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An MRI-based radiomics
nomogram in predicting
histologic grade of
non-muscle-invasive
bladder cancer

Longchao Li, Jing Zhang, Xia Zhe, Hongzhi Chang, Min Tang,
Xiaoyan Lei, Li Zhang*† and Xiaoling Zhang*†

Department of MRI, Shaanxi Provincial People’s Hospital, Xi’an, Shaanxi, China
Background: Non-muscle-invasive bladder cancer (NMIBC) is categorized into

high and low grades with different clinical treatments and prognoses. Thus,

accurate preoperative evaluation of the histologic NMIBC grade through imaging

techniques is essential.

Objectives: To develop and validate an MRI-based radiomics nomogram for

individualized prediction of NMIBC grading.

Methods: The study included 169 consecutive patients with NMIBC (training

cohort: n = 118, validation cohort: n = 51). A total of 3148 radiomic features were

extracted, and one-way analysis of variance and least absolute shrinkage and

selection operator were used to select features for building the radiomics score

(Rad-score). Three models to predict NMIBC grading were developed using

logistic regression analysis: a clinical model, a radiomics model and a radiomics–

clinical combined nomogram model. The discrimination and calibration power

and clinical applicability of the models were evaluated. The diagnostic

performance of each model was compared by determining the area under the

curve (AUC) in receiver operating characteristic (ROC) curve analysis.

Results: A total of 24 features were used to build the Rad-score. A clinical model,

a radiomics model, and a radiomics–clinical nomogrammodel that incorporated

the Rad-score, age, and number of tumors were constructed. The radiomics

model and nomogram showed AUCs of 0.910 and 0.931 in the validation set,

which outperformed the clinical model (0.745). The decision curve analysis also

showed that the radiomics model and combined nomogram model yielded

higher net benefits than the clinical model.

Conclusion: A radiomics–clinical combined nomogram model has the potential

to be used as a non-invasive tool for the differentiating low-from high-grade

NMIBCs.
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Introduction

Bladder cancer (BCa) is one of the most common malignant

genitourinary tumors and is associated with the highest morbidity

and mortality rates. BCa is classified into muscle-invasive bladder

cancer (MIBC) or non-muscle-invasive bladder cancer (NMIBC)

(1, 2).

NMIBC shows the biological characteristics of multicentric

growth and occurs in approximately 75% of BCa cases with a

high recurrence rate. Pathological grade is the main independent

risk factor most associated with the recurrence of NMIBC (3, 4).

Moreover, the prognosis and treatment strategies differ between

high and low-grade NMIBCs. The standard treatment for low-grade

NMIBC is the transurethral resection of the bladder cancer

(TURBT), whereas those with high-grade frequently require more

intensive treatment such as radical cystectomy, systemic

chemotherapy, and radiation therapy (5–10). On the other hand,

high-grade BCa have a higher risk of invading the muscularis

propria of the bladder wall and developing into metastatic

diseases, which are associated with a poor survival rate (11, 12).

Thus, an accurate preoperative evaluation of the histologic

grade of NMIBC is of great clinical significance and prediction of

recurrence. Currently, cystoscopic biopsy remains the standard for

assessing NMIBC grade. However, this examination is invasive and

expensive. Moreover, biopsy results are not always representative of

the entire tumor, which may lead to misdiagnoses (13, 14).

Notably, researchers have found that age, tumor size, number of

tumors, and sex are risk factors for bladder cancer grading (15–17).

Moreover, previous studies reported that MRI shows good

performance in diagnosis and prediction of NMIBC grade,

especially for ADC values (18–20). Furthermore, radiomics can be

used to quantify the morphological features and internal

heterogeneity of the lesions, and obtain information that cannot

be determined by subjective evaluations for disease diagnosis and

evaluation (21).

Recent studies showed that radiomics based onMRI can be used

as an accurate and noninvasive imaging tool for preoperative

prediction of the pathological grade of BCa (22, 23). However,

none of the prior studies arrived at a consensus regarding the

performance of radiomics in distinguishing low- and high-grade

NMIBC. On the basis of these observations, we aim to (1) develop

and validate a nomogram combing radiomics based on MRI and

important clinical factors for preoperative prediction of the

histological grade of NMIBC and (2) compare the diagnostic

performance of a clinical model, a radiomics model, and a

radiomics–clinical nomogram model.
Materials and methods

This retrospective study was approved by the institutional

Ethics Review Board, which waived the requirement for obtaining

written informed consent, and was performed according to the

TRIPOD reporting checklist (available at http://dx.doi.org/

10.21037/tau-21-49).
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Patients

A total of 202 consecutive patients with pathologically

confirmed NMIBC who underwent multiparametric MRI

examinations from September 2017 to December 2021 were

enrolled in our study. Inclusion criteria were as follows: (1)

postoperative pathologically confirmed NMIBC for the first time;

and (2) 3.0 T MRI scans performed<1 month before surgery, with

the sequence including T2WI and DWI scans with b values of 0 and

1000mm2/s.

