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The prediction of response to drugs before initiating therapy based on

transcriptome data is a major challenge. However, identifying effective drug

response label data costs time and resources. Methods available often predict

poorly and fail to identify robust biomarkers due to the curse of dimensionality:

high dimensionality and low sample size. Therefore, this necessitates the

development of predictive models to effectively predict the response to drugs

using limited labeled data while being interpretable. In this study, we report a novel

Hierarchical Graph Random Neural Networks (HiRAND) framework to predict the

drug response using transcriptome data of few labeled data and additional

unlabeled data. HiRAND completes the information integration of the gene

graph and sample graph by graph convolutional network (GCN). The innovation

of our model is leveraging data augmentation strategy to solve the dilemma of

limited labeled data and using consistency regularization to optimize the

prediction consistency of unlabeled data across different data augmentations.

The results showed that HiRAND achieved better performance than competitive

methods in various prediction scenarios, including both simulation data and

multiple drug response data. We found that the prediction ability of HiRAND in

the drug vorinostat showed the best results across all 62 drugs. In addition,

HiRAND was interpreted to identify the key genes most important to vorinostat

response, highlighting critical roles for ribosomal protein-related genes in the

response to histone deacetylase inhibition. Our HiRAND could be utilized as an

efficient framework for improving the drug response prediction performance using

few labeled data.

KEYWORDS

semi-supervised, drug response, deep learning, prediction, graph convolution network
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fonc.2023.1047556/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1047556/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1047556/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1047556/full
https://www.frontiersin.org/articles/10.3389/fonc.2023.1047556/full
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2023.1047556&domain=pdf&date_stamp=2023-01-26
mailto:likang@ems.hrbmu.edu.cn
mailto:houyan@bjmu.edu.cn
https://doi.org/10.3389/fonc.2023.1047556
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2023.1047556
https://www.frontiersin.org/journals/oncology


Huang et al. 10.3389/fonc.2023.1047556
Introduction
Precision medicine seeks to customize medical treatments based

on the genetic characteristics of each patient. Essentially, this is the

process of tailoring proactive and preventive care in order to

maximize medical efficacy and cost-effectiveness (1). A personalized

approach in cancer therapeutics has long been a noble goal for both

clinicians and patients. Despite the undeniable success of certain

targeted therapeutic approaches (2), unfortunately, they often provide

benefits only to a few patients (3), and almost inevitably, patients tend

to develop resistance to these targeted therapies as well (4). Tumor

subtype and cancer genome evolution, resulting in intratumor

heterogeneity, remain the main challenges to successful cancer

personalizing treatment (5). Machine learning methodologies,

including the emerging deep learning models, are an important

component of the analysis to allow for the classification and

prediction of outcomes for individuals and populations (6). For

example, researchers have developed logistic regression (7) and

extreme gradient boosting (XGBoost) (8)-based classifiers that

predict drug resistance based on treatment-naive (A person is

considered to be “treatment-naive” if he or she has never

undergone treatment for a particular il lness) genomic,

transcriptomic profiles and clinical characteristics. In addition, the

deep learning methods, including convolutional neural networks

(CNNs) (9–13) and deep neural networks (DNNs) (14–17), are

applied to predict the prognosis or response to therapy using gene

expression, copy-number alteration, clinical profiles, pathway

profiles, and image information. Computer-aided methods

adequately capture the important features that are key to

developing robust models (18). Most of the available methods

possessed an obvious dependence on labeled data. However, in the

clinical practice field, such training labeled dataset collection for these

patients has been proven to be difficult, time-consuming, and often

frustrating. The development of a precision medicine paradigm for

these cancers is hampered by difficulty in obtaining tumor-related

labeled data.

Indeed, labeled data inadequacy is a common problem for both

precision medicine and clinical trial. Developing a novel method that

can predict the therapeutic response and identify the biomarkers

based on a minimal amount of sample is a task of top priority. Semi-

supervised learning has proven to be a powerful paradigm for

leveraging unlabeled data to mitigate the reliance on large labeled

datasets. It is necessary to fully exploit the available class label

information, especially in cases where few labeled data are available.

