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Background: Transmembrane (TMEM) protein genes are a class of proteins that

spans membranes and function to many physiological processes. However,

there is very little known about TMEM gene expression, especially in cancer

tissue. Using single-cell and bulk RNA sequence may facilitate the understanding

of this poorly characterized protein genes in PDAC.

Methods: We selected the TMEM family genes through the Human Protein Atlas

and characterized their expression by single-cell and bulk transcriptomic

datasets. Identification of the key TMEM genes was performed through three

machine learning algorithms: LASSO, SVM-RFE and RF-SRC. Then, we

established TMEM gene riskscore and estimate its implication in predicting

survival and response to systematic therapy. Additionally, we explored the

difference and impact of TMEM gene expression in PDAC through

immunohistochemistry and cell line research.

Results: 5 key TMEM genes (ANO1, TMEM59, TMEM204, TMEM205, TMEM92)

were selected based on the single-cell analysis and machine learning survival

outcomes. Patients stratified into the high and low-risk groups based on TMEM

riskscore, were observed with distinct overall survival in internal and external

datasets. Moreover, through bulk RNA-sequence and immunohistochemical

staining we verified the protein expression of TMEM genes in PDAC and

revealed TMEM92 as an essential regulator of pancreatic cancer cell

proliferation, migration, and invasion.
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Conclusion: Our study on TMEM gene expression and behavior in PDAC has

revealed unique characteristics, offering potential for precise therapeutic

approaches. Insights into molecular mechanisms expand understanding of

PDAC complexity and TMEM gene roles. Such knowledge may inform targeted

therapy development, benefiting patients.
KEYWORDS

transmembrane protein gene, pancreatic ductal adenocarcinoma, tumor
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1 Introduction

Pancreatic ductal adenocarcinoma (PDAC) is an extremely

aggressive malignancy, responsible for more than 40,000 deaths

annually worldwide (1, 2). Although surgical resection of the

primary tumor remains the best chance for a cure, this option is

only available to approximately 30% of patients due to locally

advanced or metastatic disease (3). Multidisciplinary approaches

that combine neoadjuvant treatment and postoperative

chemotherapy have facilitated radical resection and prolonged

tumor-free survival in PDAC patients (4). Despite this, overall

survival rates in resectable PDAC have not significantly improved.

Numerous studies have analyzed the molecular heterogeneity of

PDAC and identified various subtypes, which can contribute to

totally divergent biological behavior and prognostic impact (5, 6).

Further investigation into the gene expression characteristics of

PDAC may provide insight into the underlying genetic alterations

and extend the potential therapeutic targets for this deadly

disease (4).

Transmembrane (TMEM) proteins are a class of proteins that

span the entire width of the lipid bilayer membrane, and participate

in a wide range of physiological processes (7). While some TMEM

proteins have been extensively studied and found to be involved in

transmembrane transport, signal transduction, apoptosis, and

autophagy, others remain poorly characterized in terms of their

structure, biological function, and mechanism of action (8). Some

TMEM proteins have even been reclassified into more specific

categories, such as ANO proteins, after further characterization (9).

Notably, abnormal expression of TMEM genes in cancer has

been linked to distant metastases and tumor recurrence, suggesting

a potential role in cancer pathogenesis (10, 11). Despite this

association, little is known about the expression and biological

function of TMEM genes in the tumor microenvironment.

Therefore, we speculate that identifying the expression pattern of

TMEM genes could potentially shed light on their roles in the

complex landscape of the tumor microenvironment (12). A deeper

understanding of these proteins and their functions in cancer could

pave the way for novel therapeutic strategies in the fight against this

devastating disease.

This article provides a comprehensive investigation of TMEM

genes in normal pancreas and PDAC tissues. Using clinical

information and expression data from The Cancer Genome Atlas
02
Project, we performed a prognostic analysis of TMEM gene

expression in bulk tissue samples. Next, we utilized single-cell

RNA sequencing to explore the expression patterns of TMEM

genes in different cells of the PDAC tumor microenvironment,

including tumor, stromal, and immune cells. Additionally, we

employed a range of methods, including bulk RNA sequencing,

immunohistochemistry staining, and cell-based assays, to validate

our findings. Our results indicate that a comprehensive analysis of

TMEM genes could help elucidate their function in different cells

within the tumor stroma and their prognostic impact in PDAC.
2 Materials and methods

2.1 Data collection

Figure 1 illustrates the workflow of our research. Transcriptome

data of pan-cancer and normal tissues from The Cancer Genome

Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) were

downloaded using the UCSC Xena browser (https : / /

xenabrowser.net/) (13). The RNA-sequence data of pancreatic

cancer and normal pancreas were extracted for further analysis.

We obtained microarray datasets, including GSE21501, GSE62452,

and GSE57495 from the Gene Expression Omnibus (GEO)

database, as well as bulk RNA sequence datasets from GSE 79668,

PAAD-CA from ICGC, and our center’s tumor samples for

analysis. Corresponding samples and clinical information for all

included datasets were also prepared and organized. Single-cell

transcriptome files of GSE155698 from GEO and CRA001160 from

Genome Sequence Archive (GSA) were downloaded. The list of

genes correlated with TMEM proteins was obtained from the

Human Protein Atlas (HPA).
2.2 TMEM genes expression in bulk
pancreatic tissues

The study compared the expression levels of TMEM genes in

normal pancreas and PDAC tissues using the TCGA (tumor,

N=150; normal, N=4) and GTEx (normal, N=70, filtered by

RIN≥7) datasets, with transcripts per million (TPM) as the

method of measurement. TMEM genes with an expression value
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of zero in more than half of tumor samples were filtered out,

followed by identification of differentially expressed genes (DEGs)

using the “Limma” package. DEGs were defined as genes with an

absolute log2 fold change greater than 1, and multiple testing

adjustice was performed using the Benjamini-Hochberg method.
2.3 Single−cell RNA−seq analysis

