHO 1999, the

National Cholesterol Education Program (NCEP) Adult Treatment

Panel III (ATP III) 2005, and the International Diabetes Federation

2006 definitions. Although MetS definitions are modified by health

care organizations for different regions, MetS remains a significant

and alarming global public health problem (5).

Existing evidence from epidemiological studies has revealed that

MetS may be an etiologic factor for GI cancer development. For

example, a previous study of large-scale molecular data for 366,016

participants reported a potential link between MetS and an elevated

risk of GI cancer regardless of the MetS definition used (6). Similarly,

an increased risk of colorectal cancer, liver cancer, and gastric cancer

was found in participants with MetS in other cohort studies (7–11).

Notably, Cox proportional hazards (CPH) model was used in these

studies; a CPH model is a linear regression with good interpretability

(12). CPH model is known to be a semiparametric method in which

survival times are assumed in relation to predictor variables in a

particular way and proportional hazards (13).

To date, attention has been drawn to the application of machine

learning (ML) to cancer prediction. In particular, the application of

ML in survival analysis has been indicated in recent years (14, 15).

However, the value of ML models compared to CPH model is

ambiguous due to inconsistent results in previous studies (15–18).

For example, an ML model outperformed a CPH model in predicting

breast cancer survival in a previous study (16). In contrast, a

comparably good performance was observed to predict survival in
Abbreviations: ATP III, Adult Treatment Panel III; BMI, body mass index; CI,

confidence interval; CPH, Cox proportional hazards; EST, extra survival trees; GB,

gradient boosting; GI, gastrointestinal; HDL cholesterol, high-density lipoprotein

cholesterol; HR, hazard ratio; IBS, integrated Brier score; MetS, metabolic

syndrome; ML, machine learning; NCEP, National Cholesterol Education

Program; RSF, random survival forest; SSVM, survival support vector machine;

ST, survival trees.
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patients with oral and pharyngeal cancer in another study (17). Thus,

the value of ML approaches compared to CPH model in survival

analysis is still debatable.

To our knowledge, little is known about the application of ML

techniques in epidemiological studies to identify important predictors

affecting GI cancer development. In addition, no study has compared

the accuracy of ML and CPH models for predicting GI cancer.

Therefore, our study aimed to examine whether MetS and its

components are related to GI cancer prediction and whether ML

models outperform a CPH model in predicting GI cancer based on

MetS and other confounders.
Methods

Study population

The Cancer Screenee Cohort Study was established in 2002 to

explore the association of risk factors with cancer development in

South Korea. The information of this cohort has been described (19).

In brief, we recruited 41,837 participants aged 16 and older who

visited the Center for Cancer Prevention and Detection at the

National Cancer Center in South Korea for health examinations

between August 2002 and December 2014. We required

participants to complete baseline questionnaires and identified

incident cancer cases by following up with participants until

December 2019. Our final analysis included 24,139 participants

after exclusion of 1,754 participants with incomplete questionnaires,

2,100 participants with a diagnosis of any cancer before recruitment, 6

participants aged <20 years, and 13,122 participants who lacked

information on individual characteristics (Figure 1). We obtained

written informed consent from all participants and approval for the

study protocol from the institutional review board of the National

Cancer Center (No. NCCNCS-07-077).
Outcome and predictor measurement

Potential incident GI cancer cases were obtained by linking to the

2019 Korea National Cancer Incidence Database of the Korea Central

Cancer Registry. We used the following International Classification of

Diseases, 10th Revision codes to identify common incident GI

cancers: gastric cancer (C16), colorectal cancer (C18-C20), liver

cancer (C22), esophageal cancer (C15), gallbladder cancer (C23),

and pancreatic cancer (C25). We identified 540 incident GI cancer

cases, namely, 242 (44.8%) incident cases of gastric cancer, 123

(22.8%) incident cases of colorectal cancer, 102 (18.9%) incident

cases of liver cancer, 41 (7.6%) incident cases of pancreatic cancer, 16

(3.0%) incident cases of gallbladder cancer, and 16 (3.0%) incident

cases of esophageal cancer.

