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Background: If lymph node metastasis occurs in breast cancer patients, the

disease can progress rapidly. Based on the infiltrative immune cells of breast

cancer patients with lymph node positivity, we constructed the LNPRS for

selecting prognostic predictors.

Methods: The LNPRS was established and the predictive value of the LNPRS was

verified by independent testing cohorts. A nomogram was also established to

confirm the therapeutic guidance significance of the LNPRS. The correlation of

the LNPRS with tumor mutation burden, immune microenvironment score,

immune checkpoints, the proportion of tumor-infiltrating immune cells, and

GSEA and GSVA enrichment pathways were also evaluated.

Results: In the training cohort, the overall survival of breast cancer patients who

had high LNPRS was shorter than that of patients who had low LNPRS (7.98 years

versus 20.42 years, P-value< 8.16E-11). The AUC values for 5-, 10-, and 15-years

were 0.787, 0.739, and 0.800, respectively. The ability to predict prognosis for

the LNPRS was also tested in 3 independent testing cohorts. Furthermore, the

predictive value of the LNPRS for chemotherapy and immunotherapy was also

proven. The GSEA and GSVA showed that the LNPRS was closely related to the

activation of T and B lymphocytes and IFN-g secretion. Moreover, breast cancer

patients with low LNPRS had higher TME scores than those with high LNPRS.

Conclusion:We can conclude that the LNPRS is a robust prognostic biomarker in

breast cancer patients with positive lymph nodes and may be helpful for patients

to make a clinical decision.
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Introduction

According to a report from the CA-Cancer J Clin journal, breast

cancer is the most important cause of death in women with tumors

worldwide (1). New cases continue to slowly increase at a rate of

0.5% per year (1). According to data from the United States, the

number of new cases of breast cancer will exceed 290,000 in 2022

(1). Currently, integrated treatment modes for breast cancer,

including surgery, chemotherapy, hormonal therapy, targeted

therapy, and radiation therapy, are used for patients who are

diagnosed with breast cancer. However, there are still some

patients, especially those with lymph node positivity, who

progress rapidly after treatment.

Some research has shown that breast cancer is a highly

immunogenic tumor, and the tumor immune microenvironment

(TIME) is closely related to the development of breast cancer (2).

Many immune cell types in the TIME significantly affect the

prognosis of patients with breast cancer (2–4). Further research

has found that tumor-infiltrating lymphocytes (TILs) are sensitive

prognostic indicators for breast cancer (5–7). In addition, some

studies have confirmed that TILs can predict the efficacy of

chemotherapy and immunotherapy (8, 9).

Comprehensive and in-depth analysis of the characteristics of

the breast cancer immune microenvironment may offer more

sensitive and novel prognostic and therapeutic targets for patients.

However, due to the limitations of the analysis methods and sample

size, the prognostic and predictive value of TILs needs to be further

improved. Wang et al. provided comprehensive immunogenomic

analyses for the TIME of breast cancer patients and built a

prognostic model by computational methods (10). However, the

comprehensive analysis of the TIME of breast cancer with lymph

node metastases is still limited. The characteristics analysis of

infiltrative immune cells and identification of prognostic and

predictive indicators for breast cancer patients with lymph node

metastases still need to be addressed.

Therefore, we analyzed and quantified the immune

microenvironment characteristics of breast cancer patients with

positive lymph nodes by WGCNA based on the breast cancer

training samples. Then, the least absolute shrinkage and selection

operator (LASSO) Cox model was performed, and the lymph node

positive related risk score (LNPRS) for breast cancer was

constructed based on the training cohort samples (11, 12).
Abbreviations: WGCNA, weighted correlation network analysis; HR, hazard

ratio; TCGA, The Cancer Genome Atlas; LASSO, least absolute shrinkage and

selection operator; GEO, Gene Expression Omnibus; METABRIC, Molecular

Taxonomy of Breast Cancer International Consortium; TPM, transcripts per

kilobase million; CI, confidence interval; TMB, tumor mutation burden; MAF,

mutation annotation format; GSEA, Gene Set Enrichment Analysis; GSVA, Gene

Set Variation Analysis; IPS, immunophenoscore; TCIA, The Cancer Immunome

Atlas; DEGs, differentially expressed genes; PD, progressive disease; SD, stable

disease; PR, partial response; CR, complete response; cNC, clinical no change;

cPR, clinical partial response; cCR, clinical complete response; TIME: tumor

immune microenvironment; TILs: tumor-infiltrating lymphocytes.
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Furthermore, the prognostic and predictive value of this

prognostic model for survival time and therapeutic efficacy in the

testing cohorts was investigated. Finally, the correlation of LNPRS

with tumor mutation burden, distribution of 22 types of immune

cells, and immune checkpoint molecules was explored

and estimated.
Materials and methods

Collating and analyzing publicly available
cohort datasets

The messenger RNA (mRNA) expression profiles for breast

cancer cohorts were obtained from The Cancer Genome Atlas

(TCGA). Five Gene Expression Omnibus (GEO) datasets for

breast cancer cohorts with lymph node positivity and available

overall survival time were collected from the public GEO database.

The breast cancer cohorts with lymph node positivity and available

overall survival time were also downloaded from the Molecular

Taxonomy of Breast Cancer International Consortium

(METABRIC) (13) and ArrayExpress (14). Finally, 2274 breast

cancer patients from 9 independent cohorts in the study

were selected.