Currently, semi-supervised learning is widely used in image

identification. Songpa et al. proposed a simple and efficient method

of semi-supervised learning for deep neural networks: Pseudo-Label

(19). Timo et al. developed a self-assembling semi-supervised method

under a variety of regularization and input enhancement conditions

(20). Colin et al. proposed the semi-supervised framework MixMatch

(21), which guessed low-entropy labels for data-augmented unlabeled

examples and mixed labeled and unlabeled data using the MixUp

method (22). All of these methods worked well in the field of image

recognition, and data augmentation is an important factor in semi-

supervised success. Data augmentation is one of the most skilled in

deep learning, for example, translation and rotation (23) (24). The
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main purpose of data augmentation focused on increasing the sample

size and generating a more diverse dataset (25). In principle, labels

predicted by the model should be consistent for the samples generated

by the same data augmentation, which is called consistency

regularization (26) (27). In addition, semi-supervised learning is

based on the consensus that the classification boundary of the

classifier should not pass through the high-density region of the

marginal distribution. That is forcing the classifier to predict with low

entropy, which is also named entropy minimization (28). Inspired by

these methods, we distill the advantages of successful available image

identification algorithms and develop a semi-supervised method that

is applied in the medical molecular field.

We introduce Hierarchical Graph Random Neural Networks

(HiRAND), a graph convolutional network (GCN)-based deep

learning semi-supervised model, to predict drug response using

transcriptomic data. HiRAND completes the information

integration of the gene graph and the sample graph by GCN in

order. In the gene spatial, the neighbor information is aggregated to

generate new convolutional features based on the gene weight matrix

and gene adjacency matrix. In the sample spatial, by dropping out a

certain proportion of sample expression data several times, the

sample’s information can pass to its neighbor along the pre-built

sample adjacency matrix and generate a novel perturbation matrix

based on GCN. The perturbation matrix is the augmentation version

of the original expression data. By doing so, we achieve data

augmentation for molecular expression data and improve the model

generalization. An overview of HiRAND is illustrated in Figure 1A. In

our results, HiRAND significantly outperformed classification models

typically in most of the experiments, especially in the case of few

labeled samples (the labeled sample size range is from 2 to 20). In

addition, we provided interpretations of the genes that are selected by

HiRAND to understand their drug-specific response mechanisms.

Thus, HiRAND achieves superior predictive performance compared

with established models and reveals the biological mechanism of drug

response, with translational implications.
Methods

The overall structure of HiRAND

The proposed method HiRAND mainly consisted of four parts,

including gene selection, data augmentation, multilayer perception

(MLP) for prediction, and consistency regularization (Figure 1A). The

initial input data of the model were the gene expression matrix Xinput

in a gene sample [sample means the nodes of the sample similarity

graph G(n) throughout the text] format and the gene adjacency matrix

Ag. For clarity, we simply described the procedure of integrating the

information using GCN in the graph data as shown in Equation 1.

Consider a graph G=(V,E), where Vdenoted the vertices and E

denoted the edges. The aggregation process of GCN was defined as:

H = s (X(A ȯW)) (1)

where X was input data denoting the characteristic matrix of the

vertices, and A was the adjacent matrix denoting the relationship

between nodes. W was layer-specific trainable weight matrix, and s
represented the activation function. Two types of graphs were used in
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HiRAND: gene interaction graph G(g) and sample similarity graph

G(n), and convolution of those two graphs performed the gene

selection and data augmentation, respectively. The consistency

regularization was used to optimize the prediction consistency

among S augmentation data. The pseudocode of HiRAND was

provided in Algorithm 1.
Fron
Input:

Adjgene= g × g, adjacent matrix for g genes

Adjsample = n × n, adjacent matrix for n samples

X = n × g, feature matrix for n samples and g genes

S: time of augmentation

δ = DropNote/dropout probability

η = learning rate

fmlp: the model

Function HiRAND (Adjgene, Adjsample, X, S, δ, η):

SetVariablesNull (Z, ImportanceScore)

// augment the data

for s in 1 : S do
// sparse the inputX1 = SparseGCN

(X*Vweight*Adjgene)

// perturb the dataX2 ~ DropNote (X1, δ)

// propagate the dataX3 = 1
1 +koK

k=0Adj
k
sampleX2

// predict the labelZs = fmlp(X3)

end
Z = fmlp(

1
1 +koK

k=0Adj
k
sampleX)

// loss functionLtotal = Llabel + Lunlabel

// Importance score of genes

ImportanceScore = sum (abs(Vweight * Adjgene))

return Z, ImportanceScore

Output:
tiers in Oncology 03
Z: the label distribution prediction

ImprotenceScore: the importance score of genes
ALGORITHM 1
Gene selection

The main task of this layer was to aggregate the gene information

along the gene adjacency matrix and achieve the gene selection. As

Equation 2 showed:

H(1) = s Xinput  Ag ȯW(0)
� �� �

(2)

Xinput was n*g matrix, where each row represented a sample and

each column denoted a gene. The gene adjacency matrix Ag was g*g

one-hot matrix, where A(g)
ij = 1 represented the interaction between

gene i and gene j could be found in the HINT database, which was a

database of high-quality protein–protein interactomes for humans

(20). s(·) denoted the Tanh activation function here. W(0) was a g*g

trainable matrix, which contributed to the gene selection by assigning

a higher weight value W(0)
ij to more critical genes. To this end, we

constructed the gene importance score as Equation 3:

Ij =
o
i

A(g)
ij ȯ W(0)

ij

��� ���� �
o
i
o
j

A(g)
ij o ̇ W(0)

ij

��� ���� � (3)

A(g)
ij and W(0)

ij were the elements of the Ag and W(0) separately.

This output H(1) of the gene selection layer was still n*g matrix.
A

B

FIGURE 1

The workflow of the HiRAND framework and the analysis strategy. (A) HiRAND consisted of four main parts, including gene selection, data augmentation,
prediction, and consistency regularization. Firstly, the feature embedding of gene expression profiles was obtained through GCN. Secondly, the multiple
graph augmentations were generated by random propagation. Thirdly, the label prediction distribution was obtained through MLP. Fourthly, the final
label results were used through consistency regularization. (B) For each drug response prediction task, we conducted 5-fold cross-validation to
benchmark the predictive power of HiRAND. For the labeled data sample size setting, we considered two aspects: ① very few labeled sample size
(2,3,4,5,6…20) and ② relatively large labeled sample size (30,60,90,120,150,210). The remaining data in the training set were treated as unlabeled data.
This process was repeated five times to show the robustness of HiRAND.
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Data augmentation

The purpose of this process was to complete data augmentation

for the output H(1) matrix by performing the random propagation

strategy. The sample adjacency matrix An indicating the relationship

of samples was used to store information about the sample graph

structure. For constructing the An, the similarity between sample p

and sample q as evaluated by Equation 4:

Simpq = exp −
r2 xp, xq
� �
mϵpq

 !
(4)

where xp and xq denoted the g-dimensional vectors of gene

expression profiles of sample p and sample q, respectively. r(·,·) was
a function of calculating the distance between two different samples.

r(·,·) was the cosine distance here. µ was the hyperparameter, which

was set to 0.5 in this case. ϵpq is a scale parameter and computed

through Equation 5:

ϵpq =
mean r xp,Np

� �� �
+ mean r xq,Nq

� �� �
+ r xp, xq
� �

3
(5)

Np represented the neighbor’s expression vector of sample p, and

similarly Nq denoted the neighbor’s expression vector of sample q.

Then, neighbors of a given sample were defined as the top 10 most

similar samples based on the Simpq according to the mild assumption

that local similarities are more reliable than remote ones (29). The

non-zero part in sample adjacency matrix An of dimension n*n was

constructed according to the Simpq, and the diagonal elements are set

to self-to-self similarity. Therefore, each sample in the An was only

connected with 10 neighbors at a certain distance.

Next, we randomly generated the binary mask ϵp~ Bernoulli (1−d)
for each sample p, where d was the drop rate. To effectively augment

graph data, each sample’s expression data can be randomly dropped

(referred to as Dropout) (30) by multiplying the samples’ expression

vector with its corresponding mask: ~xp = ϵp · x
0
p, where x

0
p denoted the

feature matrix of sample p in H(1). Then, we adopt the GCN to

propagate the neighbors’ information to each sample along the

sample adjacency matrix An as Equation 6:

H(2) = s ~X An ȯW(1)
� �� �

(6)

where ~X was the set of ~xp, and output matrix H(2) was a sample

augmentation data. An was the sample adjacent matrix, and W(1) was

the weight matrix. As shown in Figure 1A, HiRAND yielded S sample

data augmentations based on the S mask matrix, and here, S was set

to 4.