Currently, the MetS definition in Korea is based on the criteria of

the ATP III of the NCEP and specific values of waist circumference

from the World Health Organization and the Korean Society for the

Study of Obesity. MetS was identified among those who met 3 or

more of the following criteria (20):
1. Waist circumference: males ≥ 90 cm and females ≥85 cm
frontiersin.org
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2. Blood pressure: ≥130/85 mmHg

3. Triglycerides: ≥150 mg/dL

4. High-density lipoprotein cholesterol (HDL cholesterol):

males <40 mg/dL and females <50 mg/dL

5. Fasting glucose: ≥100 mg/dL or a history of diabetes.
We collected venous blood samples from participants at baseline

after they had fasted for 8 hours to determine the blood-related

components of MetS. Height (m) and weight (kg) were measured with

InBody 3.0 (Biospace, Seoul, Korea) or automatic height and weight

measurements (DS-102, Dong Shin Jenix Co., Ltd., Seoul, Korea). The

measurement of waist circumference was performed with a tape

measure 1 cm above the umbilicus with minimal respiration. A

chemistry analyzer (TBA-200FR, Toshiba, Tokyo, Japan) was used

to measure fasting glucose, triglyceride, and HDL cholesterol levels.

Blood pressure was measured by trained personnel with an automatic

blood pressure monitor (FT-200S, Jawon Medical, Kyungsan, Korea)

after the patients had 15 minutes of rest (21). In addition, a self-

administered questionnaire regarding information on baseline

characteristics was completed by participants.

Predictors of GI cancer incidence in our study included MetS and

its individual components (waist circumference, HDL, triglycerides,

blood pressure, and fasting glucose). In addition, sociodemographic

variables included age, sex, educational level (high school graduate or

less and college or higher), marital status (married or cohabitating

and others), monthly income (10,000 Korean won/month) (<200,

200-400, and >400), and first-degree family history of cancer (yes,

no). Lifestyle factors included smoking status (nonsmoker, ex-smoker

and current-smoker), alcohol consumption (nondrinker, former

drinker and current-drinker), and physical activity (yes, no). These

sociodemographic and lifestyle characteristics may be confounders

for the association between MetS and GI cancer (6).
tiers in Oncology 03
Models and evaluation

We used a CPH model and ML survival models, including

random survival forest (RSF), survival trees (ST), gradient boosting

(GB), survival support vector machine (SSVM), and extra survival

trees (EST), to predict GI cancer. The ability of these ML models to

predict an outcome in right-censored time-to-event data has been

documented in the literature as follows:

Random forest is an ML model that is most frequently used to

solve problems in relation to classification and regression by

constructing ensembles from decision trees and combining results

to give a final decision. RSF extends random forest to censored

lifetime data (22).

ST is another forest approach that has been widely used to handle

time-to-event data. The implementation of ST is as follows: data

partitioning is performed based on a criterion for splitting, and

objects with similar events are grouped as the same node. (23).

Similar to RSF, the GB model is an ensemble model that combines

the predictions of multiple base learners to improve the prediction of

the overall model. However, RSF averages predictions from

independent trees to obtain the overall prediction, while the GB

model is additive (24).

Support vector machine aims to find a hyperplane to maximize

the margin between classes. SSVM is an extension of the support

vector machine to handle time-to-event data (16).

The EST model is a slightly different version of RSF (25). In

comparison with RSF, the splitting criteria of EST are more

random (26).

We used the following two evaluation metrics, which have been

widely used in survival analyses in the literature, to compare the

performance of the regression models (15, 22, 23, 26). The

concordance index (C-index) is a rank order statistic for
FIGURE 1

Flow chart of the study participants. Among 41,837 participants recruited, 41,121 participants were linked to the Korea Central Cancer Registry. Our final
analysis included 24,139 participants after exclusion of 1,754 participants with incomplete questionnaires, 2,100 participants with a diagnosis of any
cancer before recruitment, 6 participants aged <20 years, and 13,122 participants who lacked information on individual characteristics.
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predictions against true outcomes and is defined as the ratio of the

concordant pairs to the total comparable pairs (23); the closer the C-

index is to 1, the better the model performs (15, 26). The integrated

Brier score (IBS) reflects calibration over all time points, with a

smaller value indicating greater accuracy (22). Furthermore, we

evaluated the models based on the time-dependent area under the

curve (AUC).
Statistical analysis

We calculated person-years from baseline to the date of cancer

diagnosis, death, or end of follow-up (December 31, 2019), whichever

came first. We used chi-square tests and Wilcoxon rank-sum tests to

compare the baseline characteristics between the incident GI cancer

cases and nonincident GI cancer.

