Deep-learning effectively predicts dose distributions in knowledge-based radiotherapy planning. Using anatomical information that includes a structure map and computed tomography (CT) data as input has been proven to work well. The minimum distance from each voxel in normal structures to planning target volume (DPTV) closely affects each voxel’s dose. In this study, we combined DPTV and anatomical information as input for a deep-learning–based dose-prediction network to improve performance.
One hundred patients who underwent volumetric-modulated arc therapy for nasopharyngeal cancer were selected in this study. The prediction model based on a residual network had DPTV maps, structure maps, and CT as inputs and the corresponding dose distribution maps as outputs. The performances of the combined distance and anatomical information (COM) model and the traditional anatomical (ANAT) model with two-channel inputs (structure maps and CT) were compared. A 10-fold cross validation was performed to separately train and test the COM and ANAT models. The voxel-based mean error (ME), mean absolute error (MAE), dosimetric parameters, and dice similarity coefficient (DSC) of isodose volumes were used for modeling evaluation.
The mean MAE of the body volume of the COM model were 4.89 ± 1.35%, highly significantly lower than those for the ANAT model of 5.07 ± 1.37% (
The COM model outperformed the ANAT model and could improve automated planning with statistically highly significant differences.