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Purpose: Reliable noninvasive method to preoperative prediction of extrahepatic

cholangiocarcinoma (eCCA) angiogenesis are needed. This study aims to

develop and validate machine learning models based on magnetic resonance

imaging (MRI) for predicting vascular endothelial growth factor (VEGF)

expression and the microvessel density (MVD) of eCCA.

Materials and methods: In this retrospective study from August 2011 to May

2020, eCCA patients with pathological confirmation were selected. Features

were extracted from T1-weighted, T2-weighted, and diffusion-weighted images

using the MaZda software. After reliability testing and feature screening, retained

features were used to establish classification models for predicting VEGF

expression and regression models for predicting MVD. The performance of

both models was evaluated respectively using area under the curve (AUC) and

Adjusted R-Squared (Adjusted R2).

Results: The machine learning models were developed in 100 patients. A total of

900 features were extracted and 77 features with intraclass correlation

coefficient (ICC) < 0.75 were eliminated. Among all the combinations of data

preprocessing methods and classification algorithms, Z-score standardization +

logistic regression exhibited excellent ability both in the training cohort (average

AUC = 0.912) and the testing cohort (average AUC = 0.884). For regression

model, Z-score standardization + stochastic gradient descent-based linear

regression performed well in the training cohort (average Adjusted R2 = 0.975),

and was also better than the mean model in the test cohort (average Adjusted

R2 = 0.781).

Conclusion: Two machine learning models based on MRI can accurately predict

VEGF expression and the MVD of eCCA respectively.
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1 Introduction

Cholangiocarcinoma (CCA) is a group of highly heterogeneous

malignancies. CCA can be divided into three subtypes: intrahepatic

cholangiocarcinoma (iCCA), perihilar cholangiocarcinoma (pCCA)

and distal cholangiocarcinoma (dCCA). pCCA and dCCA are

collectively referred to as extrahepatic cholangiocarcinoma

(eCCA), accounting for 80–90% of all types of CCA (1).

Improvements in diagnosis and treatment have stabilized or

decreased the morbidity and mortality of eCCA in most areas (1,

2). Although surgery has played an essential role, more oncologists

have emphasized the necessity for neoadjuvant therapy, including

vascular‐targeted therapy.

CCA is traditionally regarded as a lymphovascular tumor with a

rich polymorphic tumor microenvironment , and the

overexpression of microvessels has a strong correlation with

tumors (3). Vascular‐targeted therapy mainly inhibits tumor-

associated angiogenesis through drugs (e.g. bevacizumab).

Angiogenesis is an important factor for maintain the rapid

growth and metastasis of malignant tumors, providing necessary

oxygen and nutrients to tumor cells (4, 5). Vascular endothelial

growth factor (VEGF), a kind of homodimeric heparin-binding

protein, can enhance the division capability of vascular endothelial

cells and promote tumor-associated angiogenesis (6). Poor T cell

infiltration and high M2-TAM in eCCA are correlated with elevated

VEGF levels (7). In addition, the 5-year survival rate of eCCA

patients with high microvessel density MVD (2.2%) was

significantly worse than low MVD patients (42.1%) (8, 9). It is

undeniable that VEGF and MVD are indeed related to the

prognosis and progression of almost all tumors, and this is also

true in eCCA (10), and about 59% of eCCA patients overexpress

VEGF (11). Currently, immunohistochemical stains and microarray

analysis are most commonly used to detect VEGF expression and

MVD. However, this method is invasive and difficult to repeat.

Magnetic resonance imaging (MRI) can clearly visualize various

biliary diseases (12). However, naked-eye evaluation of the tumor

VEGF level and MVD still remains extremely challenging. Machine

learning, which can deeply mine images and analyze them objectively

and quantitatively, has become a commonly used method in clinical

oncology research (13–15). One study showed that six pathological

features of iCCA, including VEGF, can be evaluated accurately by

machine learning of ultrasound images before operation. The area
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under the curve (AUC) for the VEGF group was 0.86 (16). However,