It is well known that GCN only makes the convolution for the

nodes that were directly connected in the graph data. In order to

explore the role of the m-hop neighbor, we consider using the �An

instead of An to receive the information of both near and distant

neighbors in the sample graph data (Equation 7):

�An = o
m

m=0

1
m + 1

An
m (7)

An
m was the adjacent matrix of the m-hop neighbor. �An is the

average of the power series of An from order 0 to order m.
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MLP for prediction

After performing the data augmentation S times, we obtained S

augmented data matrices H(2)
s (1≤ s< S). Then, these S augmentation

datasets were fed into the MLP classifier separately as Equation 8:

~Z(s) = fmlp H(2)
s ,Q

� �
(8)

Where Q denoted the model parameters. MLP consisted of three

layers: the input layer with g neurons (g means the number of

columns of the input data), the hidden layer with 128 neurons, and

the output layer with Cneurons (Cwas the number of classes and was

set to 2 here). For each sample, the probability of being assigned to

each class denoted by ~Z(s) ∈ ½0, 1�n�C could be obtained.
Consistency regularization

Having generated S prediction probability matrices from the

previous layer, we proposed to optimize the prediction consistency

among S outcomes. We first calculated the label distribution center �Zp

by taking the average of all distributions (Equation 9):

�Zp =
1
So

S

s=1

~Z(s)
p (9)

~Z(s)
p was the prediction result distribution of the sample p in the s

data augmentation.

Next, inspired by the sharpening algorithm (21), the sharpening

function (Equation 10) was utilized to reduce the entropy of the

average label distributions. Specifically, the guessed probability �Z0
pw of

sample p in the wth class is calculated by:

�Z0
pw = �Z

− 1
T

pw=o
C−1

c=0

�Z
− 1
T

pc , (0 ≤ w ≤ C − 1) (10)

where T∈(0,1] , which aimed to control the sharpness of the

categorical distribution. Therefore, the label probability approached

one-hot encode label and was treated as the artificial label.
Loss function

Our final loss function to be minimized consisted of two parts

(Equation 11), and l was the parameter that balanced the Llab and

Lunlab :

L = Llab  + lLunlab  (11)

Llab was a cross-entropy term representing the classification

error (Equation 12):

Llab = −
1
So

S

s=1
o
q−1

i=0
Y⊤
i log  ~Z(s)

i (12)

where q denoted labeled nodes among n nodes, and Y was the true

label of the labeled sample. Lunlab was a penalty term for the

regularization loss that denoted the distance between the artificial label

and the predicted label averaged over all augmentations (Equation 13):
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Lunlab  =
1
So

S

s=1
o
n−1

i=0

�Z0
i − ~Z(s)

i

��� ���2
2

(13)

�Z0
i was the guessed probability, and ~Z(s)

i was the predicted

probability for a given sample.

In the HiRAND training phase, the analysis strategy was shown in

Figure 1B. For each drug response prediction, 80% of the whole samples

were seen as the training set, including labeled data and unlabeled data,

and we selected 20% of the total samples as the test set. We selected K

samples of the training set as labeled samples to fine-tune the model and

the remaining samples as unlabeled samples. In K value setting, we

primarily considered two aspects. On one side is exploring the model

performance in the case of few labeled data, and K is set to range 2–20.

On the other side, we would like to see the performance comparison with

the baseline model when more samples are given, so we set the labeled

sample size as {30,60,90,120,150,180,210}. We conducted 5-fold cross-

validation to evaluate the predictive power of HiRAND and ran this

process five times to show the robustness. Full details of data preparation

and the comparison of available methods are given in the Supplementary

Methods subsection.
Results

The performance of HiRAND on the
simulation data

To assess the performance of HiRAND, we simulated an

expression matrix of 500 samples with 1,000 variables. Firstly, a

protein–protein interaction (PPI) network-like adjacency matrix

representing the connection strength among variables was

constructed. Specifically, we employed the preferential attachment

algorithm proposed by Albert (31) to generate a scale-free feature

graph of 1,000 nodes. The distance matrix D recording pairwise

distances among all nodes was then calculated, whose dimension was

1,000 * 1,000. Next, we derived the covariance matrix Sij by

transforming the distances matrix D between nodes according to

Equation 14:

Sij = 0:7Dij , i, j = 1,…, 1000 (14)

Based on the covariance matrix Sij, 500 multivariate Gaussian

samples were obtained as input matrix X=(x1,…,x500)
T followed by

Equation 15:

xi eN (0,S), i = 1,…500 (15)

To generate the outcome variable, we defined 20 features as the

true predictors randomly. A set of parameters b=(b1,…,b20)T and an

intercept b0 were sampled in range (1, 1.5). We also made some of the

parameters negative so that both positive and negative coefficients can

be accommodated, which was more consistent with the situation in

practical applications. Ultimately, the outcome variable y was

calculated as in Equations 16 and 17:

Pr yi = 1jxið Þ = h−1 xTi b + b0
� �

(16)

yi = J Pr yi = 1jxið Þ > mð Þ, i = 1,…1000 (17)
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where h−1(x)=(0.7f(tanh(x))+0.3f(x2))*(1+ex)2 , in which h-1(x)
was the link function and m was the median of y. Thus, we generated

the outcome variable y, which was the binary variable.