We converted the probes into gene symbols by platform

annotation file. The batch effects from different cohorts were

removed (15). We normalized the raw count data and transformed

the count data into transcripts per kilobase million (TPM) values.

The 482 breast cancer patients in the TCGA cohort were

used to build the LNPRS as a training cohort. The 1112 breast

cancer patients were analyzed from 3 independent cohorts of

GSE20685, GSE97324, and METABRIC as testing cohorts. The

overall survival and relapse-free survival in the GSE20685,

GSE97324, and METABRIC cohorts were computed. The 680

breast cancer patients from the GSE130788, GSE140494,

GSE18728, IMvigor210 and GSE78220 cohorts were used to

evaluate the value of LNPRS in the response to chemotherapy

and immunotherapy.
TIME characteristics of breast cancer with
lymph node positivity

The infiltration of 22 types of immune cells in the breast cancer

patients was calculated, and the immune cell distribution between

tumor and normal tissues is shown. The correlation among different

immune cells in tumor samples was analyzed.
Construction of the immune-related
LNPRS model

Co-expression analysis of mRNA expression data and immune

cell infiltration for breast cancer patients was performed, and the

module-trait relationship map was plotted by weighted correlation

network analysis (WGCNA) (16). TILs are closely related to
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antitumor immune response, including CD8+ T cells, activated

CD4+ memory T cells, regulatory T cells (Tregs), and M1

macrophages (17). Thereafter, the network modules closely

correlated with antitumor immune response were identified, and

the magenta module was selected as an interesting module by

referring to the correlation coefficient of modules. The expression

profiles of module genes in the training and testing cohorts were

obtained. The data on gene expression and patient survival for the

training and testing cohorts were combined.

Then, six genes were identified from the module genes by

univariable Cox proportional hazards regression analysis (P-

value< 0.05). The P-values, hazard ratios (HRs), and 95%

confidence intervals (CIs) of six prognosis-related genes were

calculated, and a forest plot was drawn. The prognostic genes

among the six genes were identified by LASSO Cox regression

analysis and the LNPRS was established based on five genes (11, 12,

18). The correlation coefficients of these genes were computed

(Supplementary Table S1). The LNPRS was constructed according

to the following formula:

LNPRS   score =o​(correlation   coefficients   for   gene   x)*
(normalized   gene   x   expression   level)
Validation of the LNPRS in multiple cohorts

The breast cancer patients from TCGA and GSE20685 were

used as training and testing cohorts separately, and the samples

were divided into high and low-risk groups based on the LNPRS by

the optimal cutoff. The overall survival of patients in the training

and testing cohorts was plotted based on high and low LNPRS. In

different types, the Kaplan-Meier curve of individual genes was

also present.

Next, the corresponding clinical information of breast cancer

patients was also obtained from the public TCGA database, and the

clinical variables of patients in the training cohort included age, sex,

stage, and survival time. The alignment diagram, calibration curve

of the nomogram diagram, risk curve, heatmap based on the gene

signature, and ROC curve were plotted, and the results were shown.

Independent prognostic analysis combining clinical features and

LNPRS was performed by univariate and multivariate Cox

regression analysis.

Then, the prognostic value of the LNPRS was verified by the

samples of the GSE97324 and METABRIC cohorts. In the

METABRIC cohort, 911 patients were divided into two groups

with different levels of the LNPRS, and the LNPRS for every sample

was obtained by the formula of the LNPRS scoring system. We

plotted the curves of overall survival, relapse-free survival, and the

ROC in the two groups. The correlation between the expression

profiles of individual genes and survival time was examined. The

relationships between the LNPRS value, tumor mutation burden

(TMB), and survival time in the METABRIC cohort were also

studied through the Wilcoxon test and Spearman test. In the

GSE97324 cohort, the relationship between TNM stages and
Frontiers in Oncology 03
LNPRS values was compared by t-test, and Kaplan-Meier curves

and ROC curves were also plotted.
Correlation of tumor mutation burden,
infiltrative immune cells, and LNPRS

The simple nucleotide variation data with breast cancer patients

were searched. We downloaded masked somatic mutation data

from the TCGA database. Gene mutation type and TMB data for

every sample were obtained. We prepared the mutation annotation

format (MAF) of somatic variants, and waterfall plots with

mutation information of genes in each sample were shown by the

visualization process (19). Differences and correlations of TMB in

breast cancer patients with different risk levels based on the LNPRS

were analyzed. The correlation between survival time, TMB, and

LNPRS was assessed.

Next, we investigated the distribution of 22 types of immune

cells (20). The correlation between the LNPRS and the proportion

of immune cells in breast cancer patients was also analyzed. We

evaluated the correlation between each independent prognostic

gene based on the LNPRS scoring system and infiltrative immune

cells by five immune cell analysis tools including XCELL, TIMER,

QUANTISEQ, MCPCOUNTER, EPIC, CIBERSORT, and

CIBERSORT-abs (21). The estimate score, stromal score, and

immune scores in the training cohort were calculated with default

parameters (22). Finally, TME scores with low or high LNPRS were

evaluated and visualized.
GSEA and GSVA analysis based on
the LNPRS

The KEGG and GO pathway enrichment analyses of genes based

on the LNPRS were performed by Gene Set Enrichment Analysis

(GSEA) and Gene Set Variation Analysis (GSVA) for the training

cohort (23, 24). The correlation between KEGG enrichment

pathways and the LNPRS was analyzed and illustrated. We

estimated the KEGG and GO enrichment pathways based on gene

expression data.
Predictive efficacy of the LNPRS in
chemotherapy and immunotherapy

