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Neural network-based model for
evaluating inert nodules and
volume doubling time in T1 lung
adenocarcinoma: a nested case
−control study
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Jinghui Wang2* and Dailun Hou1*
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Hospital, Capital Medical University, Beijing, China, 2Department of Medical Oncology, Beijing
Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical
University, Beijing, China, 3Cancer Research Center, Beijing Chest Hospital, Capital Medical University,
Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
Objective: The purpose of this study is to establish model for assessing inert

nodules predicting nodule volume-doubling.

Methods: A total of 201 patients with T1 lung adenocarcinoma were analysed

retrospectively pulmonary nodule information was predicted by an AI pulmonary

nodule auxiliary diagnosis system. The nodules were classified into two groups:

inert nodules (volume-doubling time (VDT)>600 days n=152) noninert nodules

(VDT<600 days n=49). Then taking the clinical imaging features obtained at the

first examination as predictive variables the inert nodule judgement model <sn</

sn>>(INM) volume-doubling time estimation model (VDTM) were constructed

based on a deep learning-based neural network. The performance of the INM

was evaluated by the area under the curve (AUC) obtained from receiver

operating characteristic (ROC) analysis the performance of the VDTM was

evaluated by R2(determination coefficient).

Results: The accuracy of the INM in the training and testing cohorts was 81.13%

and 77.50%, respectively. The AUC of the INM in the training and testing cohorts

was 0.7707 (95% CI 0.6779-0.8636) and 0.7700 (95% CI 0.5988-0.9412),

respectively. The INM was effective in identifying inert pulmonary nodules;

additionally, the R2 of the VDTM in the training cohort was 0.8008, and that in

the testing cohort was 0.6268. The VDTM showed moderate performance in

estimating the VDT, which can provide some reference during a patients’ first

examination and consultation

Conclusion: The INM and the VDTM based on deep learning can help radiologists

and clinicians distinguish among inert nodules and predict the nodule volume-

doubling time to accurately treat patients with pulmonary nodules.

KEYWORDS

neural network, inert nodules, volume doubling time, T1 lung adenocarcinoma,
computer tomograph
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Introduction

With the continuous improvements in health awareness and the

wide application of computed tomography (CT) in screening for

COVID-19, the detection rate of pulmonary nodules is increasing,

greatly affecting the physical and mental health of people. Early lung

cancer often appears in the form of pulmonary nodules, which can

be divided into solid nodules and subsolid nodules, the latter of

which includes pure ground-glass nodules (pGGNs) and mixed

GGNs (mGGNs) (1, 2) according to the presence of solid

components. The wide application of CT in routine clinical

practice enables lung cancer to be detected and treated at a

relatively early stage. The National Lung Screening Test (NLST)

and Nederland-Leuvens Longkanker Screenings Onderzoek

(Nelson) revealed that CT screening is more effective than X-ray

screening and can help reduce the mortality of patients. However,

most of the positive results found in the screening process are false

positives (3, 4), and most of the nodules are benign (5) and need no

further treatment. Therefore, in the process of clinical diagnosis and

treatment, which nodules need active surgical intervention, which

nodules can continue to be followed up and how long they need to

be followed up are matters of concern.

In recent years, a new artificial intelligence technology, deep

learning systems (DLS), has arisen that can learn image features

directly from data. DLS has achieved initial success in detecting

pulmonary nodules from chest CT images, and the establishment of

a computer-aided diagnosis (CAD) system can help doctors

interpret CT images more effectively and accurately (6)Most

previous studies have focused on predicting the histological types

of nodules or judging whether they are benign or malignant (7–10).

The deep learning model shows its potential to be used to accurately

identify malignant and invasive subsolid nodules (11).

With the continuous development of deep learning, the clinical

application of artificial intelligence pulmonary nodule diagnosis

assistant systems is becoming increasingly mature. In many studies,

such systems have been shown to provide good effectiveness in

assisting the detection of pulmonary nodules (12–14). Some

researchers have studied the effect of nodule volume-doubling time

on nodules (15–19), while others have explored the growth rate of

pulmonary nodules and the natural history of invasive

adenocarcinoma (20–22). In a study on the growth of small

pulmonary nodules, Xue (23) et al. developed a nomogram based

on the combination of radiomics and clinical parameters to predict 2-

year growth in the case of uncertain small pulmonary nodules.