We applied HiRAND to the simulation data following the analysis

strategy described before. We found that the area under the curve

(AUC) of HiRAND is higher than all of that of compared methods in

the presence of very few labeled samples, such as less than 20. The AUC

of the compared methods has been improving rapidly by adding the

labeled sample, especially in SVM, which roughly gets the same AUC

with HiRAND trained with more than 20 labeled samples (Figure 2A).

As can be seen, the HiRAND algorithm performed well with very few

labeled data. In Figure 2B, we showed the effect of the step size in

sample graph convolutions and, consequently, on the prediction

performance. Outside of a few instability results, the model with 1

step size is better than with 3 step sizes. Moreover, to further explore the

effects of data augmentation strategy on prediction performance, we

deleted the data augmentation layer from HiRAND as an ablation

experiment. As Figure 2C showed, data augmentation indeed improved

the predictive power of the model. Figure 2D demonstrated the capacity

for feature selection of HiRAND; red represented the differential

features, and gray represented the non-differential features. The

importance scores of the differential features were significantly higher

than those of the non-differential features.
HiRAND provided a competitive
performance in drug response prediction

We further evaluated the HiRAND classification performance on

the drug response data. After merging the cell line expression data

and pharmacological response, the number of cell lines for each

compound was shown in Figure S1.

According to the number of cell lines, 62 compounds with more

than 600 cell lines were picked, whose molecular targets focus on 20

pathways. For each individual drug, we trained the model with the

different labeled samples in accordance with the setup that was

mentioned, and there were a total 1,612 experiments for all 62

drugs. The prediction ability was measured by AUC, accuracy, and

F1 score. We compared our model with four classic methods,

including neural net, nearest neighbor, SVM, and random forest.

The overall result of the comparison between HiRAND and other

methods was shown in Table 1. For an experiment, the result was

labeled “Win” if the AUC of HiRAND was more than that of the

control method and the difference was statistically significant.

Similarly, the result was labeled “Tie” if the difference was not

statistically significant, and it was labeled “Loss” if HiRAND

performed worse than the control number. With these three

measures, the HiRAND model won most of the pairwise

comparisons (Table 1).

In the five 5-fold cross-validation experiments, HiRAND

achieved satisfactory performance; the average AUC keeps

improving as labeled samples were added, especially in cases of very

few labeled data (Figure 3A). In the meantime, the prediction AUC of

HiRAND is consistently higher than that of compared methods.

Furthermore, we demonstrated the prediction presentation of

models on each compound separately. As seen from Figure 3B, for
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some compounds like GW441758, no method can appear workable to

complete the classification, which suggests that the gene expression

information is insufficient for predicting the response of this

compound. Notably, we found that some drugs involving vorinostat

and temozolomide showed much higher AUC (>0.8) compared to

other compounds, suggesting that the gene expression data can be

used for pretreatment screening of patient candidates to these drugs.

As expected, the AUC of HiRAND was consistently higher than the

baseline models throughout the 62 drug predictions. Furthermore, we

grouped the compounds by therapeutic target based on the drug-

target profiles and explored the drug response predictable using the

gene expression data (Figure 3C). We found that the response of

IGFR pathway-related drugs showed the worst performance,

including the BMS-536924 compound. Conversely, the histone

deacetylase (HDAC)-related drugs, such as vorinostat, obtained the
Frontiers in Oncology 06
highest AUC. For demonstrating the AUC comparison between

HiRAND and four compared methods in the individual drug in

more detail, we plotted the heatmap, where red, white, and blue

represented HiRAND win, tie, and lose separately. As Figure S2

showed, HiRAND maintained its competitive advantage in most

cases. So did results in accuracy (Figure S3) and F1 score (Figure

S4), which further confirmed the discriminatory capacity of

our method.
Ablation experiments on drug
response prediction

We selected the best AUC performance for the top five drugs,

including vorinostat, temozolomide, methotrexate, vinblastine, and
TABLE 1 Performance comparison of HiRAND and competitive methods.