The drug sensitivity of the breast cancer patients from the

TCGA cohort was analyzed. The mRNA expression data of genes

associated with immune checkpoints in the training cohort were

obtained. The immunophenoscore (IPS) of breast cancer patients

from the TCGA database was downloaded from The Cancer

Immunome Atlas (TCIA) (25). The correlation between 45

immune checkpoints and the LNPRS was calculated, and the

forest plot was plotted. The sensitivity to PD-1 and CTLA4

antibodies of patients in the two groups with high and low

LNPRS was studied.
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We collected data from the GSE130788, GSE140494, and

GSE18728 cohorts, and the three breast cancer cohorts contained

complete transcriptome data and detailed clinical information for

chemotherapy. We also obtained information on advanced

urothelial cancer samples from the IMvigor210 cohort (26). Given

the evaluation cycle and benefit time of immunotherapy, we deleted

the survival data of patients with a survival time of fewer than 120

days in the IMvigor210 cohort. The GSE78220 datasets for the

cohorts of metastatic melanoma samples were also downloaded

from GEO data (27). We evaluated the predictive effect of the

LNPRS in immunotherapy by the above two datasets.

The above processing were performed by glmnet, sva, DEseq2,

limma, survival, survminer, reshape2 and ggplot2, ggpubr,

GSEABase, GSVA, pRRophetic, org.hs.eg.db, DOSE, clusterProfiler,

enrichplot, scales, ggtext, and tidyverse, pheatmap, timeROC, regplot,

rms, complexheatmap, maftools, e1071, preprocessCore, corrplot,

IMvigor210CoreBiologies, WGCNA, and estimate R packages.
Statistical analysis

The samples in the different cohorts were divided into two

groups according to the LNPRS. We plotted the Kaplan-Meier

survival curves in the different cohorts. In the different groups, we

estimated the differences in survival time, disease stage, and

chemotherapy response by the two-sided log-rank test, t-test, or

ANOVA test. We identified the gene signatures that were
Frontiers in Oncology 04
significantly correlated with overall survival time by univariate

Cox regression analysis. We also assessed the independent

prognostic value of the LNPRS by multivariable Cox regression

analysis. The P-values, HR, and 95% CI for breast cancer cohorts

were computed, and the risk prediction and clinical feature scores

were shown visually by nomogram, which was calibrated and

evaluated by a calibration plot (28).

All statistical analyses in the study were performed using R

software (version 4.1.3), and the resulting P-values were two-sided.

The P-values were considered statistically significant when they

were less than 0.05.
Results

Analysis and qualification for immune
microenvironment characteristics of breast
tumor samples with lymph node positivity
by WGCNA

The distributions of 22 types of infiltrating immune cells for the

TCGA cohort are depicted, and the proportions of different

immune cells in the normal or tumor samples are also illustrated

in the heatmap (Figures 1A, B). The correlations of immune cells

were also shown by the heatmap (Figure 1C).

Differentially expressed genes (DEGs) and immune cells for

each breast cancer sample in the training cohort were used for
B C

A

FIGURE 1

Relative analysis of immune cells in tumor samples and normal tissue. (A) The relative proportions of immune cells in the TCGA cohort. (B) The
heatmap of the immune cells in the tumor samples and normal tissue. (C) The correlation analysis of infiltrative immune cells for the TCGA cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1029070
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2023.1029070
WGCNA (Figure 2). The outliers were detected and removed by a

sample clustering dendrogram (Figure 2A). The optimal soft

threshold power is selected by the scale-free topology model and

the mean connectivity (Figure 2B). We have plotted the gene cluster

dendrogram. In Figure 2C, the leaf represents a gene, and the

branch on the tree represents a co-expression module. Figure 2D

shows the clustering of module eigengenes. Figure 2E shows the

clustering dendrograms for DEGs with dissimilarity. We calculated

the correlations between each module and trait, and the correlation

coefficients of the 13 modules and traits are shown (Figure 2F). The

magenta module was chosen and analyzed by referring to the

correlation coefficient and p-value.
Establishment and evaluation of LNPRS in
the breast cancer cohorts

The methods of LNPRS model building are referred to in the

methods section of the article. Partial likelihood deviance and

LASSO coefficient profiles are shown by vertical dotted line plots,

and six genes were selected (Figure 3L; Figures S1A, B). LNPRS

were established and included ABCD1, GBP2, SLAIN1, SLC15A,

and TFPI2. As illustrated in Figure 3A, the breast cancer patients

with high LNPRS in the training cohort had significantly shorter

overall survival than those with low LNPRS (7.98 years versus 20.42

years, P-value< 8.16E-11; log-rank test; Figure 3A). The AUC values

for 5, 10, and 15 years were 0.787, 0.739, and 0.800, respectively

(Figure 3D). The correlation between survival time and the LNPRS

for patients is indicated in Figures 3B, C. As the LNPRS increased,

the death risk for patients gradually increased (Figures 3B, C).

Figure 3E shows the heatmap of the correlation between death risk

for patients and gene expression. The heatmap suggested that

ABCD1 and SLC15A were high-risk genes, and GBP2, SLAIN1,
Frontiers in Oncology 05
and TFPI2 were low-risk genes (Figure 3E). The above results were

the same as the findings of the survival curve of the single gene in

the training cohort and METABRIC cohort (Figures 4A–E; 4J–N).