The exclusion criteria were as follows: (1) a history of any

treatments, including chemotherapy, radiotherapy, TURBT, or

BCG, before the pelvic MRI; (2) presence of severe artifacts that

could make segmentation of cancer difficult on MRI scans; and (3)

incomplete pathological information. Finally, 169 patients were

found to be eligible in this study and divided into low- and high-

grade groups (low-grade, 106 patients; high-grade, 63 patients)

according to their pathological results. Figure 1 shows the flow

diagram of patient recruitment.
MRI acquisition

All images were acquired using a 3.0TMR scanners(Ingenia and

Ingenia CX, Philips Healthcare, and the Netherlands) with a 16-

channel body phased array coil. A standard MRI protocol included

sagittal T2WI, axial T2WI, and DWI.Turbo-spin-echo non-fat-

suppressed T2WI (TR/TE, 2516-3626/100) was performed with a

slice thickness of 4 mm. DWI was performed with a breathing-free

spin-echo planar imaging sequence in axial view including a high b-

value (1000 s/mm2) and a slice thickness of 4 mm. Apparent

diffusion coefficient (ADC) maps were automatical ly

reconstructed on a designated workstation. The detailed

parameters of the MRI examinations are shown in Table S1

(Supplemental Material).
3D region of interest (ROI) delineation

Two radiologists with no prior knowledge of the

histopathological results (L.L.C. and Z.L., with 6and 5 years of

experience in BCa imaging, respectively) manually delineated the

ROIs slice-by-slice along the tumor contour on axial T2WI maps

using ITK-SNAP software. Then, the divergence of their delineation

results was carefully corrected in consensus. The ROIs obtained

from T2WI images were mapped on the ADC maps to obtain the

corresponding tumor region. Figure 2 shows an example of a lesion

ROI delineated on T2WI mapping for enrolled patients.
Imaging feature extraction and selection

This study used an open-source Python package (Pyradiomics

2.0.1) for feature extraction. In this study, the radiomics features

belonged to five categories: 1) first-order statistics; 2) shape and size;
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3) texture; 4) wavelet filter; and 5) Laplacian of Gaussian

filter features.

A total of 3148 features were extracted from each T2WI and

ADC map. The intraobserver and interobserver repeatability of

lesion segmentation was evaluated to select stable and reproducible

features. Only the features with inter-and intra-class correlation

coefficient (ICC) > 0.75 were included in the following analysis.

To identify the features showing the greatest differences in the

high- and low-grade NMIBC groups, one-way analysis of variance

(ANOVA) was performed to select the optimal features for

predicting grade (24, 25). Second, the least absolute shrinkage and
Frontiers in Oncology 03
selection operator (LASSO) regression method was applied to select

the most discriminating radiomics features before classification.
Development of the clinical model

The clinical factors, including age, sex, tumor size and number

of tumors, were assessed by univariate logistic regression. To build

the clinical model, a multivariate logistic regression analysis was

conducted to assess the features identified as statistically significant

in univariate logistic regression analysis.
FIGURE 1

Flow diagram of patient recruitment.
FIGURE 2

Radiomics workflow and study flowchart.
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Development of the radiomics model

The patients were subsequently randomly divided into training

and validation sets at a ratio of 7:3. On the basis of the

characteristics selected in the above procedures, a logistic

regression algorithm was used to build the prediction model for

NMIBC grading with the training set and the independent

validation cohort based on T2WI and ADC mapping. This model

generated an internal score called decision value that was used as

the Rad-score.
Development of the radiomics–clinical
nomogram

The Rad-score and the potential clinical factors, including age,

sex, tumor number, and tumor size were introduced into univariate

and multivariate regression to select independent predictors. A

nomogram was constructed with these independent significant

risk factors, which is a visualized and individual tool to predict

the probability of NMIBC grade in the training cohort.
Validation of the three
predictive models

The area under the curve (AUC) of the receiver operating

characteristic (ROC) curve, accuracy, sensitivity, and specificity

were calculated to determine the discrimination performance for

NMIBC grading. For all three models, calibration curves were

derived from the regression analysis to assess the predicted and

the actual outcomes.
Clinical usefulness

The decision curve analysis was used to investigate the clinical

usefulness of the three models by quantifying the net benefits at

different threshold probabilities in both the training and the

validation datasets (26).
Statistical analysis

Statistical Package for Social Science (SPSS) 22.0 and MedCalc

version 15.2.2, R software version 4.1.2, Pyradiomics version 2.0.1.

were used for statistical analysis. The chi-square test and Mann–

Whitney–Wilcoxon U test were used to compare group differences.