AUC F1 Accuracy

Neural
Net

Nearest
Neighbor

SVM Random
Forest

Neural
Net

Nearest
Neighbor

SVM Random
Forest

Neural
Net

Nearest
Neighbor

SVM Random
Forest

Wina 833 1196 1222 1220 1182 1570 1286 1294 655 1263 1193 1197

Lossb 1 0 2 4 0 0 11 3 2 3 9 5

Tiec 778 416 388 388 430 42 315 315 955 346 410 410
fr
aWin represented that the performance of HiRAND was better than that of the competitive method.
bLoss represented that the performance of HiRAND was worse than that of the competitive method.
cTie represented that the performance of HiRAND was equal to that of the competitive method.
D

A B

C

FIGURE 2

The performance of the HiRAND method on the simulation data. (A) The AUC of HiRAND and baseline models over all of the experiments on the
simulation data. (B) The influence of graph convolution step size on the AUC. (C) The influence of data augmentation on the AUC. (D) The gene
selection performance of HiRAND, where red represented differential variables and gray represented non-differential variables.
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nilotinib, to conduct ablation studies on HiRAND to investigate the

contribution of different parts of our model. The information of the

cell line that engaged in model building for the top drugs was

summarized as Figure S5.

Firstly, to explore the role of step size in sample graph

convolution, we designed two experimental studies on different step

sizes. Consistent with the simulation experiment result, HiRAND

with 1 step size was markedly more accurate than HiRAND with 3

step sizes, especially with a small number of labels (Figure 4A). For

sample graph convolution, the effect of first-order neighbors on a

special node is enough; inclusion of multi-order neighbor information

may increase the risk of information bias, which hampered the sample

classification. In addition, to further explore the role of data

augmentation strategy in classification, we completed an ablation

experiment in which we deleted the data augmentation layer from

HiRAND. Although the advantage of data augmentation disappeared

when the labeled sample size was more than 120, we observed

significant improvements during training on very few labeled data

(Figure 4B). The data augmentation was carried out depending on the

sample graph convolution (propagation) and mask matrix and

integrating information from neighbors. During the data

augmentation process, the bias can be instilled into model

construction inevitably. As we all know, data augmentation

promoted the diversification of the input data to some extent and

optimized the classification performance. During training with very

few labeled samples, the bias is tolerable because of alleviating the

dilemma in limited labeled samples. However, the information
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carried by amounts of labeled data is enough to distinguish distinct

classes when more labeled samples were involved in model building;

the data augmentation highlights the disadvantage of the bias. To

investigate the effects of activation functions on prediction

performance, we trained the model with Relu and Tanh (default

setting) functions separately. The results also indicated that different

activation functions had little effect on the result of HiRAND (Figure

S6A). To explore the function of various numbers of MLP hidden

layers, we compared the performance of default setting HiRAND

[128, 32] to another MLP layer setting, including MLP hidden units

[64, 32] and MLP hidden units [128,64,32]. As Figure S6B showed, all

comparisons ended in a tie. In addition, 129 comparisons ended in a

tie, and one comparison ended in a win (Figure S6C). Therefore, we

speculated that different MLP layer settings might have little influence

on the performance of HiRAND.

Then, we compared our model with other semi-supervised

methods, including AffinityNet (32) and HiGCN (33). The average

prediction AUC over the 5-fold is used as the final performance

measure. As Figures 4C, D showed, HiRAND achieved higher AUC

than all other methods, especially when the amount of labeled data is

limited. Clearly, as the number of labeled data increased, the AUC gap

between HiRAND and contrast semi-supervised method gradually

narrowed. We noted that AffinityNet and HiGCN could achieve

remarkable AUC performance using large quantities of labeled data,

even exceeding the AUC of HiRAND. Once again, our results verified

that the data augmentation strategy does not entail a direct prediction

advantage when a lot of labeled samples were treated as the training
A B

C

FIGURE 3

The predictive performance of HiRAND on drug response data. (A) The plot showed the average model AUC across all of the drug response models
trained by different labeled samples. We considered the number of labeled samples from 2 to 20 as the first test level and from 30 to 210 as the second
test level. The AUC of HiRAND was displayed separately for each drug (B) and target pathway (C).
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set because the disadvantage of introducing noise into the model

covered the advantage of enhancing the data diversity.
HiRAND selected the important genes for
predicting drug response