To further test the robustness of the LNPRS, the ability of the

LNPRS to predict prognosis was also tested in the testing cohort

(GSE20685), GSE97324, and METABRIC cohorts. With the same

formula, we divided the patients into high and low LNPRS groups

by optimal cutoff values. Similar results were observed in the testing

cohort and other cohorts (Figures 4F–I). The performance of the

LNPRS in the overall survival for the METABRIC cohort was

assessed (10.16 years versus 13.05 years, P-value = 4.17E-4; log-

rank test; Figure 4G). The relapse-free survival curve for the

METABRIC cohort was represented graphically (9.17 years versus

13.98 years, P-value = 9.0E-3; log-rank test; Figure 4F). The AUC of

the survival curve in the METABRIC cohort was computed (Figure

S2). The patients in the GSE20685 cohort who had high LNPRS

showed significantly shorter overall survival times than those who

had low LNPRS (Figure 4H). The P-values of the GSE20685 and

GSE97324 cohorts were 6.0E-3 and 1.7E-2, respectively, according

to the log-rank test, (Figures 4H, I). The risk curve, time-dependent

ROC curve, and heatmap of gene expression for the GSE20685

cohort are also shown in Figures S2A–D. The predicted

performance of the single gene in the METABRIC cohort was

consistent with the results of the TCGA cohort (Figures 4J–N). The

ROC curves of the LNPRS for the IMvigor210, METABRIC, and

GSE97324 cohorts are presented graphically in Figure S4B, C, S5D.

The distribution of clinical features of the GSE97324 cohort in the

high and low LNPRS groups is shown in Figures S5A–C. The

correlation of the LNPRS with T stage and stage was evaluated, and

the P-values in the GSE97324 cohort were 1.5E-2 and 4.2E-2,

respectively (t-test; Figures 5E, F).

The prognostic value of clinical features and LNPRS in the

TCGA cohort was further studied by univariate analysis. The
B C

D E F

A

FIGURE 2

WGCNA of differentially expressed genes. (A) Sample clustering for detecting outliers. (B) Scale-free topology fitting index at different threshold
values and mean connectivities. (C) Gene clustering on TOM-based dissimilarity. (D) Clustering of module eigengenes. (E) Gene dendrogram and
module colors; (F) Module-trait relationships. Thirteen rows correspond to distinct co-expression modules, and twenty-one columns correspond to
21 types of infiltrative immune cells. The corresponding correlation coefficient and p-value for each type are shown in the diagram.
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heatmap for clinical features is presented in Figure 3F. As shown

in Figure 3G, age, stage, M stage, N stage, and LNPRS

were independent prognostic factors with a P-value< 0.001 in

univariate regression analysis (Figure 3G). We conducted a

multivariate regression analysis and found that the prognostic

value of the LNPRS was independent of other clinical factors

(Figure 3I). The LNPRS (P-value< 0.001) and stage (P-value =

0.040) were also independent prognostic factors in multivariate

regression analysis (Figure 3I). In the training cohort, the AUC

values of the LNPRS and clinical features were computed, and the

LNPRS model obtained the highest value of 0.855 (Figure 3H). In

the bar plot, the composition ratio of T, N, and M stages between

the high and low LNPRS groups in the training cohort is illustrated

(Figures S3A–D).

To provide a convenient and practical approach to predicting

the prognosis of patients for clinical oncologists, a nomogram that

incorporated the LNPRS and disease characteristics was

constructed based on the breast cancer patients of the training

cohort (Figure 3J). Based on the established nomogram, each

patient obtained a score that could predict the overall survival

time at 1-, 3- and 5-year (Figure 3J). When compared with the

tumor features, the LNPRS contributed the most risk points

(Figure 3J). The calibration curves of the training cohort are

plotted in Figure 3K. The calibration curves and the ideal curve
Frontiers in Oncology 06
were very close, especially for the calibration curves of 3-year

overall survival (Figure 3K). Therefore, these results indicated

that the nomogram was clinically instructive and had good

predictive performance.
The difference in the tumor mutation
burden between the patients with high or
low LNPRS

To further study the differences in TMB, the TMB values of

patients with different LNPRS were further analyzed. The waterfall

plot in Figures 5A, B revealed the differences in the genetic

mutations between the high and low LNPRS groups in the

training cohort. Mutations in the TP53, PIK3CA, and TTN genes

were more frequent, and the sample size and proportion of gene

mutations in the two groups were similar (84.86% vs 84.88%;

Figures 5A, B). The difference in TMB in the two risk groups was

compared in the training cohort and METABRIC cohort and the

patients with high LNPRS possessed higher TMB than those with

low LNPRS by the Wilcoxon test. The P values were 6.8E-3 and

3.6E-6 in the TCGA and METABRIC cohorts, respectively

(Figures 5C, D). The positive correlation between TMB and

riskScore in the TCGA and METABRIC cohorts is illustrated in
B

C

D

E

F

G

H

I J

K

L

A

FIGURE 3

Prognostic value validation of the LNPRS in the training cohort. (A) The survival curve of patients in the high and low LNPRS groups. (B, C) The
relation between the LNPRS and survival time of the patients with breast cancer. (D) The ROC curves of the LNPRS model for the TCGA cohort.
(E) The heatmap of gene expression in different LNPRS groups. (F) The heatmap of patient clinical features in high and low LNPRS groups. (G–I) The
P-values, HR, and 95% confidence interval of clinical features and riskScore by univariate (G) and multivariate (I) Cox regression analysis. (H) The
AUC of clinical features and riskScore. (L) The P-value and HR of prognostic-related genes. (J) Nomogram diagram based on the LNPRS model. (K)
The calibration plot of the nomogram.
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Figures 5E, F (R = 0.21, P-value = 2.1E-5 (TCGA cohort); R = 0.19,