There were several steps for model development. First, we used an

80:20 ratio to randomly split the data into training and testing

datasets. The purposes of the training and testing datasets were to

fit the model and evaluate the final model, respectively. Second, a grid

search was utilized to search hyperparameters for C-index

maximization with 10-fold cross validation. We found the following

optimal hyperparameters: n_estimators=400, max_depth=4 for RSF,

max_depth=4 for ST, learning_rate=1 and max_depth=1 for GB,

alpha=0.0002 for SSVM, and n_estimators=500, max_depth=4 for

EST. Third, we fit the models using the training dataset based on

selected input variables, the optimal hyperparameters, and default

values of other hyperparameters. Fourth, the testing dataset was used

to evaluate and compare model performance. Then, the ELI5 package

was used to explore the contribution of predictors to the models,

which calculates important variables based on the permutation

important method by identifying the weight of variables (26). We

used bootstrapping and 10-fold cross validation to assess the

robustness of the models.

Furthermore, we used the CPH model to explore the specific

associations of MetS and its components with incident GI cancer after

adjusting for the aforementioned confounding factors. We performed

statistical analyses by using Python software (version 3.7.9) with the

scikit-survival library (26) and SAS software (version 9.4, SAS

Institute, Cary, NC, USA) with a two-sided P value less than 0.05

was considered statistically significant.
Results

Characteristics of the participants

A total of 540 incident GI cancer cases were identified among

24,139 participants during the follow-up period (mean, 10.7 years),

among which gastric cancer accounted for the highest number of

cases (44.8%), followed by colorectal cancer (22.8%). Compared with

the nonincident GI cancer group, the incident GI cancer group

comprised older patients (54.7 ± 8.9 years old vs. 49.2 ± 9.1 years

old, P<0.001) and patients who exhibited higher proportions of a low

education level (49.4% vs. 44.1%, P=0.013), a low income level (23.9%

vs. 15.0%, P<0.001), being married or cohabitating (93.7% vs. 90.6%,

P=0.015), a first-degree family history of cancer (49.6% vs. 44.3%,
Frontiers in Oncology 04
P=0.014), and BMI≥25 (44.3% vs. 33.5%, P<0.001). In addition, this

group tended to be current smokers (30.0% vs. 25.0%, P<0.001) and

current drinkers (67.8% vs. 65.4%, P<0.001). With regard to MetS,

incident GI cancer cases accounted for a higher proportion of MetS

than those without incident GI cancer (26.3% vs. 18.2%, P<0.001).

Similarly, the proportions of central obesity, elevated blood pressure,

and high fasting glucose levels tended to be higher in incident GI

cancer cases than in nonincident GI cancer (45.2% vs. 34.6%,

P<0.001, 48.5% vs. 37.5%, P<0001, and 32.2% vs. 19.2%, P<0.001,

respectively) (Table 1).
Model performance

The C-index and IBS were used to compare the performance of

the models. Table 2 presents these metrics for the CPH and ML

models based on the testing dataset. Comparably good performance

was recorded for the GB, SSVM, and CPH models, with a C-index

value of 0.725. The RSF and EST models exhibited a lower

performance than the CPH model (0.699 vs. 0.725 and 0.671 vs.

0.725, respectively). IBS was not estimated for SSVM because it is

applicable for models that can estimate a survival function. A similar

value of IBS was found for the remaining models (0.017).

Furthermore, comparably good discrimination was found for the

ML and CPH models concerning the t ime-dependent

AUC (Figure 2).
Importance of predictors of GI cancer

Table 3 presents the top five most important predictors of

incident GI cancer based on the ML models. Notably, among the

predictors related to MetS, fasting glucose was indicated as an

important predictor for the occurrence of GI cancer across models.

Furthermore, according to the GB model, waist circumference was

one of the five important predictors contributing to incident

GI cancer.