We conducted a single-cell analysis using the ‘Seurat’ R package

to investigate two single-cell RNA-seq profiles of tumor and normal
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tissues. We used the following standards to exclude low-quality

cells: 1) cells had fewer than 200 unique molecular identifiers

(UMIs); 2) over 10% UMIs derived from mitochondrial genome;

3) less than 3% UMIs derived from ribosome genome; 4) over 1%

UMIs derived from hemoglobin genome. 5) cells had average

expression level of less than 3 genes. We then calculated the cell-

cycle score using the ‘CellCycleScoring’ function, and removed the

cell-cycle score and mitochondrial genome during the data scaling

(14). We further selected G1 phase cells for analysis to eliminate the

influence of the cell cycle (15). Integration and remove of batch

effects of included single-cell RNA−seq datasets was applied by the
FIGURE 1

Schematic diagram for the total workflow of this study.
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R package “Harmony” (16). Dimensional reduction was performed

using both UMAP and t-SNE method (17, 18). Identification of cell

type for each cell cluster was performed using differentially

expressed genes and marker genes reported in previous studies

(19, 20). We investigated the expression of TMEM genes in clusters

of different cell types, such as epithelial cells, fibroblast cells, T cells,

and macrophages, within the tumor microenvironment. We also

performed a pseudo-time analysis to explore the expression

characteristics of both marker genes and TMEM genes in select

cell types during the developmental trajectory of carcinogenesis.

The pseudo-time processes were performed using the “monocle”

package in R to reconstruct the trajectory.
2.4 Screening key TMEM gene through
machine learning analysis

We choose five cohort (GSE21501, GSE62452, GSE57495,

ICGC-PAAD-CA, and TCGA) as internal analytic datasets to

evaluate prognostic TMEM genes. To identify clinical-relevant

TMEM genes, we selected the intersection of TMEM genes

obtained from the results of four machine learning algorithms:

the Least Absolute Shrinkage and Selection Operator (LASSO)

regression by the “glmnet” R package, Support Vector Machine-

Recursive Feature Elimination (SVM-RFE) and random forest for

survival, regression and classification (RF-SRC) (21–23) and single-

cell analysis. Further, we validated the model established by those

intersected genes and constructed the risks core signature named as

“riskscore” by the coefficient factors obtained from multivariate

cox analysis.
2.5 Prospective of TMEM gene riskscore in
systematic therapy

To further elucidate the impact of TMEM riskscore, we

classified patients into high-risk and low-risk groups and

compared the clinical and pathological features between the two

groups. Additionally, we explored the characteristics of the tumor

microenvironment, including immune cell infiltration and immune

checkpoint in both high-risk and low-risk groups of PDAC patients.

We also conducted prognostic analyses in multiple datasets and

constructed a prognostic risk prediction model based on TMEM

riskscore using clinical and pathological data from TCGA.

We estimated the correlation between TMEM riskscore and the

response of systematic therapy. TIDE algorithm was applied to

assess the potential of immune checkpoint inhibitors therapy

between the high and low-risk groups of TCGA patients (24).

Then, we collected the transcriptome data and complete clinical

information of the IMvigor210 cohorts to validate the potential of

riskscore on immunotherapeutic efficacy (25). In addition, we

screened and compared drug sensitivities based on transcriptome

data of two groups through the R package “oncoPredict” (26).
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2.6 Sample sources and clinical data

In order to corroborate the results of our investigation, we

retrospectively analyzed data from 37 patients with pathologically

confirmed pancreatic cancer who underwent radical resection, all of

whom were consecutively treated at Peking University Third

Hospital between January 2017 and January 2018. To be included

in this validation cohort, patients had to meet the following criteria:

(1) histologically confirmed pancreatic adenocarcinoma, (2) radical

resection performed, (3) no in-hospital death after surgery, and (4)

sufficient surgically resected tissue available for preservation in

liquid nitrogen and further research. Patients were followed up

every two months for the first six months, every six months for the

next two years, and then annually thereafter. Image and tumor

marker examinations were conducted routinely, and any new

lesions detected by biopsy or imaging were considered indicative

of tumor recurrence. Disease-free survival and overall survival were

the primary endpoints of this study. The local research ethics

committees approved this study with confirmation code

M2016361, and informed consent was obtained from all patients

in accordance with the committees’ regulations.

For validation of TMEM gene expression in protein level, we

used tissue microarray (TMA) analysis which constructed by the

tissue cores (4.00 mm in diameter) from the resection specimens of

primary pancreatic cancer and paired adjacent normal tissue of

92 patients.
2.7 Bulk RNA-sequence and
immunohistochemical staining

We conducted a concurrent validation of TMEM gene in

mRNA level, using external RNA-sequence data from above-

mentioned patients who underwent radical pancreatectomy for

pancreatic ductal adenocarcinoma (PDAC). Detail information

can be seen in Supplementary File and Supplementary Table A-

S8. Kaplan-Meier survival analysis was employed to study the

prognostic impact of riskscore in whole cohort and in every

single dataset. External validation was conducted based on the

data of GSE79668 and our center.

Immunohistochemistry was performed based on the tissue

microarray. TMA slides were deparaffinized, rehydrated, and

boiled in a pressure cooker filled with a sodium citrate buffer (pH

6.0) for antigen retrieval. After antigen retrieval, the slides were

blocked with inhibitor (3% H2O2) for 30 min at 37°C.

Immunohistochemical was performed using the rabbit polyclonal

anti-TMEM92 antibody from atlas antibodies (HPA063009).

Positivity for immunohistochemical staining was determined by

the presence of brown particles within the cell membrane and

cytoplasm. Color intensity was graded on a four-point scale based

on the following categories: no pigment (0), light yellow (1),

brownish-yellow (2), and dark brown (3). The percentage of

stained cells within the microscope field of view was also graded
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on a four-point scale as follows: 0-25%, 26-50%, 51-75%, and > 75%,

and scored as 0, 1, 2 and 3 points, respectively. The final score was

calculated by multiplying the scores for color intensity and the

percentage of stained cells. A final score of ≤ 6 points was

considered indicative of low expression, while a score > 6 points

was classified as high expression.
2.8 Cell culture

The pancreatic cancer cell lines CFPAC-1 was obtained from

the Cell Resource Center, Peking Union Medical College (which is

the headquarter of National Science & Technology Infrastructure–

National BioMedical Cell-Line Resource, NSTI-BMCR) and

cultured in Iscove’s Modified Eagle’s Medium (Hyclone Co.,

Logan, UT, USA) and supplemented with 10% FBS (Hyclone Co.)

at 37°C in a humidified 5% CO2 air incubator.