P-value = 6.0E-9 (METABRIC cohort); Spearman test; Figures 5E,

F). In the 3 independent cohorts, the patients who possessed a low

TMB and/or low LNPRS had longer overall survival times than

those who possessed a high TMB and/or high LNPRS ((P-value =

8.0E-3, Figure 5G); (P-value< 1.0E-7, Figure 5H); (P-value = 3.6E-2,

Figure S4A); (P-value = 1.0E-3, Figure 5I); log-rank test).

Then, we studied the relationship between the LNPRS and

immune microenvironment features. Figure 6D illustrates the

relationship between the LNPRS and TME score, which included

the stromal score, immune score, and ESTIMATE score, in the

TCGA cohort. Moreover, breast cancer patients with low LNPRS

had higher TME scores than those with high LNPRS (Figure 6D).

There were significant differences between the two risk groups in

stromal score, immune score, and ESTIMATE score, and the P-

values were 1.60E-4, 4.20E-4, and 6.70E-5, respectively, according

to the Wilcoxon test (Figure 6D).
Immune cell proportion analyses based
on LNPRS

The proportion of infiltrating immune cells for breast cancer

patients with positive lymph nodes was observed and investigated,
Frontiers in Oncology 07
and the correlation between immune cells and LNPRS, and the

proportions of infiltrating immune cells in the training cohort

between different risk groups were studied by using 7 algorithms

(TIMER, CIBERSORT, EPIC, XCELL, QUANTISEQ,

MCPCOUNTER, and CIBERSORT-ABS) (Figures 6C, E–I;

Figures S6-9). The proportions of tumor immune cells in different

risk groups are graphically displayed in Figure 6A, and Figure 6B

illustrates their distributions as boxplots. The group with low

LNPRS had higher proportions of naive B cells, CD8+ T cells, and

resting dendritic cells than the group with high LNPRS (P-value<

0.01; Wilcoxon test; Figure 6B). However, the proportions of M0

macrophages and resting NK cells in the high LNPRS group were

significantly higher than those in the low LNPRS group (P-value<

0.05; Wilcoxon test; Figure 6B). Figure 6C suggests that the

proportions of TILs, including CD8+ T cells, CD4+ T cells, and

myeloid dendritic cells, were statistically inversely correlated with

LNPRS by using at least 4 algorithms (P-value< 0.05; Wilcoxon test;

Figure 6C, E–I; Figures S6-9). The proportions of regulatory T cells

(Tregs) and M0 macrophages were positively correlated with

LNPRS by using the CIBERSORT algorithm (P-value< 0.01;

Wilcoxon test; Figure 6C) (20).

In addition, the relationship between five genes based on the

LNPRS and 22 immune cell types was also evaluated in the training

cohort by using 7 algorithms (Figures 6J–Q; Figure S10). The
B C D

E F G H

I J K L

M N

A

FIGURE 4

The survival curves of (A) ABCD1, (B) GBP2, (C) SLAIN1, (D) SLC15A2, and (E) TFPI2 based on LNPRS in the training cohort. The survival curves of the
(F) METABRIC cohort (overall survival), (G) METABRIC cohort (relapse-free survival), (H) GSE20685 cohort, and (I) GSE97324 cohort. The survival
curves of (J) GBP2, (K) SLAIN1, (L) SLC15A2, (M) TFPI2, and (N) ABCD1 in the METABRIC cohort.
frontiersin.org

https://doi.org/10.3389/fonc.2023.1029070
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Lu et al. 10.3389/fonc.2023.1029070
correlations between GBP2 expression and TILs, including

macrophages, M1 macrophages, NK cells, resting memory CD4+

T cells, CD4+ T cells, CD8+ T cells, and myeloid dendritic cell-

activated neutrophils, were significantly positive (Figures 6J–Q).

The relationship between the expression of GBP2 and SLAIN1 and

TILs was also assessed by using different algorithms (Figure S10).
Correlation of LNPRS, immune checkpoint
molecules, and antitumor immunotherapy
response

The associations of 45 important immune checkpoint molecules

and the LNPRS for the TCGA cohort, including IDO1, LAG3, and

CTLA-4, were investigated (Figure 7A). The expression of 16

immune checkpoint molecules was inversely correlated with the

LNPRS, including BTLA, CD244, CD27, CD274, CD40, CD48,

NRP1, TIGIT, TNFRSF8, CD28, CD160, CD200, CD200R1,

TNFRSF14, and CD40LG (Figure 7A). Whether treated with PD-

1 antibody alone or in combination with CTLA-4 antibody, patients

with low LNPRS received higher IPS scores than those with high

LNPRS (Figures 7B–E).