We then determined the specific relationships between MetS and

its components and GI cancer development by using the CPH model.

Notably, the important predictors were identified by the CPH model,

which were similar to those of the ML models. In detail, a higher risk

of GI cancer was found for participants with high waist circumference

in both the crude model and adjusted model; the HRs (95% CIs) were

1.56 (1.32-1.85) for the former and 1.36 (1.15-1.62) for the latter.

Similarly, high fasting glucose was observed in relation to an

increased GI cancer risk in the crude model [HR=2.05 (1.71-2.46)],

and this significance remained unchanged in the adjusted model

[HR=1.41 (1.17-1.69)]. Furthermore, participants with MetS

exhibited a significantly higher risk of GI cancer than those without

MetS, and the HRs (95% CIs) were 1.64 (1.35-1.98) in the crude

model and 1.29 (1.06-1.56) in the adjusted model (Table 4).
Discussion

In this study, we constructed five ML models and compared them

with a conventional CPH model to predict incident GI cancer and
frontiersin.org
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TABLE 1 Characteristics of the study subjects.

Characteristics Total

Nonincident GI cancer
(n=23,599)

Incident GI cancer
(n=540)

P valuea

Ageb 49.2 ± 9.1 54.7 ± 8.9 <0.001

Follow-up duration (year)b 10.8 ± 3.8 6.1 ± 4.5 <0.001

Sex (n, %)

Male 12971 (55.0) 400 (74.1) <0.001

Female 10628 (45.0) 140 (25.9)

Educational level (n, %)

High school graduate or less 10405 (44.1) 267 (49.4) 0.013

College or higher 13194 (55.9) 273 (50.6)

Household income (10,000 won/month) (n, %)

<200 3539 (15.0) 129 (23.9) <0.001

200-400 7747 (32.8) 171 (31.7)

>400 12313 (52.2) 240 (44.4)

Marital status (n, %)

Married or cohabitating 21390 (90.6) 506 (93.7) 0.015

Others 2209 (9.4) 34 (6.3)

First-degree family history of cancer (n, %)

Yes 10457 (44.3) 268 (49.6) 0.014

No 13142 (55.7) 272 (50.4)

Smoking status (n, %)

Nonsmokers 12217 (51.8) 200 (37.0) <0.001

Ex-smokers 5472 (23.2) 178 (33.0)

Current smokers 5910 (25.0) 162 (30.0)

Alcohol consumption (n, %)

Nondrinkers 6986 (29.6) 126 (23.3) <0.001

Ex-drinkers 1175 (5.0) 48 (8.9)

Current drinkers 15438 (65.4) 366 (67.8)

Regular exercise (n, %)

Yes 13342 (56.5) 329 (60.9) 0.042

No 10257 (43.5) 211 (39.1)

BMI (kg/m2)

<23 9377 (39.7) 141 (26.1) <0.001

23-25 6321 (26.8) 160 (29.6)

≥25 7901 (33.5) 239 (44.3)

Metabolic syndrome (n, %)

No 19305 (81.8) 398 (73.7) <0.001

Yes 4294 (18.2) 142 (26.3)

Waist circumference (n, %)

Men <90 cm and women<85 cm 15439 (65.4) 296 (54.8) <0.001

Men ≥90 cm and women≥85 cm 8160 (34.6) 244 (45.2)

(Continued)
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identify whether MetS and its components are potential predictors of

GI cancer development. Our findings identified a comparably good

performance concerning the C-index for the GB, SSVM, and CPH

models. High fasting glucose was found to be a predictor for GI cancer

development across six models. However, the important predictor

was not restricted to high fasting glucose, and the importance of high

waist circumference emerged in the GB and CPH models.

To date, attention has been drawn to the application of ML

models to time-to-event data. As a result, many studies have been

conducted to compare the predictive performance of ML models

against CPH models. For example, based on a previous study, an

extreme gradient boosting model outperformed a CPH model in

predicting breast cancer survival based on C-index values (0.73 vs.