TMEM92 s i RNA#1 s e q u e n c e w e r e a s f o l l ow s :

5 ’−GCAGCCAAATGTGGTCTCA-3 ’ . TMEM92 siRNA#2

sequence were as follows: 5’- CTGTCCGTCTTTTGCATCT-3’.

TMEM92 s iRNA#3 s equ enc e we r e a s f o l l ow s : 5 ’ -

CCCAAAGGATTCAAATGCT-3’. A scrambled siRNA was used

as negative control (si-NC). All above small interfering RNA were

purchased from RiBoBio Co., Ltd. (Guangzhou, China). Cells were

harvested 48 hours post-transfection and subjected to western blot

analysis to evaluate the efficacy of the interference.
2.9 Western blot and quantitative real-time
PCR (qRT-PCR)

Proteins were extracted from cells using RIPA lysis buffer with

proteinase inhibitor. Then, proteins were separated by SDS-PAGE

and transferred to polyvinylidene fluoride (PVDF) membranes. The

membranes were blocked with 5%milk and 0.01% Tween-20 in tris-

buffered saline (TBS; pH 7.6) and incubated with TMEM92

antibody diluted at 1:500 in TBS overnight at 4°C. GAPDH was

used as an internal control. Protein quantification was performed

in ImageJ.

RNA extraction and cDNA synthesis were performed using the

TRIzol reagent (Corning co, USA) and PrimeScript RT Reagent Kit

(Promega, Beijing, China), respectively. mRNA expression levels of

TMEM92 were quantified using the SYBR Premix Ex Taq system

(Promega, Beijing, China), with glyceraldehyde-3-phosphate

dehydrogenase (GAPDH) expression levels serving as a

normalization control. The relative levels of TMEM92 were

determined using the comparative quantification cycle (Cq)

method (2−DDCq) based on three repeated measurements. The

primers used in this study are listed below:
TME

TME

GAP

GAP

Fron
M92 forward 5’-GCAGCCAAATGTGGTCTCATCC-3’

M92 reverse 5’-GCAAAAGACGGACAGGATGACC-3’

DH forward 5’-TGTGTCCGTCGTGGATCTGA-3’

DH reverse 5’-CCTGCTTCACCACCTTCTTGA-3’.
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2.10 Colony, migration and invasion assay

Cells were seeded into 6-well plates at 500 cells/well per dish in

triplicate and cultured for 10 days. To evaluate colony formation,

we fixed the colonies with a 4% paraformaldehyde solution for 15

minutes and stained them with crystal violet. The resulting colonies

were then photographed and counted to determine their extent.

To assess the migration and invasion ability of pancreatic

cancer cells, we utilized a transwell chamber. Specifically, we

uniformly coated the upper surface of the chamber with 70 µL of

Matrigel glue, sourced from BD Corporation (Franklin Lakes, NJ,

USA). We then added 200 µL of a single cell suspension, containing

2 × 10 5 cells diluted with serum-free medium, to the upper

chamber. Additionally, 500 µL of medium, containing 20% fetal

bovine serum, was introduced to the lower chamber. Following 48

hours of incubation, we fixed the cells with 4% paraformaldehyde

for 30 minutes and stained them with crystal violet for 30 minutes.

Images were captured from five randomly selected fields under a

microscope, and all experiments were performed in triplicate to

ensure statistical validity.
2.11 Statistical analysis

The normality of the variables was tested by the Shapiro-Wilk

normality test, unless otherwise specified. For the comparison of the

two groups, the normal distribution variables were analyzed by the

unpaired student t-test, and the non-normal distribution variables

were analyzed by the Wilcoxon test. For comparisons of more than

two groups, the Kruskal–Wallis test and the one-way ANOVA were

used as non-parametric and parametric test methods, respectively.

Spear-manand correlation analysis was used for analyzing the

correlation coefficients. Two-sided Fisher exact tests were used to

analyze contingency tables. And the Benjamini–Hochberg method

was employed to convert P values to FDR. P value < 0.05 was used

to determine the statistical significance of the difference. All of these

analyses were performed in R 4.0.3 or SPSS version 26.0 software

based on default parameters unless otherwise stated.
3 Results

3.1 Expression characteristics of TMEM
genes in PDAC

There were 255 TMEM genes extracted for analysis between

tumor and normal tissue after the preliminary filtration

(Supplementary Table A-S1). And 128 TMEM genes were then

identified as the significant differentially expressed gene

(Supplementary Table A-S2). Only four TMEM genes were

down-regulated and the rest 124 TMEM genes were indicated as

up-regulated genes in PDAC (Figure 1S).
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3.2 Single-cell transcriptomic analysis
revealed heterogeneity of TMEM
genes expression

To assess the differences of TMEM gene expression among

various infiltrating cells in the tumor microenvironment of PDAC,

we conducted a single-cell analysis based on two single-cell RNA

sequencing datasets (Figure 2S-5S). After the initial quality control,

there were a total of 53123 cells retained from 14 normal pancreatic

tissues and 40 pancreatic tumor tissues. Integration of each dataset

and further dimension reduction was successfully achieved. The

consequent graph-based analysis identified 11 cell clusters based on

TSNE reduction and UMAP reduction (Figure 2A). These clusters

were assigned to the following cell lineages through their own

characterized differential genes compared with other clusters:

epithelial cell (marked with EPCAM, KRT19, TFF1), endothelial
Frontiers in Oncology 06
cell (marked with PLVAP, VWF, CDH5), endocrine cell (marked

with CHGA, CHGB, TTR), acinar cell (marked with PRSS1,

REG1A), stellate cell (marked with RGS5, ACTA2, ADIRF),

fibroblast (marked with LUM, COL1A1, COL3A1), myeloid cell

(marked with CD68, CD163, CD14), T cell (marked with CD3D,

CD3E, CD8A), B cell (marked with CD79A, MS4A1, CD37),

plasma cell (marked with MZB1, IGJ, SDC1) and mast cell

(marked with TPSAB1 , KIT, SLC18A2) (F igure 2B ;

Supplementary Table A-S3).