In this section, we paid more attention to the role of selected genes

by HiRAND.We investigated the important genes selected depending

on the vorinostat response prediction, which had the best predicted

results. Vorinostat, a histone deacetylase inhibitor (HDI), promotes

cell cycle arrest (34). In the past decade, proteomic analyses have

revealed that non-histone proteins are frequently acetylated and

constitute a major portion of the acetylome in mammalian cells

(Figure 5A). Indeed, non-histone protein acetylation is involved in

key cellular processes relevant to physiology and disease, such as gene

transcription, DNA damage repair, cell division, signal transduction,

protein folding, autophagy, and metabolism (35). Xu et al. (36) found

that acetylation of ribosomal proteins likely improved their stability

and possibly translational efficiency of ribosomes. We completed five

repeated experiments trained by 20 labeled samples to select the top

50 genes based on important scores. As Figure 5B showed, 29 genes

appeared in all five experiments and were defined as the key genes for

vorinostat. The correlation analysis for the 29 key genes with IC50

value was shown in Figure 5C. We found that 23/29 genes belong to

the ribosomal protein (RP) gene family, in which 22 RP genes were

negatively correlated with IC50 value, and the strongest correlation

value was -0.39. These results validated our hypothesis that ribosomal

protein was acetylated under the influence of vorinostat to accelerate

translation efficiency, which exerts a beneficial effect on survival. The

overexpression of most genes in the lower IC50 value (Figure 5D) is

consistent with our hypothesis. Moreover, we plotted the top 15

pathways depending on the Gene Ontology (GO) analysis (Figure 5E)
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of the 29 key genes, and most pathways were involved in translation

and protein anchoring. These results reaffirmed our hypothesis and

showed the gene selection capability of HiRAND. In addition, the

relationship between vorinostat and ribosome was also confirmed in

the published literature. The GO analysis showed that the active

probe-binding proteins were highly enriched in the translation

elongation and ribosome-associated pathways, and the probe was

designed by connecting HDIs (such as vorinostat) (37). Marks (38)

reported that the vorinostat-related acetylation sites were identified

on proteins that regulate ribosome formation and function. Houston

et al. (39) demonstrated that acetyl-CoA depletion alters the integrity

of the nucleolus, impairing ribosomal RNA synthesis. This nucleolar

remodeling appears to be mediated through the HDACs (39). Overall,

these further validate our result of the 29 key genes.
Discussion

Ranging from drug research and development (R&D) to precision

medicine, obtaining the prognosis and treatment response labels of

patients is often difficult and expensive. In this paper, we developed

HiRAND, the GCN-based deep learning method for drug response

prediction that enabled semi-supervised classification and feature

selection using very few labeled data. One of the highlights of

HiRAND is aggregating the information from both gene graph

spatial and sample graph spatial simultaneously. Another major

contribution is achieving data augmentation in the expression

profile and overcoming the dilemma of the limited labeled sample

size. Overall, our method performs significantly better than other

competitive methods on the 5-fold cross-validation experiments,

whether in multiple drug response predictions and translation

scenarios. Notably, the advantage of HiRAND becomes more

pronounced, especially in models trained using few labeled samples.
D

A B

C

FIGURE 4

The ablation studies for examining the contributions of different components in HiRAND. (A) The AUC comparison of different convolution step lengths;
red line and blue line represented the one step and three steps, respectively. (B) The AUC comparison of data augmentation; red line and green line
represented the training with and without data augmentation. The contrast results of HiRAND and (C) HiGCN and (D) AffinityNet across five drugs.
Red, white, and blue represented HiRAND win, tie, and loss in the comparison, respectively.
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This paper provided a new idea for the exploration of predicting

drug response using very few labeled data. Along this line of thinking,

future research could focus on designing updated model versions to

speed up the clinical application process (i.e., transferring the cell line to

patient level). Ideas like the HiRAND method might be expected to

work well in the clinical scenario. Traditional randomized drug-

centered clinical trials are cumbersome, costly, and require large

numbers of patients to demonstrate a clinical benefit (40).

Computer-aided methods could help obtain and analyze information

from various data sources and generate statistically valid drug

sensitivity prediction models at all stages of drug development (41).