0.63) (16). Similar results were obtained in other studies comparing

RSF models and CPH models for survival prediction in patients with

liver transplantation or oral squamous cell carcinoma (18, 27). The C-

index values obtained in these studies were 0.622/0.620 and 0.764/

0.694 for the RSF and CPH models, respectively (18, 27). However,
Frontiers in Oncology 06
the value of ML models against CPH model is still open to discussion

because inconsistent results have been obtained in other studies.

Specifically, a comparably good performance was recorded for RSF,

conditional inference forest, and CPH models in predicting the

survival of patients with oral and pharyngeal cancer (17). Similarly,

a CPH model showed better performance in another study conducted

in China, where CPH and RSF models were used to predict the

progression of high-grade glioma after proton and carbon ion

radiotherapy (15).

To our knowledge, our study is the first attempt to use ML and

CPH models for the prediction of GI cancer development based on

MetS and other confounders. CPHmodel has been widely applied to

investigate the impact of risk factors on incident cancers due to its

simple, fast computation and meaningful outputs; however, its

limitations need to be clarified (16). First, the proportional hazard

assumption must be satisfied in the model. Survival curves for

different strata need to have hazard functions that are

proportional over time. Second, there is a linear relationship

between log hazards and covariates (28). Thus, CPH model may

not be appropriate for a dataset with nonlinearity due to a decreased

accuracy in prediction (12, 17). To date, the development of ML has

been documented to address the limitations of conventional

statistical analysis in cancer prediction (16). The self-study,

classification, prediction, and feature selection abilities of ML have

been well recognized. ML methods can be adapted to deal with data

with nonlinearity and high-dimensional covariates (22, 29).

However, we found comparable performance for the CPH and

ML models. This finding is consistent with some previous studies

(17, 30) and may be explained as follows. First, a CPH model tries to

fit the data to a specific model and tests the proportional hazards

assumptions to examine the influence of predictors on an outcome

(17). Thus, the proportional hazards assumption of CPH was
TABLE 1 Continued

Characteristics Total

Nonincident GI cancer
(n=23,599)

Incident GI cancer
(n=540)

P valuea

HDL (n, %)

Men ≥40 mg/dL and women ≥50 mg/dL 19778 (83.8) 440 (81.5) 0.147

Men <40 mg/dL and women <50 mg/dL 3821 (16.2) 100 (18.5)

Triglycerides (n, %)

<150 mg/dL 17791 (75.4) 403 (74.6) 0.686

≥150 mg/dL 5808 (24.6) 137 (25.4)

Blood pressure (n, %)

<130/85 mmHg 14757 (62.5) 278 (51.5) <0.001

≥130/85 mmHg 8842 (37.5) 262 (48.5)

Fasting glucose (n, %)

<100 mg/dL or no history of diabetes 19069 (80.8) 366 (67.8) <0.001

≥100 mg/dL or history of diabetes 4530 (19.2) 174 (32.2)
fro
aChi-square tests. We used chi-square tests and Wilcoxon rank-sum tests to compare the baseline characteristics between the incident GI cancer cases and nonincident GI cancer.
bvalues are presented as the mean ± SD.
TABLE 2 C-index and integrated Brier score for the testing dataset.

Models C-index on testing dataset IBS

Cox 0.725 (0.723-0.727) 0.017

Random survival forest 0.699 (0.697-0.701) 0.017

Survival support vector machine 0.725 (0.723-0.727) –

Survival trees 0.721 (0.719-0.723) 0.017

Gradient boosting 0.723 (0.721-0.725) 0.017

Extra survival trees 0.671 (0.668-0.673) 0.017
The C-index was estimated based on 100 bootstrapped data samples. The integrated Brier score
(IBS) applies to models that can estimate a survival function. Thus, it is impossible to estimate
the IBS for the survival support vector machine.
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satisfied in our data, which may be a potential explanation. Second,

complex associations and interactions seem to be unimportant in

our data. Third, a small number of predictors were used in our

study. Overall, it is important to realize that the superiority of ML

models is found only when a CPH model meets its limitations (17).

Notably, we evaluated the models based on the C-index, which can

account for censoring and does not depend on a single fixed

evaluation time (27). Taken together, a CPH model should be

considered a method in epidemiological studies when its

conditions are satisfied. Additionally, a combination of ML and

CPH models could be used to provide further insight into

predictors; specifically, nonlinear interactions may be obtained

using ML models, whereas a CPH model is used to summarize the

risk in a dataset that is not suitable for CPH model analysis (14, 17).