The differential expression TMEM genes explored in the bulk

RNA-sequence analysis were firstly applied for global assessment in

pancreatic tissues. The outcomes denoted there is significant

heterogeneity observed in TMEM genes expression, besides,

among 11 different cell types, epithelial cells were characterized

by TMEM30B, TMEM139, TMEM123, TMEM87B, TMEM92,

B3GNT3, TMEM41A, TMEM183A, TMEM159; endothelial cells
A B

D

C

FIGURE 2

(A) t Stochastic neighbor Embedding (tSNE) and UMAP plots showing cell types for 53123 cells in normal pancreatic tissue and PDAC. (B) Dot plots
showing the average expression distribution of marker genes in 11 cell types. (C) Dot plots showing the average expression distribution of TMEM
genes in 11 cell types. (D) Violin plots showing the difference of TMEM gene expression in normal pancreatic tissue (blue violin) and PDAC (red violin)
among 11 cell types.
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were characterized by TMEM88, TMEM255B, TMEM204; acinar

cells were characterized by TMEM97; stellate cells were

characterized by TMEM38B, TMEM47 and ANO1; fibroblast

were characterized by TMEM97, TMEM158, TMEM237 and

TMEM43; T cells were characterized by TMEM203; B cells were

characterized by TMEM107,DRAM2, TMEM156 and ORAI2;

plasma cells were characterized by TMEM160, TMEM256, EMC6,

FAM174A, TMEM205,CNPY2,TMEM134 and TMEM59; myeloid

cells were characterized by TMEM51, TMEM251 and TMEM33;
Frontiers in Oncology 07
and mast cells were characterized by TMEM154, TMEM176B and

TMEM44 (Figure 2C). Then, the TMEM genes with remarkable

different expression between tumor and normal tissue were also

analyzed based on above 11 cell lineages (Figure 2D). In order to

reduce the deviation caused by normal pancreatic ductal cells in

tumor tissues, we conducted the inference of copy-number

variations in epithelial cells to distinguish the malignant and

normal cells based on expression profiles (Figures 3A, B).

Referring to immune cells, there were 1691 epithelial cells
A B

D

E

F

C

FIGURE 3

(A) Inference of copy-number variations (CNVs) for the 18 subgroups of epithelial cells refed by B cells and Mast cells. (B) Box plots depict the CNV
score of all subgroups of epithelial cells. (C) Box plot showing the CNV score between normal epithelial cells and malignant epithelial cells, p-value
calculated by Wilcoxon test. (D) The pseudo-time trajectory of epithelial cells. (E) Characteristics of TMEM gene expression in epithelial cells
followed by the pseudo-time. (F) Heatmap showing dynamic expression of genes along the pseudo-time in epithelial cells trajectory. Rows of the
heatmap represent genes that show dynamic changes along the pseudo-time, and these genes were clustered into four groups according to their
expression pattern along the pseudo-time. (****P < 0.001).
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reviewed with significant lower CNVs, considered as normal ductal

cells (normal vs. malignant cells: 883.6 ± 389.6 vs. 2011.9 ± 631.0,

P<0.01, Figure 3C; Supplementary Table A-S4). Subsequently, to

select the tumor-associated TMEM genes, we conducted differential

genes analysis and pseudo-time analysis (Figure 3D). In epithelial

cells, 13 TMEM genes present as DEGs (logFC>0.58, P<0.01).

Further pseudo-time analysis revealed TMEM238, TMEM176A,

TMEM176B, TMEM45B, TMEM54, TMEM92, and TMEM167A

were present with an elevated tendency of expression in malignant

cells over the pseudo-time. Meanwhile, TMEM14C, TMEM107,

TMEM205, TMEM14B, TMEM261, and TMEM98 were present

with a decreased tendency of expression over the pseudo-time

(Figure 3E). In addition, the outcomes of enrichment analysis of

each cluster in the pseudo-time gene expression heatmap

demonstrated those TMEM genes significantly correlated to

abnormally increased metabolism, tube development, pancreatic
Frontiers in Oncology 08
secretion, negative regulation of dendritic cells and extracellular

matrix organization (Figure 3F; Supplementary Table B).

To learn the TMEM gene expression in endothelial cells, we

firstly conducted dimension reduction for total endothelial cells to

identify new clusters. Finally, 6265 endothelial cells were divided

into 5 prominent subgroups (Endo1-Endo5, Figure 4A). We

observed that 3 endothelial subgroups: Endo1 (97.6%), Endo3

(80.5%) and Endo4 (83.3%), were mainly involved in tumor

tissue, and the normal tissue consisted of almost entirely Endo2

(91.8%) and a large proportion of Endo5 (80.8%) endothelial cells.