The univariate and multivariate regression models were performed

to determine the independent predictors from the clinical factors

and Rad-score to differentiate high- and low-grade NMIBC. The

odds ratios and 95% confidence intervals were calculated. The

diagnostic abilities of the three predictive models were finally
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compared using the DeLong test. P values less than 0.05 were

considered statistically significant.
Results

Clinical characteristics of the patients

On the basis of computer-generated random numbers in a 7:3

ratio, the 118 patients were grouped into the training cohort, and

the remaining 51 patients were included in the validation cohort.

The two groups showed no significant difference in clinical

characteristics (P>0.05). Table 1 shows the baseline demographic

and clinical characteristics of patients in the training and

validation cohorts.
Development and performance of the
clinical model

The univariate and multivariate logistic regression analysis

showed that age and number of tumors were independent

predictors of high-grade NMIBC. The logistic regression

classifier was established based on the selected clinical features,

including age and number of tumors. The AUC, sensitivity, and

specificity of the clinical model were 0.723, 0.795, and 0.594 in the

training set and 0.745, 0.632, and 0.844 in the validation

set, respectively.
Feature selection and radiomics
signature construction

The interobserver and intraobserver ICCs of the selected

features ranged from 0.776 to 0.998. On the basis of the threshold

ICC value of >0.75, all the 3148 features were extracted from T2WI

and ADC images. After feature selection, 24 optimal radiomics

features were selected using the ANOVA and LASSO methods, and

these features were defined as the radiomics signature (Table S2 in

the Supplemental Material).

The process employed in the LASSO binary logistic regression

model is shown in Figure 3. The distributions of the Rad-score and

NMIBC status in the training and validation cohorts are shown

in Figure 4.
Validation of the radiomics model

The ADC and T2WI imaging models yielded AUC values of

0.938 and 0.839, respectively, for the training cohort and 0.869 and

0.809, respectively, for the validation cohort. The radiomics

signature of the ADC and T2WI imaging fusion model showed
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higher predictive efficiency with AUC values of 0.942 in the training

set and 0.910 in the validation set in comparison with the models

based on single MR images. The ROC curves are shown in Figure 5.
Development and performance of
the nomogram

The univariate and multivariate logistic regression analysis

showed that age, number of tumors, and Rad-score were

independent predictors of high-grade NMIBC (Table 2). A
Frontiers in Oncology 05
radiomics–clinical nomogram for NMIBC grading was developed

by using the independent risk factors mentioned above, as shown in

Figure 6. Theradiomics–clinical nomogram showed good predictive

ability with high AUC values of 0.955 in the training set and 0.931

in the validation set, which were slightly better than the radiomics

model. The AUC, accuracy, sensitivity, and specificity of the three

models are listed in Table 3. A comparison of the ROC curves of

these three models is shown in Figure 7.

The calibration curve showed good agreement between

predictions and observations both in the training set and

validation set (Figure 8). The Hosmer-Lemeshow test yielded
A B

FIGURE 3

The process of feature selection using the LASSO algorithm. (A) Selection of the tuning parameter l in the LASSO classififier via 10-fold cross-
validation based on minimum criteria. (B) LASSO coefficient profiles of the 24 radiomics features.
TABLE 1 The baseline demographics and clinical characteristics of patients in the training and validation cohorts.

Characteristics Training cohort
(n= 118)

Validation cohort
(n =51)

P value

Gender, No. (%)

Male 96 (81.4) 40 (78.4) 0.660a

Female 22 (18.6) 11 (21.6)

Age, median (range), years 65 (27, 89) 63 (29, 87) 0.670b

<65 years, No. (%) 57 (48.3) 27 (52.9)

≥65 years, No. (%) 61 (51.7) 24 (47.1)

Grade, No. (%)

High grade 44 (37.3) 19 (37.3) 0.997a

Low grade 74 (62.7) 32 (62.7)

Number of tumorsc, No. (%)

Single 86 (72.9) 38 (74.5) 0.826a

Multiple 32 (27.1) 11 (21.6)