carcinogenesis, diagnosis, and treatment markedly differ between

iCCA and eCCA (1, 17). Additionally, the ultrasound has great

variability according to the level of the operators. Additionally,

MVD belongs to continuous numerical data, and there is no exact

cut-off value. Thus, most related studies use the mean or median

value of MVD as cut-off (1, 8). However, this method is controversial

for the clinical interpretation of different patient samples. In this

study, we constructed a classification model for prediction of VEGF

expression and a regression model for quantitative prediction of

MVD based on multi-sequence MR images, using machine learning

for objective and non-invasive preoperative evaluation of VEGF

expression and MVD of eCCA.
2 Materials and methods

2.1 Patients’ enrollment

This retrospective study was approved by the institutional

review board, and the human-related procedures followed the

“Helsinki Declaration”. Since the study was retrospective, written

informed consent of patients was not required. We collected

patients treated in our hospital from January 2011 to December

2020 and met the following inclusion and exclusion criteria.

Inclusion criteria included: (I) had complete medical records; (II)

had complete preoperative multiparametric MR images; (III)

pathologically confirmed eCCA. Exclusion criteria included: (I)

the patient had received any treatment before MR scan, such as

surgery, and targeted treatment; (II) the image quality was too poor

or the focus was too small (< 5 mm) to outline the focus target area.

The flow diagram of patient enrollment is displayed in Figure 1.
2.2 Pathological specimen processing

All enrolled patients underwent surgical resection. Tumor

specimens obtained during surgery were used for pathological

analysis to determine VEGF expression and MVD count.

Immunohistochemical staining and microarray analysis of VEGF

and MVD were performed according to relevant standard methods

by a pathologist with more than 10 years of clinical experience.
FIGURE 1

Flow chart of inclusion and exclusion criteria of patients. MRI, magnetic resonance imaging; eCCA, extrahepatic cholangiocarcinoma.
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2.3 MR image acquisition

Preoperative evaluation included standard upper abdominal

scanning with 3.0T MRI scanner (Achieva, Philips, Netherlands)

and 16-channel trunk coil. MRI acquisition sequence included but

was not limited to transverse T1-weighted imaging (T1WI), T2-

weighted imaging (T2WI), and diffusion-weighted imaging (DWI).

The parameters of these three acquisition sequences are detailed in

Table 1. All MR images were retrieved and analyzed by the Picture

Archiving and Communication Systems. In addition, all MR images

applied voxel size normalization and voxel intensity normalization.
2.4 Image segmentation and
features extraction

Region of interest (ROI) segmentation and feature extraction

were performed by an experienced radiologist using the software

MaZda (version 4.6, http://www.eletel.p.lodz.pl/programy/mazda/)

(18–20). The ROI margins were strictly defined to always be 1–2

mm from the tumor margin. In addition, the “± 3 sigma” option in

the MaZda software was selected for image standardization.
2.5 Intra-observer and inter-observer
agreement

To assess the stability of features, two radiologists jointly

selected T1WI, T2WI, and DWI images of 20 patients at random

for repeated segmentation. One radiologist re-outlined the ROI

twice at different times of the week. Another radiologist

independently outlined the ROI once. The extracted features were

used for ICC calculation using Python programming language

(version 3.7, https://www.python.org) to evaluate the intra-

observer and inter-observer agreement of each feature. ICC > 0.75

indicated good reliability, and this feature was retained.
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2.6 Feature processing and model building

Feature processing and model building were performed with

the uAI Research Portal (United Imaging Intelligence, China).

First, 80% of the samples were randomly selected as the training

cohort and the other 20% as the test cohort. Then, Z-score

standardization was used to eliminate errors caused by different

dimensions. The least absolute shrinkage and selection operator

(Lasso) regression method was used for feature selection. When

constructing both models, eight data preprocessing methods were

tried: Box-cox transform, L1-norm regularization, L2-norm

regularization, max abs normalization, min-max normalization,

Quantile transform, YeoJohnson transform, and Z-score

standardization. Finally, when constructing the classification

model for predicting VEGF expression, nine machine learning

algorithms were tried: Gaussian process regression, K-nearest

neighbors, logistic regression, partial least squares-discriminant

analysis, quadratic discriminant analysis, random forest,

stochastic gradient descent based linear regression, support

vector machine, and XGboost. In addition to logistic regression,

part ia l least squares-discriminant analysis , quadrat ic

discriminant analysis, the other six algorithms were also used

to construct the regression model for predicting MVD. The above

steps were repeated 20 times to ensure good reliability of the

models. An overview of the machine learning workflow is shown

in Figure 2.