Subsequently, we performed an investigation of DEGs among each

subgroup and consequent enrichment analysis of the top 30 DEGs

of each subgroup (Supplementary Table A-S5). Endo1 was present

with high expression of COL4A1, COL15A1 and VWA1,

characterized by enrichment of extracellular matrix organization

and external encapsulating structure organization. Endo2 was
A B

D

E

C

FIGURE 4

(A) tSNE and UMAP plot of the endothelial cells, color-coded for five clusters. (B) Split Violin plots demonstrated differences of TMEM gene
expression among five subgroups of endothelial cells. (C) Heatmap showing dynamic expression of genes along the pseudo-time in endothelial cells
trajectory. Rows of the heatmap represent genes that show dynamic changes along the pseudo-time, and these genes were clustered into five
groups according to their expression pattern along the pseudo-time. (D) The pseudo-time trajectory of five endothelial cells subgroups.
(E) Characteristics of TMEM gene expression in endothelial cells followed by the pseudo-time.
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shown with high expression of CLPS, CA4 and CTRB1,

characterized by enrichment of digestion, water-soluble vitamin

metabolic process, and intestinal cholesterol absorption. Endo3 was

shown with high expression of DARC, CPE and POSTN, enriched

in cellular extravasation, response to interleukin-1, and platelet

degranulation. Endo4 were present with high expression of FABP4,

IGFBP3 and GJA4, characterized by enrichment of receptor-

mediated endocytosis endothelium development and integrin

binding. Endo5 was shown with high expression of MT1A, STC

and HSPA1A, enriched in protein folding chaperone, kinase

inhibitor activity and negative regulation of growth. Furthermore,

there were 5 TMEM genes identified as DEGs, and in pseudo-time

analysis, only TMEM204, TMEM59, and TMEM88 were observed

with an evident downward trend of expression (Figure 4B).

Complied with this trend, the heatmap depicts that Endo5-cluster

genes have similar expression trends followed by pseudo-time

(Figures 4C–E). Our enrichment analysis shows that these genes

are mainly involved in ion transport and regulation of metabolism

(Supplementary Table B).

We next investigated the two types of stromal cells, the stellate

cells and fibroblasts. We obtained 4081 stellate cells and 5843

fibroblasts that were clustered into 3 subgroups, including 1

stellate cell cluster and 2 fibroblast clusters (inflammatory

fibroblast, iFibro; myofibroblast, mFibro, Figure 5A). According

to their top 30 DEGs and further enrichment analysis, we

performed designment of each fibroblast subcluster (Figure 5B).

Subcluster mFibro accounted for the majority of the fibroblast

populations in tumor tissue and expressed a high level of

COL1A1, MMP11, FN1 and POSTN, which were associated with

collagen secretion and extracellular matrix modeling. Subcluster

iFibro was present with a high level of FBLN1, IGF1, CTSC and

markers of the complement system (C3, C7, C1S, C1R), and

designated as inflammatory fibroblast. Subsequently, TMEM

genes expression of stromal cells in normal and tumor tissues was

compared, and TMEM158, TMEM38B, VMP1 and TMEM45A

were recognized as DEGs (Figure 5C). Then, further analysis

revealed the expression of TMEM158 and TMEM45A was

depicted with synchronized increase followed by pseudo-time,

and TMEM38B was reversed (Figures 5D–F). Besides, the

heatmap and GO analysis demonstrated both the elevated

expression of TMEM158 and TMEM45A was highly associated

with ECM organization and structural constituent. However, the

depressed level of TMEM38B might be correlated with dysfunction

of calcium ion signaling in PDAC (Supplementary Table B).

TMEM gene expression of myeloid cells was then estimated

based on subcluster identification. The reduction plot exhibited 7

subclusters, including 3 macrophage subclusters, 3 dendric cell

subclusters and 1 monocyte subcluster (Figure 6A). Designation

of each subcluster was conducted using their marker genes, Mac1

(SPP1, PLIN2, MARCO), Mac2 (C1QB, C1QC, SEPP1), Mac3

(ISG15, CXCL10, IFIT3), DC1 (CD1C, CD1E, FCER1A), DC2

(LAMP3, CCR7, CCL22), DC3 (IDO1, CLEC9A, FLT3), pDC

(LILR4, GZMB, IRF7), Monocyte (S100A8, S100A9, FCN1)
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(Figure 6B; Supplementary Table A-S6). The distribution of each

myeloid subcluster cells in normal and tumor tissue was variable.

Tumor tissues were processed with larger percentage of Mac1,

Mac3, DC1 and DC2 (tumor vs. normal: 31.6% vs.19.5%, 2.1% vs.

0.86%, 7.6% vs. 4.3%, 0.9% vs.0.3%), instead, normal tissues were

observed with relatively more DC2, Mac2 and monocytes dwelled

in. Considering the heterogeneity among these subpopulations of

cells, the M1 and M2 polarization score of macrophages, the anti-

inflammatory and pro-inflammatory score of monocytes, and the

immune-surveillance and immune-escape score of DC cells were

calculated through the ‘AddModuleScore ’ function for

pathophysiological estimation (Figure 6C; Supplementary Table

A-S9). Moreover, we identified TMEM176B as DEGs

(logFC>0.58, P<0.01) and other TMEM genes (TMEM176A and

TMEM30A) with closely differential expression (0.25<logFC<0.58).

Additional outcomes revealed the expression of TMEM176A and

TMEM176B was almost parallel followed by pseudo-time, and

evidently elevated in tumor-infiltrating Mac2 and DC1 (logFC>1,

P<0.01). To be noticed, subcluster Mac2 and DC1 earned the lowest

scores in M1 polarization score and immune surveillance score

respectively, which indicated TMEM176A and TMEM176B might

participate in the immune processes such as immune phagocytosis

of macrophage and cell antigen presentation of DC cells

(Figures 6D–F).

We also analyzed TMEM gene expression of T cells and NK

cells within the tumor microenvironment of pancreatic cancer

(Figure 6S-9S). The DEG analysis between tumor and normal

tissues showed the expression of TMEM123 was significantly

increased in tumor-infiltrating T cells, which was consistent with

the analysis of bulk transcriptomic outcomes. We compared the

TMEM123 expression between tumor and normal cells in 3

subgroups of T cells, in which differential significance was

observed in the T memory and effect memory cells, indicating

high expression of TMEM123 of tumor-infiltrating CD8+ T cells

might be associated with the immune response to malignancy. In

addition, TMEM66 was revealed with relatively lower expression in

tumor-infiltrating CD8+ T cells. The next pseudo-time analysis

demonstrated the expression level of TMEM66 combined with the

genes enriched in regulation of the immune response and apoptotic

process was parallelly depressed, however, elevated expression of

TMEM123 might be associated with an enhanced cytotoxic

function of CD8+ T cells.