Diagnostic models based on deep learning can differentiate between

benign and malignant pulmonary nodules on chest CT with the same

accuracy as daily working radiologists; the uncertain diagnosis is

significantly reduced, which can improve confidence in the diagnosis

of pulmonary nodules and help clinical decision-making (24).

However, in addition to the nodule size, CT images provide

additional information. The British Thoracic Society’s guidelines on

pulmonary nodules recommend measuring volume rather than

diameter because it is less prone to intra-observer and inter-

observer variation. In the context of pulmonary nodules, volume

doubling time is a key indicator of malignant tumors.
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In our study, we developed an inert nodule judgement model

(INM) and a volume-doubling time estimation model (VDTM)

based on a convolutional neural networks (CNN) algorithm to

evaluate the inert-growth trend of pulmonary nodules, analyse the

properties of pulmonary nodules, and manage pulmonary

nodules scientifically.
Materials and methods

Patients

This study was designed as a nested case−control study. A total of

201 patients with pulmonary nodules who underwent surgery at

Beijing Chest Hospital affiliated with Capital Medical University from

January 2016 to June 2021 were selected. The inclusion criteria were

as follows: 1) at least two preoperative chest CT scans with 1.25-mm

slice thickness, and with an interval of at least 6 months; 2) nodules

confirmed by histology and surgery as T1 stage lung adenocarcinoma

without blood or lymph node metastases; 3) the greatest diameter of

pulmonary nodules was less than 30 mm. The exclusion criteria were

as follows: 1) the clinical or imaging data were incomplete; 2) the

GGNs described in the histopathological report could not be

recognized on CT images; 3) patients with diffuse lung disease and

patients with obvious moving artefacts; and 4) the number of follow-

ups was less than 2, and the internal of two preoperative chest CT was

less than 6 months. We collected all the preoperative CT images,

clinical features and postoperative pathological data of the patients,

and the results are shown in Figure 1.
CT scan

All patients were scanned using a 16-cm wide detector CT

(Revolution 256, GE Healthcare, Milwaukee, USA. First, a CT plain

scan was carried out. The scanning range was from the top of the

lung to the bottom of the lung, and then the patient was injected

intravenously with iohexol concentration of 300mgI/mL, and the
FIGURE 1

Flow chart of this study. VDT, volume doubling time.
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dose was calculated according to the patient’s body weight

multiplied by 1.2-2 mL/kg. The injection flow rate was 3.0 mL/s.

After injection, the enhanced scan began with a delay of 20 s and 50

s, and the relevant parameters were set as follows: tube voltage 120

kV, tube current set for automatic adjustment, slice spacing

1.25 mm, and pitch 1.0. Patients fasted for 5 hours before the

enhanced CT scan. The standard reconstruction method was used

to reconstruct the image.
Nodule feature analysis

The CT images of all patients (slice thickness and interval are

1.25 mm) were imported into the InferRead CT Lung (Infervision

Medical Technology Co., Ltd.) in DICOM format, which was used to

obtain the nodule measurement information. The data included CT

value (HU), longest diameter, shortest diameter, mean diameter,

nodular volume, nodular density analysis, proportion of solid

components, malignant risk assessment, nodular morphology, edge,

internal structure, nodular volume doubling time (VDT), and so on.
Pathological diagnosis

The pathological subtypes of pulmonary nodules in all patients

were classified according to the WHO Thoracic Tumours

Classification. The diagnosis of all pathological specimens of each

case was confirmed by at least two experienced pathologists, and

whenever there was a disagreement, a consensus was reached

through mutual discussion or consultation with a third pathologist.
Inert nodule judgement model

The British Thoracic Society guidelines on the investigation and

management of pulmonary nodules note that a VDT > 600 days

means a very low risk of malignancy, and the patient can even be

discharged (25). The results of previous studies supported a similar

opinion (26, 27). Although some traditional views suggest that a

nodule with a VDT > 400 days tends to be indolent, we

conservatively chose 600 days as the cut-off number of days for

defining an inert lung nodule (26–29).

All patients were randomly allocated to the training (159) or

testing cohort (42). Clinical characteristics and imaging features

extracted during the first examination based on the AI pulmonary

nodule assistant diagnosis system were selected as predictive

variables, including age, sex, smoking status, nodule location,

nodule type, minimum CT value, maximum CT value, average

CT value, kurtosis (the kurtosis of nodule’s CT values), skewness

(the skewness of nodule’s CT values), CT longest diameter, CT

shortest diameter, CT average diameter, volume of nodule,

proportion of solid components, nodule shape, lobulation,

spiculation and pleural retraction.
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Numerical variables were normalized (subtracted the standard

deviation and divided by the mean), while categorical variables were

transformed to one-hot encoding (which means using numbers

instead of characters to reflect the variables, such as replacing

“Female” with “1”).