Among the variables related toMetS, the importance of high fasting

glucose as a predictor for GI cancer development was found across all

models. This finding is consistent with the results of a previous study,

where diabetes mellitus was documented to be associated with elevated

GI cancer (31). Notably, a consistent association was also found for

specific types of GI cancer. For instance, high fasting glucose was

demonstrated to play an important role in gastric cancer development

in our previous study (32). Similarly, we identified a positive association

for colorectal cancer (11). Our finding was reinforced by the
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conclusions of other studies (33, 34). For example, a higher risk of

colorectal cancer was observed in participants with type II diabetes in

two large prospective cohorts in the U.S (33). Additionally, a higher risk

of primary liver cancer and pancreatic cancer may be attributed to

increased fasting glucose (35–37). Our study suggests that greater

emphasis must be placed on participants with high fasting glucose,

including those with prediabetes (100 mg/dL-125 mg/dL) and diabetes

(≥126 mg/dL or a history of diabetes). Prediabetes may have a potential

link to GI cancer development (32). Several biological mechanisms may

be involved in the effect of high fasting glucose on GI cancer

development. First, hyperglycemia could provide nutrients for tumor

cells, which has certain effects on the proliferation of these cells. For

example, epidermal growth factor expression and epidermal growth

factor receptor transactivation may be induced by high glucose, which

can contribute to promoting cell proliferation in pancreatic cancer (38).

Second, there is a positive association between hyperglycemia and

proinflammatory factor production; proinflammatory factors are

known to stimulate the expression of oncogenes, regulate the cell

cycle, promote the proliferation of tumor cells, inhibit apoptosis, and

even induce the epithelial-to-mesenchymal transition (38). Third,

insulin-like growth factor 1 (IGF-1) bioavailability could be

promoted by insulin, which could inhibit apoptosis, stimulate cellular

proliferation, and induce carcinogenesis (39).
FIGURE 2

Time-dependent AUC. We presented the time-dependent AUC of the CPH model and five ML models, namely, the random survival forest, survival trees,
gradient boosting, extra survival trees, and survival support vector machine models. The vertical axis is the time-dependent AUC. The horizontal axis is
follow-up (year).
TABLE 3 Top 5 most important predictors for incident GI cancer based on the ML models.

Rank RSF model SSVM model ST model GB model EST model.

Variables Weight Variables Weight Variables Weight Variables Weight Variables Weight

1 Age 0.0975 ±
0.0365

Age 0.1472 ±
0.0494

Age 0.1822 ±
0.0614

Age 0.1784 ±
0.0531

Age 0.0562 ±
0.0214

2 Sex 0.0213 ±
0.0293

Sex 0.0158 ±
0.0197

Sex 0.0459 ±
0.0232

Sex 0.0336 ±
0.0217

Sex 0.0243 ±
0.0371

3 Smoking status 0.0029 ±
0.0059

First degree family
history of cancer

0.0067 ±
0.0095

Fasting
glucose

0.0065 ±
0.0055

Fasting
glucose

0.0030 ±
0.0065

Fasting glucose 0.0106 ±
0.0138

4 Fasting glucose 0.0029 ±
0.0104

Smoking status 0.0054 ±
0.0091

Education 0.0037 ±
0.0068

Waist
circumference

0.0011 ±
0.0032

Income 0.0045 ±
0.0068

5 First degree family
history of cancer

0.0015 ±
0.0034

Fasting glucose 0.0037 ±
0.0075

Smoking
status

0.0020 ±
0.0027

– – First degree family
history of cancer

0.0012 ±
0.0045
fron
Bold text indicates the predictors related to metabolic syndrome.
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Furthermore, high waist circumference was considered an