Previous research reported abundant infiltration of activated B

cells located in tertiary lymphoid structures might be a prognostic

indicator in many cancers (27). Therefore, we briefly explored the

changes of TMEM gene expression in B-lineage lymphocytes in the

tumor microenvironment during activation of B cells

(Supplementary Table A-S7). Preliminary outcomes from DEGs

analysis identified 8 differential expression TMEM genes (logFC>1,

p<0.01), and further results of pseudo-time analysis showed

increased expression of TMEM208, TMEM59 and TMEM258,

which are enriched in protein processing and binding, might be

probably associated with transformation from B cell to plasma cells.
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However, considering that above genes are overwhelmingly

expressed in plasma cells, we speculate that the increase of the

first activated B cell infiltration in the tumor microenvironment

leads to the up-regulation of the corresponding TMEM gene

expression (Figure 10S-12S).

Taken together, these results suggest that the differential

expression of TMEM genes is closely related to the infiltration of

specific cells in the tumor microenvironment and the alteration of

cell function during tumor development, and may finally contribute

to the change of tumor phenotype and heterogeneity. Therefore, we
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screened 24 TMEM genes for subsequent analysis based on the

above research.
3.3 Identification of the Key TMEM genes

In order to detect the key TMEM genes, we first conducted the

survival analysis based on 5 pooled datasets (GSE21501, GSE62452,

GSE57495, TCGA-PAAD, ICGC-PACA). The outcomes obtained

from the univariate analysis revealed 16 TMEM genes identified as
A B
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FIGURE 5

(A) tSNE and UMAP plot of the stromal cells, color-coded for three clusters. (B) Heatmap show the marker gene expression for 3 subclusters of
stromal cells. (C) Split Violin plots demonstrated differences of TMEM gene expression among three subgroups of stromal cells. (D) Heatmap
showing dynamic expression of genes along the pseudo-time in stromal cells trajectory. Rows of the heatmap represent genes that show dynamic
changes along the pseudo-time, and these genes were clustered into four groups according to their expression pattern along the pseudo-time.
(E) The pseudo-time trajectory of three stromal cells subgroups. (F) Characteristics of TMEM gene expression in stromal cells followed by the
pseudo-time.
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favorable prognostic factors and 18 hazard prognostic factors for

overall survival. In addition, three machine learning approaches:

LASSO, SVM-RFE and RF-SRC, successfully achieved 28, 29, and 20

prognostic TMEM genes, respectively (Figure 13S). Furthermore,

combined with the results arrived from single-cell transcriptomic

analysis and bulk RNA-sequence analysis, we intersected those genes

and finally obtained 5 key TMEM genes (ANO1, TMEM59,

TMEM204, TMEM205, TMEM92), which were depicted in Figure 7A.
3.4 TMEM riskscore predict prognosis and
response to systematic therapy

The establishment of TMEM genes signature risk score based

on the above 5 TMEM genes was conducted, then we stratified the
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risk score into two groups (high-risk & low-risk) with the median

value and explored the impact of risk score on clinical prognosis

and systematic therapy (Figure 14S-15S).

In terms of clinical pathology data, our observations indicate

that pancreatic cancer patients who were over 65 years of age, had a

G3-4 tumor grade, and T3-4 tumor stage exhibited higher TMEM

risk scores (Figure 16S). In the context of immune cell infiltration in

the tumor microenvironment, we employed the CIBERSORT

algorithm to compare the differential infiltration of cells between

pancreatic cancer patients with high and low risk scores

(Figure 17S). Our findings indicate that patients with low-risk

scores exhibit increased infiltration of CD8+ T cells in the tumor

microenvironment, whereas patients with high analysis

scores exhibit elevated infiltration of macrophages. Five key

transmembrane protein genes are also related to the infiltration of
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FIGURE 6

(A) tSNE and UMAP plot of the myeloid cells, color-coded for eight clusters. (B) Dot plot reveal the average expression of marker gene for 8
subclusters of myeloid cells. (C) Box plots demonstrated M1 & M2 polarization score in macrophage, immune surveillance score in DCs, Anti-&Pro-
inflammatory score in normal and tumor-infiltrating monocytes. (D) Scatter plots depicted the significant correlation between M1 & M2 polarization
score and TMEM176 with Spear-manand test. (E) Split Violin plots demonstrated differences of TMEM gene expression among seven subgroups of
myeloid cells. (F) Characteristics of TMEM gene expression in three subgroups of macrophage followed by the pseudo-time.
(***P= 0.001; ****P < 0.0001; NS, not significant).
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PDAC immune cells (Figure 18S). Moreover, we observed

significant disparities in the expression of various immune

checkpoint genes between the two cohorts (Figure 19S).

Kaplan-Meier survival analysis depicted a remarkable

discrepancy of 3-year survival rate, 5-year survival rate and

overall survival between high and low risk group (Figure 7B;

Figures 20S-22S). Independent analysis based on two external

datasets (GSE79668 and our datasets) also verified the prognostic

impact of TMEM genes riskscore (Figure 23S; Figure 7C;

Supplementary Table A-S8).

In the following evaluation of TMEM gene riskscore on

immune therapy, the TIDE score was quite different in two

groups (Figure 7D). Low-risk group was observed with the low
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TIDE score, which indicated patients in low-risk group might

benefit from the ICIs treatment (Figure 24S). Additional analysis

from IMvigor210 cohorts concurred with this finding and pointed

out a valuable potential of the TMEM riskscore in the prediction of

treatment response and post-treatment survival (Figures 7E–G).

Moreover, we conducted the prediction of IC50 value for common

drugs used in pancreatic cancer to compare their treatment sensitivities

(Figure 25S-26S) The results suggest that patients in the high-risk

group might benefit more from the gemcitabine and paclitaxel, while

the low-risk group might benefit from the oxaliplatin and irinotecan.