The training cohort was then utilized to create an inert nodule

judgement model (INM) based on a neural network estimate of

whether a nodule would be indolent (VDT > 600 days). Dropout

slices and the testing cohort were applied to avoid overfitting. Given

the presence of unbalanced data (only 49 people’s VDT ≤ 600 days,

but 152 patients’ VDT>600 days), positive outcomes were provided

greater weighting to more accurately train the model.

The area under the receiver operating characteristic (ROC)

curve (AUC) was used to evaluate the classification performance

(inert nodule or noninert nodule) of the INM.

The neural network was conducted with python 3.9.7 and its

packages pytorch, torchtuples, numpy, pandas and sklearn, while

the package matplotlib was used to help visualize the training

process (30–35). R and its packages pROC and ggplot2 were used

to plot the ROC curves (36–38).
Volume-doubling time estimation model

Using the clinical and CT features in the INM, we built another

neural network to estimate the VDTM. As discussed above, the

training cohort data were used to train the VDTM, and the testing

cohort was used to externally validate the model. The R2, also

known as the coefficient of determination of the model, was selected

as the main performance evaluation indicator since a regression

task was involved. Better model predictive performance was

indicated by an R2 value closer to 1. We achieved the above work

mainly with Python and sklearn.
Association between clinical and CT
features

Association analysis of the clinical and CT features was

conducted to explore the potentially intrinsic relationships

between the two groups of features. In this process, the Spearman

correlation coefficient was used with a heatmap and chord diagram

to visualize the results. We used the R packages corrplot and circlize

to generate the heatmap and the chord diagram (39, 40).
Statistical analysis

Numerical data with normal and nonnormal distributions were

compared using Student’s t test and the Wilcoxon test, respectively.

A two-sided P < 0.05 was considered to be statistically significant.

All statistical analyses were completed with R 4.1.2 and the package

epiDisplay (41).
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Results

Patient characteristics

A total of 201 lung nodules of T1 lung adenocarcinoma patients

were included. Forty-nine patients had a VDT equal to or less than

600 days, while 152 patients had a VDT greater than 600 days (the

VDT was predicted by artificial intelligence assistant software).

The two groups (VDT > 600 days and ≤ 600 days) of patients

demonstrated differences in histology type, pathological subtypes of

pulmonary nodules, nodule type(classified by density), kurtosis of

nodule CT values, pathological size, CT longest diameter, CT

shortest diameter, CT average diameter, nodule shape, lobulation,

spiculation and pleural retraction (Table 1).
Identification of indolent lung nodules

The INMwas designed to identify indolent lung nodules, including

3 hidden slices (16, 4 and 2 nodes) and dropout slices. Clinical and CT

features acquired at the first CT scan were extracted as the predictive

variables, including age, sex, smoking status, nodule location, nodule

type, minimum CT value, maximum CT value, average CT value,

kurtosis (of the nodule’s CT values), skewness (of the nodule’s CT

values), CT longest diameter, CT shortest diameter, CT average

diameter, nodule volume, proportion of solid components, nodule

shape, lobulation, spiculation and pleural retraction.
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The INM had an accuracy of 81.13% and 77.50% in training and

testing cohorts, respectively. The AUCs were 0.7707 (95% confidence

interval, CI, 0.6779-0.8636 by the DeLongmethod) in the training cohort

and 0.7700 (95% CI, 0.5988-0.9412 by DeLong method) in the testing

cohort (Figure 2). The INM showed a slightly satisfying performance in

identifying indolent lung nodules.With patients’ clinical and CT features

as the input, the INM returned a speculative probability that a nodule

would be indolent. It would help doctors and patients decide whether a

nodule belonged to the indolent category simply on the basis of the first-

time CT scan. The codes of the INM have been uploaded in Additional

File 1, and its detailed parameters have been saved in Additional File 2.
Estimation of volume doubling time

To obtain an approximate VDT simply on the basis of the patient’s

first CT scan, we built the VDTM. The same clinical and CT features

used in the INM were chosen as predictive variables. The R2 of the

VDTM was 0.8008 in the training cohort and 0.6268 in the testing

cohort. Neural networks were used for classification tasks (such as

“malignant” or “benign”), and their performance on regression tasks

(for estimating a numeric result, such as how many days) was

moderate. The VDTM showed a moderate performance in

estimating VDT, but it could still offer some references at a patient’s

first examination and consultation. The codes of the VDTM have been

uploaded in Additional File 3, and its detailed parameters have been

saved in Additional File 4.
TABLE 1 The comparison of clinical and CT features between patients with nodule VDT≤600d and>600d.