Then, we assessed the predictive value of the efficacy and

survival time of the LNPRS in the Imvigor210 cohort and
Frontiers in Oncology 08
GSE78220 cohort with PD-L1 antibody or PD-1 antibody

(Figures 7F, G). The patients of the two cohorts were divided into

high or low LNPRS groups by the same formula. In the Imvigor210

cohort, the patients with low LNPRS had longer overall survival

than those with high LNPRS (1.02 years versus 1.74 years, P-value =

2.1E-2; log-rank test; Figure 7F). According to the response of

patients to immunotherapy in the GSE78220 cohort, the breast

cancer patients were sorted into four groups, and the responses to

immunotherapy were progressive disease (PD), partial response

(PR), stable disease (SD), and complete response (CR). A noticeable

difference in LNPRS with different responses to chemotherapy was

observed in the GSE78220 cohort and the patients in the non-CR

groups had higher LNPRS than the patients with a complete

response (P-value = 7.0E-3; t-test; Figure 7G).
The predictive value of LNPRS for the
responses to chemotherapy

The sensitivity differences of the 138 cytotoxic drugs, including

doxorubicin, gemcitabine, and methotrexate, were studied in the

groups with high and low LNPRS (Figures 8A–C; Figure S11). The

sensitivity differences of the 23 drugs were identified between

different groups, and the P-values for doxorubicin, gemcitabine,
B C

D E F

G H I

A

FIGURE 5

Gene mutation types and tumor mutation burden in the different cohorts. (A, B) Waterfall plots with mutation information of genes in the high
(A) and low LNPRS groups (B). (C, D) Boxplots of the differences in the tumor mutation burden with high or low-risk groups in the TCGA (C) and
METABRIC cohorts (D). (E, F) The correlation between tumor mutation burden and the LNPRS in the TCGA (E) and METABRIC cohorts (F). (G–I) The
survival curves for patients with high or low tumor mutation burden and LNPRS in the TCGA (G, H) and METABRIC cohorts (I).
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FIGURE 6

The proportion of immune cells, TME score, and infiltrative immune cells based on the LNPRS for the TCGA cohort. (A, B) The proportion of
immune cells of patients with different LNPRS (ns ≥ 0.05, *< 0.05, **< 0.01, ***< 0.001). (C) The correlation analysis of the immune cells with LNPRS
by 7 calculation methods. (D) The variance analysis of stromal score, immune score, and ESTIMATE score in the different risk groups. (E–Q) The
correlation analysis of different immune cells and GBP2 gene expression.
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FIGURE 7

The predictive value of the immunotherapy efficacy of the LNPRS in the 3 independent cohorts. (A) The correlation between immune checkpoints, gene
expression, and the LNPRS. (B–E) The IPS and response to blockade with CTLA-4 antibody or/and PD-1 antibody for the TCGA cohort. (F) The survival
curves for the Imvigor210 cohort. (G) In the GSE78220 cohort, the differences in the LNPRS of patients with distinct chemotherapy responses.
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and methotrexate were 1.6E-3, 1.0E-5, and 1.3E-4, respectively

(Figures 8A–C; Figure S11).

Next, we assessed the predictive value of LNPRS in the

GSE140494, GSE130788, and GSE18728 cohorts (Figures 8D–G).

The patients in the GSE140494 cohort were sorted into three groups

based on the response to neoadjuvant chemotherapy: clinical no

change (cNC), clinical partial response (cPR), and clinical complete

response (cCR). The noticeable difference in LNPRS between the

cCR and non-cCR groups was investigated in the GSE140494

cohort at the time point of 6 cycles, and the patients with non-

cCR had higher LNPRS than those with cCR (P-value = 1.8E-4; t-

test; Figure 8D).

Then, we further verified the predictive value of LNPRS for

neoadjuvant chemotherapy in the GSE18728 cohort and obtained

similar results (Figure 8G). The breast cancer patients were sorted

into responders and non-responders based on therapeutic efficacy.

Compared to the LNPRS in the non-responder group, lower LNPRS

were found in the responder group (P-value = 1.7E-2; t-

test; Figure 8G).

Finally, the GSE130788 cohort was used as a validation cohort

to verify the value of LNPRS by performing pairwise comparisons.

In the GSE130788 dataset, breast cancer patients received

neoadjuvant chemotherapy, and the treatment options included

TCH, TCTy, and TCHTy. Figures 8E, F demonstrates that the
Frontiers in Oncology 10
breast cancer patients after TCH treatment had significantly lower

LNPRS than the scores of patients before treatment (baseline) (P-

value = 3.8E-2; pairwise t-test; Figure 8E), and the result was

consistent in the group that received TCTHY treatment (P-value

= 2.1E-2; pairwise t-test; Figure 8F).
GSEA and GSVA analyses of LNPRS

GSVA enrichment analysis was performed to elucidate which

signatures were significantly related to the LNPRS. In total, 7 KEGG

pathways were identified, as illustrated in Figure 9A, and these

KEGG pathways were negatively correlated with the LNPRS. The

KEGG enrichment pathways included T_BETA_SIGNALING,

T_CELL_RECEPTOR_S IGNAL ING , CHEMOKINE_

SIGNALING, and B_CELL_RECEPTOR_SIGNALING,

MAPK_S IGNAL ING , JAK_STAT_S IGNAL ING and

FC_EPSILON_RI_SIGNALING (P-value< 1.0E-3; Figure 9A).