AUC of the subject ROC and the Adjusted R-Squared

(Adjusted R2) were used to evaluate the effectiveness of the

classification model and the regression model, respectively.

Other auxiliary evaluation indices including F1 score, recall,

precision, sensitivity, specificity, accuracy, mean square error

(MSE), mean absolute error (MAE), and Pearson correlation

coefficient (PCC) were also calculated. Finally, the bias and

variance of both models were calculated to evaluate their fitting

and generalization. The models with the highest average AUC or

Adjusted R2 in the test cohort were identified as the best models

for classification or regression.
2.7 Statistical analysis

Statistical analysis of the data on clinical and pathological

characteristics of patients was performed using Statistical Product

and Service Solutions (SPSS, version 25.0, IBM). Continuous

variables were expressed as mean ± standard deviation (SD)

when they followed a normal distribution, and median value

was used for non-normally distributed data. The correlation

between VEGF expression and age, gender, tumor location, and

MVD was evaluated using binary multivariate logistic regression.

The evaluation indices of both machine learning models were

calculated using the uAI Research Portal. All statistical tests were

two-sided, and P values < 0.05 were considered significant.
TABLE 1 MRI sequences and parameters.

Parameter T1WI T2WI DWI

TR (msec) 3.1 1610 934

TE (msec) 1.44 70 52

Section thickness (mm) 3 7 7

Section gap (mm) 1.5 1 1

FOV (mm2) 280 × 305 280 × 305 280 × 305

Matrix size 244 × 186 176 × 201 100 × 124

Flip angle (°) 10 90 90

b values (s/mm2) – – 0 and 800
MRI, magnetic resonance imaging; T1WI, T1-weighted imaging; T2WI, T2-weighted imaging;
DWI, diffusion-weighted imaging; TR, repetition time; TE, echo time; FOV, field of view.
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3 Results

3.1 Patient characteristics

There are 105 patients were in accordance with the inclusive

criteria. No patients were excluded as the reason that they received

any treatment before MRI. However, 5 patients were excluded

because the image quality was too poor or the lesion was too

small. Finally, we identified 100 eligible patients based on the

inclusion and exclusion criteria. The mean age of all eCCA

patients was 57.38 years. The ratio of male to female and pCCA

patients to dCCA patients was close to 50%. Additionally, there

were more patients with positive VEGF expression than negative.

The detailed results are shown in Table 2.

In addition, in the multivariable logistic regression analysis of

the related factors of VEGF expression, age (P = 0.125, OR = 0.461),
Frontiers in Oncology 04
gender (P = 0.059, OR = 0.952), and tumor (P = 0.583, OR = 0.764)

location did not affect the expression of VEGF, while there was a

significant positive relationship (P = 0.008, OR = 1.014) between

MVD and VEGF expression. Likelihood ratio test (c² (4) = 16.670,

P = 0.002) and Hosmer–Lemeshow test (c² (8) = 13.278, p = 0.103)

showed the validity and goodness offit of the multivariable logistical

regression analysis model.
3.2 Features extraction

More than 300 image features were extracted from each ROI

using MaZda. Then, the features with missing values were deleted.

Finally, each sequence image uniformly retained 300 features. These

features were classified into six feature families including histogram

(12), gradient (6), co-occurrence matrix (20), run length matrix

(240), autoregressive model (6), and wavelet (16). Finally, the

features extracted from T1WI, T2WI, and DWI images of each

patient were mixed, and a total of 900 features were obtained.
3.3 Intra-observer and inter-observer
agreement

Through ICC consistency analysis, 823 features with both intra-

and inter-observer ICC values greater than 0.75 were identified among

the 900 features. The removed features included 30 T1WI image

features, 29 T2WI image features, and 18 DWI image features. Figure 3

shows the results of the ICC consistency analysis for each feature.
3.4 Feature selection and models
construction

In the classification model for predicting VEGF expression, the

nine best features were obtained by selection using Lasso with an
TABLE 2 Clinical and histologic characteristics of all eCCA patients.