VDT≤600d VDT≤600d Statistical
method P value

(N=49) (N=152)

Age Wilcoxon 0.3903

Median (IQR) 60 (50, 63) 56 (48.75, 64)

Sex Chi-square 0.0731

Female 31 (63.27) 116 (76.32)

Male 18 (36.73) 36 (23.68)

Smoke Chi-square 0.1481

No 40 (81.63) 136 (89.47)

Yes 9 (18.37) 16 (10.53)

Pathology Fisher's exact 0.0427*

AAH 0 (0) 2 (1.32)

AIS 3 (6.12) 16 (10.53)

MIA 15 (30.61) 73 (48.03)

IAC 31 (63.27) 61 (40.13)

Component Fisher's exact 0.0064**

Acinar predominant 15 (30.61) 67 (44.08)

Lepidic predominant 7 (14.29) 19 (12.50)

Micropapillary predominant 2 (4.08) 0 (0)

(Continued)
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TABLE 1 Continued

VDT≤600d VDT≤600d Statistical
method P value

(N=49) (N=152)

Papillary predominant 13 (26.53) 25 (16.45)

Solid predominant 3 (6.12) 1 (0.66)

Unknown 9 (18.37) 40 (26.32)

Location Chi-square 0.6754

Superior lobe of left lung 10 (20.41) 38 (25.00)

Inferior lobe of left lung 8 (16.33) 15 (9.87)

Superior lobe of right lung 20 (40.82) 62 (40.79)

Middle lobe of right lung 4 (8.16) 9 (5.92)

Inferior lobe of right lung 7 (14.29) 28 (18.42)

Surgical method Fisher's exact 0.424

Wedge resection 17 (34.69) 54 (35.53)

Segmentectomy 5 (10.20) 21 (13.82)

Lobectomy 26 (53.06) 77 (50.66)

Pneumonectomy 1 (2.04) 0 (0)

Mutation Fisher's exact 0.4544

EGFR 15 (30.61) 37 (24.34)

KRAS 0 (0) 7 (4.61)

ROS1 0 (0) 1 (0.66)

ALK 1 (2.04) 1 (0.66)

HER2 0 (0) 4 (2.63)

MET14 0 (0) 1 (0.66)

BRAF 1 (2.04) 1 (0.66)

Negative 5 (10.20) 18 (11.84)

Unknown 27 (55.10) 82 (53.95)

Nodule type Chi-square 0.0447*

Mixed GGN 18 (36.73) 72 (47.37)

Pure GGN 20 (40.82) 66 (43.42)

Solid nodule 11 (22.45) 14 (9.21)

Minimum CT value (HU) Wilcoxon 0.137

Median (IQR) -672 (-743, -511) -718 (-757.25, -619.5)

Maximum CT value (HU) Wilcoxon 0.3609

Median (IQR) 54 (-153, 170) -15.5 (-194.75, 137)

Average CT value (HU) Wilcoxon 0.1702

Median (IQR) -449 (-637, -146) -535.5 (-612, -352.25)

Kurtosis Wilcoxon 0.0418*

Median (IQR) 0.36 (0.08, 0.66) 0.52 (0.20, 0.88)

Skewness Wilcoxon 0.2402

(Continued)
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Association between clinical and CT
features

Our primary aim was to determine whether the CT features

extracted during the first CT scan could reveal later pathological

features. The association analysis between pathological features and

certain clinical features showed that the pathology subtype was

associated with the minimum CT value, average CT value, kurtosis,

skewness, lobulation,spiculation,pleural retraction. Invasive histology
Frontiers in Oncology 06
subtypes was related to the maximum CT value, kurtosis, skewness,

CT longest diameter, CT shortest diameter, CT average diameter,

nodule volume, lobulation, and spiculation (Figure 3).
Discussion

In this study, we developed a deep learning prediction model to

distinguish between inert nodules and noninert nodules based on
TABLE 1 Continued

VDT≤600d VDT≤600d Statistical
method P value

(N=49) (N=152)

Median (IQR) -0.76 (-1.01, 0.04) -0.5 (-0.97, 0.54)