important predictor of the occurrence of GI cancer in the CPH

model and GB model in our study. Overall obesity has received more

attention in previous studies than central obesity. However, central

obesity may have more influence on cancer risk than overall obesity

because metabolic derangement is reflected by insulin and IGF levels

(40). This hypothesis was supported by a conclusion drawn from a

previous study, which emphasized the stronger influence of waist

circumference on colon cancer risk than BMI (41). Furthermore, the

adverse effect of central obesity on GI cancer development was

reinforced by evidence from two meta-analyses of prospective studies

(42, 43). The pathophysiological mechanisms can be explained as

follows. First, insulin resistance is an important mediator of the link

between central obesity and cancer. In detail, high insulin levels lead to

IGF activation, promote cellular proliferation, and inhibit apoptosis

(44). Second, sex hormones may be a possible mechanism because they

are related to a relationship between body size and shape. The

pathogenesis of the link between body size and shape and cancer

may include obesity-induced hypoxia, genetic susceptibility, and

adipose stromal cell migration (44). Notably, MetS was demonstrated

to be associated with GI cancer development in the CPH model.

However, it was not indicated as the top five important variables in

the ML models. A possible reason may be the stronger effects of high

fasting glucose and waist circumference. These components are implied

to be central factors for the causal link between MetS and GI cancer.
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Notably, with regard to variable importance, CPH model exhibits

a straightforward interpretation as an HR, whereas a large important

variable has more influence on the transition to predict an outcome,

and ML models do not provide the sign of the prediction (negative or

positive effect) (45). To date, the direct comparison of CPH with ML

models regarding interpretation is limited due to the lack of a

common metric. Thus, it is necessary to address this limitation in

further studies (18).

There are several strengths in our study. First, this is the first

attempt to use an ML approach to predict and identify the adverse

effects of high fasting glucose and central obesity on GI development

with time-to-event data. Second, our study has a relatively large

sample size with a long follow-up time, accurately identifying incident

cases by linking to the national cancer registry using a high-quality

database. Third, we used standardized operating procedures to

perform the laboratory tests with standardized equipment and

trained personnel. However, there are some limitations in our

study. First, we used a small number of predictors. Second, the

predictive power may be affected by a low proportion of incident

cases in our study. Thus, further studies with a larger number of

incident cases and predictors may be warranted to clarify the value of

ML models against CPH model. Third, information on medication

and dietary factors was not available to consider in our models.

In conclusion, our study found comparably good performance

according to the C-index for the ML and CPH models. This finding
TABLE 4 Hazard ratios and 95% confidence intervals of incident GI related to metabolic syndrome and its components.

Exposure Total

GI cancer cases Person
years HR (95% CI) (Model 1) HR (95% CI) (Model 2)

Waist circumference

Men <90 cm, women <85 cm 296 168927.01 1.00 1.00

Men ≥90 cm, women ≥85 cm 244 89300.40 1.56 (1.32-1.85) 1.36 (1.15-1.62)

HDL

Men ≥40 mg/dL, women ≥50 mg/dL 440 214258.72 1.00 1.00

Men <40 mg/dL, women <50 mg/dL 100 43968.68 1.10 (0.89-1.37) 1.11 (0.89-1.38)

Triglycerides

<150 mg/dL 403 195275.75 1.00 1.00

≥150 mg/dL 137 62951.66 1.06 (0.87-1.28) 0.89 (0.73-1.09)

Blood pressure

<130/85 mmHg 278 164464.34 1.00 1.00

≥130/85 mmHg 262 93763.07 1.65 (1.40-1.96) 1.26 (1.06-1.50)

Fasting glucose

<100 mg/dL or no history of diabetes 366 209775.34 1.00 1.00

≥100 mg/dL or history of diabetes 174 48452.06 2.05 (1.71-2.46) 1.41 (1.17-1.69)

Metabolic syndrome

No 398 212086.40 1.00 1.00

Yes 142 46141.00 1.64 (1.35-1.98) 1.29 (1.06-1.56)
HR, hazard ratio; CI, confidence interval.
Model 1: crude model; Model 2: adjusted for age, sex, education, alcohol consumption, marital status, smoking status, regular exercise, monthly income, and first-degree family history of cancer.
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suggested that ML models may be considered another method for

survival analysis when a CPH model has limitations. However,

further studies with a larger number of predictors are necessary to

clarify the value of ML models. Furthermore, our study indicated that

preventing high fasting glucose and central obesity could be expected

to reduce GI cancer development.
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