Variable Whole (n = 100)

Age, mean ± SD, years 57.38 ± 10.06

Gender

Female, n
Male, n

46
54

Localization

pCCA, n
dCCA, n

47
53

MVD, mean ± SD 101.16 ± 58.11

VEGF

Positive, n
Negative, n

71
29
SD, standard deviation; pCCA, perihilar cholangiocarcinoma; dCCA, distal
cholangiocarcinoma; VEGF, vascular endothelial growth factor; MVD, microvessel density.
*, P < 0.05.
FIGURE 2

Workflow of machine learning process in the current study.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1048311
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Liu et al. 10.3389/fonc.2023.1048311
alpha value of 0.075. Five of them were DWI image features, namely

DWI-sigma, DWI-s(3_0)sumofsqs, DWI-s(3_0)sumvarnc, DWI-s

(5_-5)invdfmom, and DWI-wavenll_s-2. The other four features

were T1WI-s(3_0)difentrp, T1WI-wavenll_s-3, T2WI-s(5_-5)

sumofsqs, and T2WI-kurtosis (Figure 4A). Based on the nine

features, 72 different combinations of machine learning

classification models were constructed. Finally, the combination

with the highest average AUC value in the test cohort was the Z-

score standardization + logistic regression. The average AUCs of the

training and test cohorts were 0.912 (range, 0.876–0.963) and 0.884

(range, 0.631–1), respectively (Figures 4B, C). The average accuracy

and sensitivity of the model in the test cohort were also excellent,

0.84 (range, 0.65–0.952) and 0.926 (range, 0.786–1), respectively.

The average specificity in the test cohort was relatively poor, at only

0.633 (range, 0.333–0.833).
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In the regression model for predicting MVD, 66 features were

retained using Lasso with an alpha value of 1.000. Of these, the

number of T1WI, T2WI, and DWI image features were 22, 25, and

19, respectively (Figure 5A). Using these 66 features, 48 machine

learning regression models were constructed. Lastly, the model of

the Z-score standardization + stochastic gradient descent based

linear regression showed good performance and was chosen as the

best model. The average Adjusted R2 of its training and test cohorts

were 0.975 (range, 0.964–0.984) and 0.781 (range, 0.233–0.896),

respectively. The results of the average Adjusted R2 in both the

training and test cohorts were acceptable, and their values were

greater than the mean model. The scatter plots (Figures 5B, C) and

prediction curves (Figures 5D, E) display the prediction results and

trends for each sample. Table 3 shows the results of all evaluation

indices for the two models predicting VEGF expression and MVD.
4 Discussion

In this study, we established two machine learning models

based on MR images to predict VEGF expression and MVD in

eCCA. When constructing the machine learning model for

predicting MVD, we used the regression model, which is rarely

used in medical research machine learning, and obtained

satisfactory results. The classification model successfully predicted

the expression of VEGF in eCCA. The regression model for

predicting MVD also exhibited excellent performance. This

demonstrates that machine learning is promising for the clinical

evaluation of tumor-associated angiogenesis in eCCA.

Recent studies have shown that VEGF overexpression and MVD

are related to tumor progression, metastasis, and prognosis in eCCA

(8, 9, 21). For unresectable middle and advanced eCCA patients, the
FIGURE 3

ICC consistency analysis boxplot. Blue represents inter-observer
agreement, and red represents intra-observer agreement.
A

B C

FIGURE 4

The performance of the classification model. (A) The bar graph shows the weight coefficient of each predictive feature in the model of Z-score
standardization + logistic regression. (B, C) The ROC curves for training and test cohorts of different combinations (Three combinations with the
best results are listed).
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effect of conventional chemotherapy is not satisfactory (22, 23).

Therefore, researchers are exploring new treatment protocols for the

molecular pathways (such as tumor-associated angiogenesis) in the

occurrence and development of CCA. Currently, the application of

purely vascular targeted therapies in CCA patients is limited.

However, studies have shown that combining vascular targeted

therapies with immunotherapies will bring significant benefits to

patients (24–26). In addition, in clinical practice, invasive
Frontiers in Oncology 06
histopathological examinations for monitoring angiogenesis within

tumors still presents many problems and inconvenience. Some

scholars have used conventional imaging methods to study the

angiogenesis of CCA. Park et al. retrospectively analyzed the CT

images of 147 patients with iCCA. They found that high blood supply

on CT images was related to higher relapse-free survival and better

prognosis, and the vascular distribution on CT images could be used

as a non-invasive prognostic index for iCCA (27). Furthermore,
D

A B

E

C

FIGURE 5

The performance of the Z-score standardization + stochastic gradient descent based linear regression. (A) The bar graph shows the weight coefficient of
top 50 predictive feature. (B, C) The scatter plots for training and test cohorts. (D, E) The prediction curves for training and test cohorts.
TABLE 3 Performance evaluation of two models for predicting VEGF expression and MVD.