GSEA included GO and KEGG pathways based on single genes

(Figures 9B–I). The GO enrichment pathways for GBP2 included

ALPHA_BETA_T_CELL_ACT IVAT ION , B _CELL_

RECEPTOR_SIGNALING_PATHWAY, HUMORAL_IMMUNE_

RESPONSE_MEDIATED_BY_CIRCULATING_IMMUNOLOGY,

IMMUNOGLOBULIN_PRODUCTION and INTERFERON_
B C

D E F

G

A

FIGURE 8

Predictive value of the LNPRS for chemotherapeutic efficacy in the 4 independent cohorts. (A–C) In the TCGA cohort, the differences in sensitivity
to chemotherapy drugs of patients with low and high LNPRS. (D, G) The boxplot shows the difference in the LNPRS for breast cancer patients with
different responses to neoadjuvant chemotherapy in the GSE140494 (D) and GSE18728 (G) cohorts. Significance was determined by a t-test. (E, F)
Pairwise comparison of the LNPRS in breast cancer patients pre- and postchemotherapy for the GSE130788 cohort by the pairwise t-test.
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FIGURE 9

GSVA and GSEA enrichment analysis based on LNPRS in the TCGA cohort. (A) KEGG signaling pathways of genes that independently influence
prognosis and LNPRS. (B–I) KEGG and GO enrichment analysis of five genes based on LNPRS.
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GAMMA_PRODUCTION (Figure 9C). Figure 9B illustrates that

KEGG enrichment pathways for GBP2 were related to

immunomodu la t ion , such a s T_CELL_RECEPTOR_

S IGNALING_PATHWAY, INTESTINAL_IMMUNE_

NETWORK_FOR_ IGA_PRODUCTION, CYTOKINE

_RECEPTOR_ INTERACTION , and CHEMOKINE_

SIGNALING_PATHWAY. The GO and KEGG enrichment

analyses for TFPI2, SLC15A2, SLAIN1, and ABCD1 also obtained

similar results in the training cohort (Figures 9D–I). The results of

the study showed that the LNPRS was closely related to the

activation and regulation of T lymphocytes, B lymphocytes, and

immune cytokines.
Discussion

Breast cancer patients with local lymph node metastases are at a

high risk of forming distant metastases (29). It is important to test

prognostic biomarkers and select some patients who are most likely

to develop lymph node metastases or distant metastases. Potential

and new prognostic indicators might enable oncologists to

formulate a treatment plan for individual patients.

Immune cell infiltration is intimately associated with prognosis

prediction and chemotherapy response for breast cancer patients
Frontiers in Oncology 11
(30). By co-expression analysis of mRNA expression data and

immune cell infiltration for breast cancer patients with positive

lymph nodes in the training cohort, a gene panel and scoring system

based on immune cell infiltration characteristics that independently

affected prognosis were explored and identified. In the multivariable

Cox analysis, the LNPRS was proven to be a prognostic scoring

system independent of other essential clinical features.

We studied the predictive prognosis performance of the LNPRS in

4 independent breast cancer cohorts. The breast cancer patients with

high LNPRS had notably shorter overall survival times than those with

low LNPRS in the training (TCGA) cohort (7.98 years versus 20.42

years, P-value< 8.16E-11), GSE20685 cohort (NA versus 14.1 years, P-

value = 0.006), METABRIC cohort (10.16 years versus 13.05 years, P-

value< 4.17E-4) andGSE97324 cohort (3.70 years versus NA, P-value =

0.017) by the log-rank test. Based on these results, we concluded that

the negative correlation between the LNPRS and overall survival for

breast cancer cohorts was significant. To further evaluate the predictive

performance of the LNPRS in immunotherapy cohorts, the Imvigor210

cohort was examined, and there were also significant differences

between the two groups with high or low LNPRS (1.02 years versus

1.74 years, P-value = 0.021).

Currently, chemotherapy is a very important therapeutic

strategy for breast cancer patients. Thus, we assessed the

predictive value of the LNPRS in the field of chemotherapy. The
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correlation results between LNPRS and drug sensitivity suggested

that breast cancer patients with low LNPRS may benefit from

chemotherapy with doxorubicin (P-value = 1.6E-3), gemcitabine

(P-value =1E-5), and methotrexate (P-value = 1.3E-4). Therefore,

we retrieved the data of breast cancer patients that received

neoadjuvant chemotherapy or maintenance chemotherapy

containing anthracycline from public datasets. The GSE140494

dataset not only met the above requirements but also included

the efficacy evaluation information. Consequently, we used the

GSE140494 cohort as a validation dataset to certify the predictive

value of the therapeutic effect for the LNPRS. Unfortunately, we did

not query the eligible public dataset that contained gemcitabine

chemotherapy. The findings also confirmed that breast cancer

patients with low LNPRS were more sensitive to small molecule

tyrosine kinase inhibitors, including axitinib (P-value =2.6E-6) and

nilotinib (P-value =4.8E-5). The breast cancer patients in the

GSE130788 cohort also received combination treatment, which

included lapatinib, and lapatinib was also a small molecule

tyrosine kinase inhibitor. Therefore, the change in the LNPRS

before and after treatment was observed and estimated in the

GSE130788 cohort. The results demonstrated that the LNPRS can

be a meaningful marker for predicting the response to

chemotherapy of patients with breast cancer.