Therefore, we performed a subgroup analysis of patients with adjuvant

chemotherapy in our center, and the outcomes showed distinct OS and

DFS intervals of patients who received gemcitabine-based
A B
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FIGURE 7

(A) Venn plot select the key TMEM genes. (B) K-M plot of 673 PDAC patients revealed distinct overall survival in high- and low-risk group. (C)
Kaplan-Meier plot of 37 PDAC patients revealed distinct DFS (left) and OS (right) in high- and low-risk group. (D) Violin plot of TIDE score in high-
and low-risk group. (E) Box plot showing the TMEM riskscore in patients within different immunotherapy response in the IMvigor210 cohort. (F) Bar
plot showing the percentage of immunotherapy response in high- and low-risk group. (G) Kaplan-Meier plot showed the significant difference of OS
between high- and low-risk group in the post-immunotherapy cohort. (*P < 0.05).
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chemotherapy, indicating that TMEM riskscore is sensitive for

prediction of post-operative survival for patients with delivery of

adjuvant chemotherapy (Figure 27S).
3.5 Validation of high TMEM92 expression
and its prognostic impact in PDAC

46 paired samples of pancreatic cancer and its adjacent normal

tissue were tested in the TMA slides. Immunohistochemistry assays

showed that TMEM92 was mainly localized on the cell membrane

and cytoplasm (Figure 8A; Figure 28S). Subsequent analysis of

immunohistochemical stanning reveal the protein expression of

TMEM92 was relatively higher in PDAC tissues (Figure 8B).

Significant upregulation of TMEM92 was observed in 25 cases of

pancreatic cancer tissue, and survival analysis revealed a strong
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correlation between elevated TMEM92 expression and poor

prognosis (Figure 8C).
3.6 Knockdown of TMEM92 suppressed
proliferation, and invasion in pancreatic
cancer cell lines

Knockdown of TMEM92 was achieved via siRNA technique,

which was validated through qRT-PCR and Western blot assays in

the same cell line. By performing transient transfection experiments

using three different siRNAs on the CFPAC-1 cell line, we identified

the siRNA with the most desirable knockdown effect. Among the

three siRNAs tested, si-2 exhibited the most significant knockdown

effect and was subsequently selected for further knockdown

experiments (Figure 8D). Our findings reveal that silencing
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FIGURE 8

(A) The protein expression of TMEM92 in immunohistochemical images of tumor (left) and para-tumor (right) groups. (B) Pairwise analysis revealed
remarkably elevated expression of TMEM92 in PDAC. (C) Survival analysis of TMEM92 protein expression in patients with PDAC. (D) CFPAC-1 cell
was treated using siRNA to inhibit TMEM92 expression. Downregulated TMEM92 expression was examined by Western blot and qRT-PCR analyses.
(E) Representative photographs showed distinct migration, invasion and proliferation of downregulated TMEM92 in CFPAC-1 cell lines. Data shown
represent the mean ± SD. (F) Dot plot showed the difference of metabolism in epithelial cells with high and low expression of TMEM92 in single-cell
analysis. (***P= 0.001; ****P < 0.0001).
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TMEM92 expression leads to a significant reduction in the

proliferative function of CFPAC-1 cells (Figure 8E). Migration

and invasion assays also demonstrate that cel ls with

downregulated TMEM92 exhibit a marked decrease in their

migratory and invasive capabilities. These results implicate

TMEM92 as an essential regulator of pancreatic cancer cell

proliferation, migration, and invasion. Moreover, our single-cell

analysis reveals a striking enrichment of lipid metabolism and

glucose metabolism in malignant epithelial cells with heightened

TMEM92 expression (Figure 8F). Such metabolic alterations may

underlie the aggressive biological behavior of pancreatic ductal

adenocarcinoma (PDAC). In summary, our findings provide

critical insights into the role of TMEM92 in PDAC, highlighting

its potential as a therapeutic target for this devastating disease.
4 Discussion

Transmembrane proteins are critical for the transportation of

substances and biological signals in various physiological and

pathological processes between cells (28). Although their simple

functions are well-established, the widespread and diverse

expression across different tissues and cell types suggests that

their impact could be substantial and intricate (29). In our study,

we discovered a significant number of TMEM genes with abnormal

expression in PDAC. Notably, these abnormalities were observed

not only in the malignant cells themselves, but also in several types

of cells present in the tumor microenvironment. Therefore, in

combination with single-cell transcriptome sequencing, analyzing

the expression characteristics of TMEM protein genes can lead to

more advanced strategies for understanding the potential functions

and effects of these proteins in the tumor microenvironment

(30, 31).

In the single-cell analysis, we observed abnormal expression of

13 TMEM genes in malignant epithelial cells, including genes that

co-regulate cellular metabolism and immune signal transduction.

This is consistent with the previous studies on metabolic-pathway-

based subtyping of pancreatic cancer which reported distinct lipid

and glycolysis metabolism, however, the regulatory genes of tumor

metabolism still remain unclear (32). These TMEM genes may

probably participate in the regulation of metabolism through some

pathways. Previous research demonstrated TMEM176A may

participate in tumor invasion through the EMT process (33). In

our study, we found up-regulated expression of TMEM176A and

TMEM176B both in malignant cells and myeloid cells, which might

negatively affect the differentiation of DC cells leading to the

potential imbalance of antigen presentation and promoting tumor

immune escape (34).

In the tumor microenvironment, the up-regulation of three

TMEM genes (TMEM204, TMEM88, and TMEM59) in endothelial

cells caught our attention. However, subsequent survival analysis

revealed that their elevated expression was actually a favorable

factor for prognosis. We propose that this contradiction may be

attributed to the dynamic changes in the tumor stroma (35). High

expression of these three TMEM genes was found to be correlated

with angiogenesis and ECM organization in endothelial cells. The
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occurrence and progression of tumors promote vascular infiltration

in the microenvironment, which is consistent with the increased

expression of these genes observed in pseudo-time analysis.

However, as the tumor advances, the formation of a dense

extracellular matrix and hypoxia can lead to a hypovascular

microenvironment, resulting in relatively lower levels of gene

expression compared to the initial phase of tumor (36).