Evaluation
metrics

Classification model Regression model

Training cohorts (80
patients)

Testing cohorts (20
patients)

Training cohorts (80
patients)

Testing cohorts (20
patients)

AUC 0.912 0.884

F1-score 0.923 0.891

Precision 0.887 0.864

Sensitivity 0.961 0.926

Specificity 0.701 0.633

Accuracy 0.886 0.84

R2 0.927 0.434

MAE 11.409 34.374

MSE 245 1891.407

PCC 0.963 0.725

Bias 0.129 2327.009

Variance 0.062 2902.103
VEGF, vascular endothelial growth factor; MVD, microvessel density; AUC, area under the curve; R2, coefficient of determination; MAE, mean absolute error; MSE, mean square error; PCC,
Pearson correlation coefficient.
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Yugawa et al. confirmed that MVD in CCA tumors was closely related

to radiological characteristics of the hepatic arterial phase on enhanced

CT, which may be a potential prognostic indicator (28).

In the research studied to date, the number of molecular or

pathological studies of CCA using machine learning is still relatively

rare, and most of the research subjects are iCCA. Studies by Sadot

et al. indicated that quantitative imaging phenotypes in CT images

correlated with the expression of specific hypoxic markers in iCCA,

including VEGF (29). Recently, Zhou and his team established a

machine learning model based on dynamic contrast-enhanced MR

images whose features can be used to preoperatively predict

microvascular invasion in patients with mass-forming iCCA (30).

Prior studies have shown, the pathological features of eCCA

(including pathological grading, lymph node metastasis, T stage,

perineural infiltration, and microvascular infiltration) can also be

predicted by several machine learning models with excellent results

(31, 32).

In the present work, our machine learning models, based on

MR images and used to predict the VEGF expression and MVD of

eCCA, further enriched the knowledge in the field of eCCA

machine learning and provides credible aid for the treatment and

prognosis of patients with eCCA. In addition, our exploration of

regression-based machine learning for continuous variables in

which optimal cut-off values are not clinically available was

effective. More interestingly, we found that the DWI image

features accounted for a relatively large number (5/9) of the

classification model features, while the number of T2WI image

features was larger (25/66) in the regression model. The reasons for

this result may be varied, such as correlation between different types

of images and predicted objects or systematic error caused by

inconsistent algorithms in the process of machine learning. In

addition, in both the classification and regression models, the

feature with the largest weight coefficient was the wavelet

transform feature in the DWI image. This is in agreement with

the previous research results of several other scholars (30, 33, 34),

indicating that wavelet transform features may be able to

characterize tumor biology on multiple scales.

There are scenarios in which the present studies fall short. First,

this is a retrospective case-control study with a small sample size and

all patients were from a single institution, so selection bias may be

present. To increase the universality of the model application, it is

necessary to carry out prospective multicenter studies with larger

samples. Second, this study only included conventional non-enhanced

MRI sequences and did not include enhancement sequences and other

special sequences. On the one hand, almost all patients underwent

conventional sequence scans, which is conducive to increasing the

applicability of the model. On the other hand, adding sequence types

would further reduce the number of patient samples included in the

study. Last but not least, radiomics mines the deep feature information

hidden in the image, which can not be recognized by the naked eye,

and may be related to the disease itself, regardless of whether it is

enhanced or not. Some studies have shown that enhanced images may

not significantly improve the efficiency of radiomics models compared

with non-enhanced images (35). Third, tumors smaller than 5 mm

were excluded during this study, making it difficult for the machine

learning models to predict tumors of smaller size. Finally, the number
Frontiers in Oncology 07
of features in the regression model was relatively large. In future work,

we will test further methods and algorithms to obtain the minimum

number of features and the best model efficiency.

In this study, we constructed and internally validated MRI-

based machine learning models to predict VEGF expression and

MVD in eCCA. Both models provide powerful guidance for

monitoring eCCA angiogenesis, may assist in clinical decision-

making, and ultimately improve the prognosis of patients.
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