Tumor sizec, median (range), cm 1.7 (0.6, 4.5) 1.5 (0.5, 4.2) 0.459b
fron
aStatistical analysis performed using chi-square test.
bStatistical analysis performed using Mann–Whitney U test.
cMRI-determined information.
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non-significant P values in both cohorts (P = 0.599 and 0.396),

which suggested good calibration.
Clinical usefulness

The decision curves for the clinical, radiomics, and combined

nomogram models are presented in Figure 9. The decision curves

showed that using the radiomics or combined nomogram models to

predict high-grade NMIBC was more beneficial than using the

clinical model.
Discussion

Noninvasively accurate predicting histologic grade of NIMBC is of

great significance because high-and low-grade cancers have different

clinical treatments and prognoses. In our study, we developed and

validated three models for preoperative assessment of the pathological

grade of NMIBC. The radiomics model and the nomogram model

combining the optimal radiomics signature and clinical risk factors,

including age and number of tumors, showed better diagnostic ability

for NMIBC grading than the clinical model. Thus, inclusion of the

Rad-score in the clinical model improved the diagnostic efficiency of

clinical factors, and achieved novel calibration and good clinical net

benefit, indicating its usefulness for NMIBC grading.

On the other hand, this study also revealed that combined

T2WI and ADC mapping showed higher performance than
Frontiers in Oncology 06
assessments based on a single imaging modality (AUCs of 0.910

vs. 0.869 and 0.809, respectively). The grading performance of ADC

mapping was better than that of the T2WI model (AUCs of 0.869

and 0.809, respectively). This finding can be attributed to the ability

of ADC to describe intratumoral characteristics and heterogeneity

and radiomics based on ADC maps can describe the contrast,

complexity and heterogeneity of local intensity patterns, and

potentially have more discriminative power cancer grading.

Considering that NMIBC of different pathological grades would

have different diffusion patterns of water molecules, different image

phenotypes may be better presented in ADC maps (27, 28). While

T2WI only provides the morphological features of NMIBC on the

basis of signal intensity (15, 29). In addition, ADC- and T2WI-

based radiomics features have been commonly used to develop

radiomics models because they can be used without contrast agents

for several tumors and can facilitate clinical decision-making.

Several studies have investigated the grade of BCa, but we were

unable to find studies that examined grading of NMIBC (22, 23).

Wang et al. reported an MRI-based radiomics approach that

showed good discrimination for high-grade versus low-grade

tumors, with an AUC of 0.9233 in the training cohort and

0.9276 in the validation cohort (22). Zheng et al. reported that a

radiomics–clinical nomogram showed good discrimination both

in the training set (AUC: 0.956) and validation set (AUC: 0.958)

(23). Zhang et al. reported that a combination of textural features

from DWI and ADC maps achieved the best performance in BCa

grading, with an AUC of 0.861, a sensitivity of 0.784, and a

specificity of 0.871 (15).
A

B

FIGURE 4

Waterfall plot of the distribution of radiomics score and pathological grade of individual patients in the in the training (A) and validation (B) sets.
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A B

FIGURE 5

ROC curves of Logistic Regression classifiers using 3 radiomics models in the training (A) and validation (B) cohors.
TABLE 2 Risk factors for high grade in non-muscle-invasive bladder cancer.

Variables Univariate analysis Multivariate analysis

OR(95% CI) P value OR(95% CI) P value

Gender 0.655 (0.303-1.414) 0.281 – –

Age 1.064 (1.304-1.095) <0.001 1.068 (1.017-1.121) 0.009

Tumor size 1.415 (0.980-2.043) 0.064 – –

Number of tumors 2.491 (1.240-5.004) 0.01 3.530 (1.161-10.721) 0.026

Rad-Score 2.269 (1.744-2.952) <0.001 2.274 (1.720-3.005) <0.001
F
rontiers in Oncology
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FIGURE 6

The nomogram integrating the radiomics score and independent risk factors was constructed to predict the pathological grade of NMIBC.
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Similar to the previous study, our results also suggest that a

radiomics signature based on MRI can be used to make noninvasive,

preoperative predictions of the tumor grade of BCa. However, about

75% of patients are limited to mucosa, submucosa and carcinoma in

situ, which is belong to NMIBCs, with biological characteristics of

high recurrence and progression risk (30). Preoperative prediction of

high-grade NMIBC is thus of great significance for treatment

planning and prognosis evaluation (9, 10).
Frontiers in Oncology 08
To our knowledge, our study is the first to develop a radiomics

model for NMIBC grading. Our findings revealed the strengths of

radiomics-based approaches in comparison with the clinical model.