Pathological size (mm) Wilcoxon 0.0022**

Median (IQR) 11 (7, 15) 8 (5.75, 11)

CT longest diameter (mm) Chi-square 0.0053**

≤ 8 11 (22.45) 55 (36.18)

≤ 10 5 (10.2) 32 (21.05)

≤ 20 23 (46.94) 55 (36.18)

≤ 30 10 (20.41) 10 (6.58)

CT shortest diameter (mm) Wilcoxon 0.0176*

Median (IQR) 11 (6, 13) 8 (6, 10)

CT average diameter (mm) Wilcoxon 0.0085**

Median (IQR) 12 (7, 16) 9 (7, 13)

Volume of nodule (mm3) Wilcoxon 0.7972

Median (IQR) 213.55 (93.67, 695.49) 248.2 (129.66, 521.85)

Proportion of solid ingredients Wilcoxon 0.0739

Median (IQR) 1.86 (0, 53.44) 0.61 (0, 9.43)

Shape of nodule Chi-square < 0.001***

Irregular 14 (28.57) 13 (8.55)

Regular 35 (71.43) 139 (91.45)

Lobulation Chi-square 0.0298*

No 22 (44.90) 95 (62.50)

Yes 27 (55.10) 57 (37.50)

Spiculation Chi-square 0.0041**

No 22 (44.90) 103 (67.76)

Yes 27 (55.10) 49 (32.24)

Pleural retraction Chi-square 0.0133*

No 36 (73.47) 134 (88.16)

Yes 13 (26.53) 18 (11.84)
frontiers
VDT, volume doubling time; IQR, interquartile range; AAH, atypical adenomatous hyperplasia; AIS, adenocarcinoma in situ; MIA, minimally invasive adenocarcinoma; IAC, invasive
adenocarcinoma; GGN, ground glass nodule; CT, computed tomography; HU, Hounsfield unit; Kurtosis, the kurtosis of nodule’s CT values; Skewness, the skewness of nodule’s CT values.
Missing values were not analyzed statistically. *P<0.05, **P<0.01, ***P<0.001.
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the initial CT characteristics. The deep learning model was the first

used for predicting the inert-growth trend of pulmonary nodules.

The deep learning prediction model yielded good prediction

performance, with AUCs of 0.7707 and 0.7700 in the training and

testing cohorts, respectively.

In our study, the analysis of the clinical characteristics of

patients with T1 lung adenocarcinoma showed that there was no

clear relationship between nodule inert-growth status and patient

age and sex, and there was no significant difference between

smoking and lung nodule inert-growth status. This is not

consistent with previous studies showing that smoking is an

independent risk factor for lung cancer (42). Research on artificial

intelligence-aided image diagnosis systems has been reported in the
Frontiers in Oncology 07
literature. In this study, the extraction of nodule information was

based on an artificial intelligence-aided diagnosis system. The

continuous improvement of the system in clinical application can

provide great help for reducing the number of missed diagnoses.

The inert growth of pulmonary nodules was related to the

pathology subtype, nodular type, CT kurtosis, CT longest

diameter, CT shortest diameter, CT mean diameter, nodule shape,

lobulation, spiculation, pleural retraction and so on. Among

nodules of different diameters, the VDT was significantly

shortened with increasing nodular diameter. In patients with

nodular diameters less than 20mm, nodular VDT showed a slow

growth process. This coincides with the view that persistent pGGNs

exhibit an inert growth process, and pGGNs with lobulation and

a larger initial diameter, volume and mass grow more easily.

However, our results showed that more characteristics were

related to the inert growth of nodules, probably because the

nodules analysed in our study were not only pGGNs but also

included mGGNs and solid nodules. In this study, We did not

classify according to the pathological subtypes of pulmonary

nodules future studies should provide supplementary data.