Some clinical studies confirmed that some patients can benefit

from immune checkpoint treatment, and there were still some patients

who did not benefit from immunotherapy with checkpoint inhibitors

(31–33). The screening of sensitive predictors for immunotherapy is

important for clinical treatment. First, we investigated the relationship

between the LNPRS and the response to immune checkpoint treatment

and then confirmed the prognostic value of the LNPRS in two

immunotherapy cohorts. We identified that the LNPRS was related

to the overall survival of patients and immunotherapy efficacy in the

IMvigor210 and GSE78220 cohorts, and the results may uncover that

the LNPRS may serve as a biomarker to predict the response to

immunotherapy for breast cancer patients.

In our study, the prognostic value of the LNPRS in 4 breast

cancer cohorts was examined. The clinicopathological parameters

in some cohorts were limited, and some patients had no

information about molecular subtypes. Therefore, we built the

nomogram using breast cancer data from the training cohort, and

the nomogram included some important clinical features except for

molecular subtypes, such as TNM stage, clinical stage, sex, and age.

Next, the correlations between the LNPRS and enrichment

pathways, immune checkpoint molecules, and the proportion of

infiltrating immune cells were estimated. Differences in the TMB,

ESTIMATE score, immune score, and stromal score were also

observed in breast cancer cohorts. Based on the obtained results,

we may presume that the LNPRS is a good biomarker for predicting

prognosis in breast cancer patients.

There were some shortcomings in our study. First, the breast

cancer patients were used as the training and testing cohorts from

different public datasets in our study and the heterogeneity of

tumors may exist in our cohorts. Previous studies have found that

there was a correlation between neoantigen intratumor or

intrapatient heterogeneity of tumors and overall survival (34).

Tumor heterogeneity can determine the effects of chemotherapy
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and immunotherapy (2). Second, the LNPRS was established based

on the TIME of breast cancer, and we did not obtain a public

database of breast cancers for immunotherapy. Thus, we have to

replace breast cancer cohorts with urothelial cancer and malignant

melanoma datasets. Third, this study is based on bioinformatics

analysis and lacks experimental validation. In the further study, we

will collect transcriptome and clinical data from breast cancer

patients in our studies and further verify the predictive value of

the LNPRS by clinical validation.

Finally, the LNPRS model was a meaningful tool for survival

prediction and therapy instruction for breast cancer patients with

lymph node positivity. During the clinical treatment of breast

cancer, the LNPRS model may help to predict prognosis and

stratify patients who may benefit from adjuvant chemotherapy

and immunotherapy with checkpoint inhibitors.
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SUPPLEMENTARY FIGURE 1

Construction of the LNPRS in the training cohort. (A) The LASSO regression
model was constructed by 10-fold cross validation. Partial likelihood deviance

was calculated and displayed graphically. (B) LASSO coefficient profiles of 6

selected genes in the 10-fold cross validation.

SUPPLEMENTARY FIGURE 2

Validation of the LNPRS in the GSE20685 cohort. (A, B) The relationship

between LNPRS and survival time in patients with breast cancer. (C)
Expression heatmap of the 5 genes in different risk groups. (D) The ROC

curves of the LNPRS model for the GSE20685 cohort.

SUPPLEMENTARY FIGURE 3

The proportion of important clinical features for the TCGA cohort with high

or low LNPRS. (A–D) The bar graphs illustrate the composition of

clinical features.
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SUPPLEMENTARY FIGURE 4

The survival curves of patients with different TMBs in the different cohorts. (A)
The survival curve with high or low TMB in the METABRIC cohort. (B) The
ROC curves of the LNPRS model for the IMvigor210 cohort. (C) The ROC

curves of the LNPRS model for the METABRIC cohort.

SUPPLEMENTARY FIGURE 5

The distribution of clinical features and survival curves of patients in the

GSE97324 cohort. (A–C) The composition of clinical features is illustrated by

the bar graphs; (D) The ROC curves of the LNPRS model. (E, F) The difference
in the LNPRS of breast cancer patients with different T stages and stages.

SUPPLEMENTARY FIGURE 6

Correlation analysis of infiltrative immune cells with the LNPRS by the

CIBERSORT-ABS algorithm in the TCGA cohort. (A–K) The dotted line plots
show the relationship between the immune cells and the LNPRS.

SUPPLEMENTARY FIGURE 7

The correlation analysis of infiltrative immune cells with LNPRS by EPIC,

TIMER, andQUANTISEQ algorithm in the TCGA cohort. (A–Q) The dotted line
plots show the relationship between the immune cells and the LNPRS.

SUPPLEMENTARY FIGURE 8

Correlation analysis of infiltrative immune cells with the LNPRS by the
MCPCOUNTER algorithm in the TCGA cohort. (A–K) The dotted line plots

show the relationship between the immune cells and the LNPRS.

SUPPLEMENTARY FIGURE 9

Correlation analysis of infiltrative immune cells with the LNPRS by the XCELL
algorithm in the TCGA cohort. (A–Q) The dotted line plots show the

relationship between the immune cells and the LNPRS.

SUPPLEMENTARY FIGURE 10

The correlation analysis of infiltrative immune cells with LNPRS by 5

algorithms in the TCGA cohort. (A–Q) The relationship between immune
cells and gene expression.

SUPPLEMENTARY FIGURE 11

The predictive value of the LNPRS for chemotherapy efficacy in the TCGA

cohort. (A–Y) Differences in sensitivity to various chemotherapy drugs in the
low and high-risk groups.
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