Clinical risk factors could not reflect the intratumor heterogeneity.

In addition, the number of tumors was subjective. Preoperative

pathological grading of BCa mainly depended on cystoscopy biopsy,

but it was invasive examination, local sampling was easy to

underestimate the staging, could not reflect the overall
TABLE 3 Performance of clinical and radiomic models.

Model AUC Sensitivity Specificity Accuracy P value

Training cohort

Clinical model 0.723 0.795 0.594 0.669

Radiomics model T2WI 0.839 0.833 0.800 0.814

ADC 0.938 0.897 0.848 0.864

ADC+T2WI 0.942 0.841 0.905 0.881 <0.001d

Combined model 0.955 0.886 0.905 0.898 0.214e

Validation cohort

Clinical model 0.745 0.632 0.844 0.765

Radiomics model T2WI 0.809 0.867 0.722 0.765

ADC 0.869 0.833 0.815 0.824

ADC+T2WI 0.910 0.947 0.844 0.882 0.026d

Combined model 0.931 0.895 0.875 0.882 0.277e
fron
dComparison of ROC curve performance between clinical model and radiomics model using DeLong test.
eComparison of ROC curve performance between radiomics model and radiomics-Clinical combined model using DeLong test.
A B

FIGURE 7

ROC curves of using Clinical model, Radiomics model and Radiomics-Clinical combined model to predicting the pathological grade of NMIBC in the
training (A) and validation (B) cohorts.
tiersin.org

https://doi.org/10.3389/fonc.2023.1025972
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Li et al. 10.3389/fonc.2023.1025972
heterogeneity of the tumor, and could not observe the invasion of

the tumor outside the bladder wall (14, 31).

In contrast, radiomics could extract most of the objective

quantitative features (including shape- and size-based features, first-

order features, textural features, and wavelet features) mentioned in the

current literature from a 3D region, providing a comprehensive

evaluation of intratumor heterogeneity (32).

Since tumors of different pathological grades would have

different diffusion patterns of water molecules, differences in

image phenotypes may be better presented in ADC maps based

on radiomics (29, 33). Currently, a single model or feature may no

longer satisfy the development of precision medicine. Only a

comprehensive utilization of potentially useful features can

further improve the performance of the models (34).

The nomogram is a perfect example of integration of multiple

related parameters to predict a specific end point bymeans of geometry

graphs to visualize the results of the predictionmodel (35, 36).With the

nomogram, we could intuitively obtain a patient’s corresponding risk

value for high-grade NMIBC on the prediction line at the bottom of the

nomogram, which was then be used to guide the urologists’ decision on

conducting a second TURBT and intravesical chemotherapy.
Frontiers in Oncology 09
The AUC of the combined clinical factors and radiomics

nomogram was 0.931 for the validation cohort, indicating that the

constructed model showed satisfactory predictive accuracy for high-

grade NMIBC. Furthermore, the calibration curve revealed good

consistency between the actual and predicted outcomes. In

addition, for assessing the viability of the prediction model, we

conducted a decision curve analysis. The results showed that using

the prediction model to predict the risk of high-grade NMIBC could

yield higher net benefit than treating all or no patient in most

ranges of the threshold probabilities. Therefore, the combined

nomogram prediction model offered advantages in guiding

physician decision-making, but it cannot replace the cystoscopy

and histological evaluation.

Our study had several limitations. First, this was a retrospective

study and conducted at a single center, so potential selection biases

may have occurred. Thus, prospective, larger, multicenter studies are

required to evaluate the general ability of the proposed nomogram.

Second, our study only included T2WI and ADC mapping. The

addition of other series, such as dynamic contrast-enhanced or

perfusion-weighted images and high b-value images, may provide

more information and improve performance (37, 38). Thirdly, VI-
A B

FIGURE 8

Calibration curve of the nomogram in the training (A) and validation (B) sets.
A B

FIGURE 9

DCA for Clinical, Radiomics and Radiomics-Clinical nomogram in the training (A) and validation (B) sets.
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RADS is the preferred method for multi-parameter MRI to evaluate

the staging of BCa. The grading value of VI-RADS needs be further

analyzed in the future. Fourth, our study did not analyze the

carcinoma in situ separately because the small sample size. In the

future, we will expand the sample size for further analysis. In

conclusion, our results preliminarily demonstrate that a nomogram

based on radiomics features together with the important clinical risk

factors can be used to non-invasive assess tumor grade in NMIBC,

which may help radiologists and urologists in discriminating between

low- and high-grade NMIBCs more precisely.
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