After the imaging parameters were read out by the AI

pulmonary nodule assistant diagnosis system, we integrated them

with the patient’s clinical data for clinical modelling. Compared

with the traditional model constructed by logistic regression, the

machine learning algorithm has more advantages in solving

classification problems. As the advanced algorithm in the field of

machine learning, neural networks have attracted wide attention in

the field of medicine in recent years. Deep learning neural networks,

which are inspired by the biological nervous system, usually contain

multiple hidden slices and multiple nodes between slices. It predicts

the final event, calculates the loss between the predicted value and

the actual value, reverses the weight of each slice and node, and

constantly learns the characteristics of the relationship between the

prediction variables and outcome variables. The weights between

slices are constantly updated, and due to the addition of activation

functions, the neural network algorithm is especially suitable for

solving nonlinear problems. Traditional models (logistic, Cox
FIGURE 2

The receiver operating characteristic curve of indolent nodule
judgment model (INM). AUC, area under receiver operating
characteristic curve.
BA

FIGURE 3

The association analysis between clinical and imaginal features visualized by (A) heatmap plotting. (B) Chord diagram.
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regression, etc.) are based on linear hypotheses, so real-world data,

especially clinical and imaging data, are more suitable for neural

network calculations. Finally, we also chose neural network

modelling to determine whether the nodules were inert and to

roughly estimate the VDT.
Inert nodule judgement model

In our study, we constructed an INM based on initial CT; it had an

accuracy of 81.13% in the training cohort and 77.50% in the testing

cohort. Combining clinical variables and the INM resulted in a good

ability to distinguish inert nodules from noninert nodules. In previous

studies, the focus was mainly on distinguishing between benign and

malignant nodules and between noninvasive and invasive nodules. Xu

et al. (43) found that a DLmodel trained on VOIs from continuous CT

images had good predictive performance in distinguishing noninvasive

GGNs from invasive GGNs. KimH et al. (7) developed a deep learning

model using 2.5D and 3D CT images of 525 preoperative patients to

distinguish IACs among subsolid nodules (SSN) for surgical

candidates. Chang et al. (16) found that approximately 90% of the

pGGNs detected by screening did not grow during long-term follow-

up in patients with no history of malignant tumours, and most of the

growing nodules had an inert clinical course. For pGGN, a strategy of

long-term follow-up and selective surgery for growing nodules should

be considered. In contrast to previous studies, we did not classify

nodules according to previous clinicopathological classification, degree

of malignancy or solid components of nodules. We proposed to take

the VDT as the research target, regardless of histology or density type

to which the nodules belong and of whether they increase or decrease

in size during follow-up. Our research is intended to assist doctors and

patients in judging the growth trend of nodules from the first CT scan.

Patients should be given reasonable follow-up advice for the

pulmonary nodules.
Volume-doubling time estimation model

In previous studies, volume doubling time has often been used

as an index to evaluate the properties of nodules. Tumour VDT is

one of the indicators used to evaluate tumour growth and is closely

related to the concept of overdiagnosis in lung cancer screening.

Nelson studies have shown that the VDT can be used to distinguish

invasive tumours from inert tumours (29). Heuvelmans et al. (13)

found that in the baseline screening of the Nelson test, all

malignant, fast-growing pulmonary nodules referred after 3-

month follow-up CT had a VDT ≤ 232 days. Lowering the cut off

VDT may reduce false-positive referrals. Song et al. found that (11)

nodules less than or equal to 5 mm showed longer VDT and mass

doubling time(MDT) than larger than 5 mm. In our study, we

constructed a VDTM based on the clinical and imaging features

used in the INM as predictive variables. The neural network we used

for classification tasks (such as “malignant” or “benign”) was

excellent, but its performance in regression tasks (to estimate a
Frontiers in Oncology 08
numerical result, such as how many days) was not good. The

VDTM showed moderate performance in estimating VDT, but it

could still provide some reference in patients’ first examination

and consultation.

Our results showed that the evaluation model of inert growth of

pulmonary nodules based on deep learning could improve the

accuracy of diagnosis and helped the treatment decision-making.

In this study, our proposed model was trained and tested with

histopathologically confirmed T1 lung adenocarcinoma nodules,

and clinical features and multiple follow-up CT features were added

to the deep learning model. Compared with the method of

establishing a single deep learning model or using clinical

characteristics, the evaluation ability of our method was

further enhanced.

There are some limitations in this study. First, this study was

retrospective in nature, and the sample size was relatively small.

Therefore, selection bias was unavoidable. Second, this study did

not include blood markers during follow-up of the nodules, and

future studies should involve a larger sample size and multicentre

samples to increase the generalizability of the models. Third, in our

study, only the inert-growth prediction model of lung nodules in T1

lung adenocarcinoma, models applied to other stages and other

types of lung cancer to be further developed.

In summary, the nodule growth prediction model based on the

VDT of pulmonary nodules had important value in assessing the

properties of nodules. Our study allowed us to contribute to

identifying potential early lung cancer by integrating current

clinical and multiple follow-up CT results with deep learning

neural networks.
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