A semi-supervised method allows us to overcome the problem of a

small labeled sample size in this process and provides constructive

advice for next stage study. Thus, the clinical success rates could

improve by optimizing targeted therapy selection, patient enrollment,

and stratification (42, 43). Further clinical trials lie in moving from
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drug-centric to patient-centric individualized combination therapy. A

second compelling application is in clinical contexts seeking to

implement precision medicine for individual patients. The strategy of

matching drugs to patients on the basis of molecular features should

begin earlier in the disease progression (i.e., to identify the right drug

for the right patient). Classic predictive models have been shown to

have limited predictive power for these two cases because of an inability

to obtain large samples of well-characterized clinical data, which are the

expression profiles matched with the outcome label like drug response.

Our approach is one way of overcoming the problem of small labeled

sample sizes and low reliability inherent to previous precision medicine

and drug R&D studies. We can select the more precise candidates for a

certain treatment using HiRAND, and the cure rate will hopefully

increase. On the other hand, the time frame from development to

routine clinical may be shortened to enhance the pace of drug discovery

and development using the HiRAND method.
D

A B

E

C

FIGURE 5

The HiRAND interpretation to identify predictive markers. (A) Schematic representation of acetylation sites. (B) The intersections of genes across five
repeat experiments were treated as the predictive markers. (C) The Pearson correlation between the 29 predictive markers and IC50 value. (D) The
heatmap of the gene expression of the 29 predictive markers. (E) GO analysis results of the 29 predictive markers.
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At present, studies have shown that HDACs can influence a

multitude of physiological pathways in different cells. HDACs

regulate non-histone proteins [adhesion proteins (44), transcription

factors (45), cellular proteins (46), DNA-repair proteins (47), and cell

signaling and viral proteins (48)] according to their acetylation state.

HDIs (such as vorinostat) selectively modulate gene transcription

through the changes in the structure of proteins involved in the

transcriptional machinery. Vorinostat is the first-generation HDAC

pan-inhibitor belonging to the hydroxamic acid group of HDIs

approved by the Food and Drug Administration (FDA) (49). It has

been demonstrated that vorinostat showed the antiproliferative

activity of human cancer cell lines, including lung cancer (50),

ovarian cancer (51), breast cancer (52), skin cancer (53), and so on.

In this paper, we screened 29 key genes related to vorinostat using our

HiRAND. After performing enrichment analysis for 29 key genes, we

speculated that vorinostat might exert its activity by acting on the

acetylation of non-histone (ribosomal proteins). This hypothesis will

require a future investigation.

From the results of the ablation experiments, the multiple graph

data augmentation strategy alleviated the low-sample size problem to

some extent, based on which we utilized consistency regularization to

improve the model’s generalization on unlabeled data. As expected,

data augmentation made the performance better compared to standard

networks trained without data augmentation. Extensive data

augmentation was performed to overcome the limitation of our

training data (54). Data augmentation was critical to avoid overfitting

and maximize the generalization accuracy to unseen data (55). Thus,

data augmentation can achieve good results not only in image

identification but also in molecular pattern recognition. Secondly, the

weight matrix in the gene graph convolutional contributed to the gene

selection and improved the prediction performance. Moreover, we also

observed that drug responses that target some pathways were better

predicted than others, such as the response of the chromatin histone

acetylation-related drug was predicted well. The reason was input data

were obtained with the mRNA expression profile in the present study,

which was insufficient to predict drug response for some compounds. A

worthy future direction would be to enrich the input data by applying

the fusion method for knowledge integration from multi-omics data.

Another direction would be to better understand the relationship

between the predictability of a drug and pharmacological properties,

including the regulatory mechanism of drug targets and signaling

pathways. After refining the input data, HiRAND will potentially

predict the response of more drugs precisely.

To sum up, we introduced the HiRAND semi-supervised deep

learning framework that can serve as an application for drug response

prediction using few labeled samples. Meanwhile, the model could be

used in the future to stratify patients based on the learned

classification features, providing an important analysis tool for

future applications in precision oncology and beyond.
Conclusion

We proposed a novel semi-supervised framework HiRAND to

predict the responders of treatment in precision medicine. By
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integrating information from both feature graphs and sample

graphs, HiRAND clearly outperformed existing methods and

demonstrated its capability in personal treatment decision-making.

Not only this, this model is helpful for discovering outcome-oriented

biomarkers by incorporating a trainable weight matrix. In addition,

we introduced a data augmentation strategy into molecular biology to

augment the biodata and overcome the small labeled sample size

limitation. Our future effort will focus on considering more omics

data into model building and increasing the performance toward

biomarker discovery.
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