Furthermore, the identification of subclusters of tumor-infiltrating

endothelial cells has piqued our interest in discerning potential pro-

tumor and anti-tumor endothelial cells (37). Pro-tumor endothelial

cells may participate in the development of malignant cells and

remodeling of the tumor microenvironment, while anti-tumor

endothelial cells may be involved in angiogenesis and immune

activation. Therefore, our future efforts will focus on identifying

pro- and anti-tumor endothelial cells using weighted gene co-

expression network analysis and exploring potential therapeutic

targets. This could potentially yield more meaningful results in

identifying TMEM gene expression in different subtypes of

endothelial cells.

We delved deeper into the expression characteristics of TMEM

genes in heterogeneous stromal cells in PDAC, and investigated the

changes in TMEM gene expression during the transformation of

stellate cells into tumor-infiltrating fibroblasts. ANO1 is a calcium

activated chloride channel fast membrane protein (38). Current

studies have shown that ANO1 is closely related to the

development, invasion and metastasis of several malignancy (39,

40). Our findings confirmed that high expression of ANO1 is a

factor in unfavorable prognosis, and also revealed that the increased

level of ANO1 was closely related to ECM remodeling and

influenced by denser infiltration of myofibroblasts. Furthermore,

we suggest that the dynamic change of ANO1, TMEM38B,

TMEM158, and TMEM45A may indicate stellate cell activation

and trigger tumor stromal remodeling. However, the mechanism

underlying these changes remains unknown and requires

verification in vitro (41, 42).

We conducted an investigation of the alteration of TMEM genes

in tumor-infiltrating immune cells, including macrophages, DC

cells, T cells, and B lineage cells, in pseudo-time. Previous studies

have reported that abundant infiltration of SPP1+ macrophages is

frequently observed in the tumor microenvironment and is

significantly associated with poor prognosis (43, 44). Our findings

confirmed the abundant infiltration of C1QC+ and SPP1+

macrophages, which is consistent with these previous studies.

Using the M1 and M2 polarization score to quantify the immune

function among different subtypes of macrophages, we suggest that

tumor-infiltrating macrophages may promote the construction of

an immunosuppressive tumor microenvironment by regulating the

expression of TMEM176 (43). Furthermore, we observed that

TMEM176 is also involved in immune regulation, as it is

significantly highly expressed in DC1 cells, which are associated

with impoverished immune surveillance. TMEM176 has been

demonstrated to be strongly correlated with the infiltration of

immune cells in tumors (45, 46). TMEM176B inhibits NLRP3

inflammasome activation to regulate adaptive and innate

antitumor responses, suggesting that TMEM176 may be a

potential immunotherapy target for pancreatic cancer (47).
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Additionally, numerous studies have shown that TMEM123 and

TMEM66 in T cells, and TMEM208, TMEM59, and TMEM258 in B

cells, are closely related to inflammatory response and participate in

tumor immune response, which is consistent with our findings

(48–50).

In order to gain a further understanding of the impact of

transmembrane protein gene expression on pancreatic cancer

prognosis, we conducted a comprehensive bioinformatics analysis.

Our study has identified 5 key transmembrane protein genes

associated with pancreatic cancer prognosis, and we have

constructed a reliable predictive model for assessing the prognostic

impact of TMEM genes. Based on this model, we found that patients

with high and low TMEM risk scores had significant differences in

clinical pathology and immune infiltration. Specifically, patients with

high TMEM risk scores were associated with an immunosuppressive

tumor microenvironment, indicating a potential mechanism for their

poor prognosis. Our findings suggest that these five key TMEM genes

have significant clinical implications for pancreatic cancer prognosis

and could potentially be utilized as prognostic biomarkers in clinical

practice. Single-cell analysis revealed that the expression of these five

genes was heterogeneous across different cell types. Based on the

expression characteristics of these genes, we found that the TMEM92

gene was highly expressed in malignant epithelial cells of pancreatic

cancer and was significantly associated with an immunosuppressive

tumor microenvironment. To further investigate the clinical

significance of TMEM92 in pancreatic cancer, we performed

immunohistochemical analysis and found that patients with high

TMEM92 expression had poor prognosis. Furthermore, functional

analysis of cell lines demonstrated that interference with TMEM92

expression by siRNA significantly down-regulated the clone

formation and cell invasion abilities of CFPAC-1 cell line. These

findings suggest that the TMEM92 gene may be associated with

malignant features of pancreatic cancer and its potential mechanism

may involve the regulation of substances such as glycogen,

cholesterol, and lipids to regulate malignant tumor epithelial cells.

Despite the promising results of our study, we acknowledge that

our findings have some limitations. While we identified five key

TMEM genes associated with pancreatic cancer prognosis, the

predictive value of our model, with a C-index of 0.62, was

relatively inferior to that of other models reported in previous

studies. studies (51, 52). Therefore, we believe that future research

should focus on not only identifying prognostic TMEM genes, but

also on understanding the biological behavior of tumors through

TMEM gene alterations in the microenvironment, which may lead

to the discovery of novel therapeutic targets in the future.

Overall, this study for the first time revealed that TMEM genes

were dysregulated in PDAC samples by analyzing single-cell and

bulk RNA-sequence. Single-cell and bulk-RNA sequence facilitated

the exploration of differential expression and dynamic alteration of

TMEM genes. We investigated the characteristics of TMEM gene

expression in several types of cells embedded in the tumor. Our

research reported that 24 TMEM genes with remarkable differential

expression might attribute to the remodeling of the tumor

microenvironment and immune response through single-cell

analysis. In addition, through the machine learning algorithm, 5
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key TMEM genes were identified. We then evaluated the prognostic

impact of TMEM gene expression and therapeutic response of

systematic therapy in patients with different risk stratification.

These results uncovered the pattern of TMEM gene expression in

PDAC and its effect on clinical application, laying a novel

theoretical target for PDAC treatment.
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49. González-Fernández R, Morales M, Avila J, Martıń-Vasallo P. Changes in
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